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Abstract—Web applications are often exposed to unpredictable
workloads, which make infrastructure resource management
difficult. Resource may be overused when the workload is high
and underused when the workload is low. A solution to deal with
unpredictable workloads is to migrate web applications to cloud
computing infrastructures, where resources vary according to
demand. Since resource variations happen during the application
life cycle, adaptation tasks must be performed at runtime. The
resource variation and the adaptation tasks lead web applications
to different states that do not exist in non-elastic infrastructure,
which we call elasticity states. We claim that elasticity states may
reveal supplementary application errors and that web applica-
tions must be tested accordingly. For that, web applications must
be lead through elasticity states throughout the test. The natural
way to lead web applications through elasticity states is to expose
them to workload variations. However, generating the correct
workload to induce infrastructure adaptation in a minimal time,
without overloading the application, is a difficult task. Aiming to
make the workload generation more efficient, we propose a two
phases approach that first analyzes the application adaptation
behavior and then generates the appropriate workload. We vali-
dated our approach by conducting several experiments on Google
and Amazon cloud infrastructures. In these experiments, a web
application was successfully conducted through the predefined
resource variations.

Index Terms—Automated load generation, cloud computing,
elasticity, elastic web application, software testing.

I. INTRODUCTION

Web application workloads vary in an unpredictable way.
This variation may lead to both, resource overload or underuse,
when the workload is high or low. A way to improve the
workload variations processing is to migrate web applications
to cloud computing infrastructures, which provide elasticity,
i. e., resource changes according to demand.

Since resource changes happen during the web application
execution, adaptation tasks such as resource addition or load
balancer reconfiguration are performed at runtime. Both, re-
source changes and adaptation tasks, expose applications to
states that do not exist in non-elastic infrastructures, which
we call elasticity states. We claim that elasticity states may
introduce or reveal supplementary application errors. First,
an application may fail if it migrates from a non-elastic
infrastructure to an elastic one, and it is not designed for that.
Second, even if the application is designed for executing on
elastic infrastructures, errors may be introduced in code that is

added to deal with the elasticity states. Finally, errors may also
be introduced by failures of infrastructure adaptation tasks.

Since the elasticity states may introduce supplementary
errors, we claim that applications must be tested during them.
A common way to lead applications through these states is
to expose them to workload variations. However, generating
the correct workload to induce applications to pass through
elasticity states is a difficult task. For instance, a wrong
workload variation may overload the application, raise the
infrastructure adaptation time, or result on undesired elasticity
states. Therefore, we need an approach that generates correct
workload variations.

In this paper, we propose an approach that generates ap-
propriated workload variations for leading web applications
through predefined elasticity states. This approach has two
phases: warm-up and workload generation. In the warm-up
phase, we experiment the application and analyze its behavior,
gathering preliminary data. Then, the gathered data is used
as input in workload generation phase, where the workload
variations are generated. Our approach is entirely automated,
making the workload generation less laborious and less error-
prone.

We conduct two experiments to demonstrate that workload
level is the critical point of leading web applications though
elasticity states. We also conduct a third experiment, where
our approach generates workload variations for leading web
applications on Amazon EC21, and Google2. In both cloud
providers, we are able to lead the web applications according
to predefined elasticity states.

The rest of the paper is organized as follows. In the next sec-
tion, we present the major aspects of elastic web applications.
Section III introduces our approach. The experiments and their
results are described in Section IV. Section V discusses related
work. Finally, Section VI discusses the experiments results and
concludes.

II. BACKGROUND

A. Cloud Computing Elasticity Definitions

Different authors [1]–[5] have a common definition for
cloud computing elasticity, it is the ability of a cloud in-

1https://aws.amazon.com
2http://cloud.google.com



frastructure to modify its resource configuration as quickly
as possible, according to application demand.
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Fig. 1: Representation of cloud computing elasticity.

Figure 1 represents the typical behavior of elastic cloud
computing system. In this figure, the resource demand (con-
tinuous line) varies over time, first increasing from 0 to 1.5
(demanding 50% more resources than the current allocated
processors) and then decreasing to 0. When the resource
demand exceeds the scale-out threshold (>so), and remains
higher during the scale-out reaction time ('so), the cloud
elasticity mechanisms assign a new resource to the system.
The new resource is available after a scale-out time (�so),
the time the cloud infrastructure spends to allocate the new
resource. Once the resource is available, the threshold values
are updated accordingly.

When the resource demand starts to decrease, breaches the
scale-in threshold (>si), and remains lower during the scale-
in reaction time ('si), the cloud elasticity mechanisms release
a resource. However, in the figure the resource release does
not start immediately. This because the scale-in threshold is
breached in less than the scale-out wait time (xso) period,
which some cloud providers call cooldown period. After this
period, the infrastructure needs a scale-in time (�si) to release
the resource. As soon as the scale-in begins, the threshold
values are updated.

Table I describes the variables presented in Figure 1, which
will be used as input for the automatic workload generation
presented in Section III-B.

B. Web Application Pressure and Elasticity States

Workload fluctuations drive web applications to different
states, related to workload pressure and to infrastructure re-
configuration (elasticity). In the next sections, we introduce
these states.

1) Pressure States: Figure 2 presents the states of a web
application when exposed to different workload levels.

When the application starts, it is in the steady state: the web
application is not saturated and answers all requests. During
this state, the workload requests (!r) are proportional to the
amount of answered requests (�r).

TABLE I: Cloud Computing Elasticity Variables

Symbol Name Unit of Measure
>si scale-in threshold % of resource usage

>so scale-out threshold % of resource usage

!si scale-in workload level transactions per second

!so scale-out workload level transactions per second

'si scale-in reaction time seconds

'so scale-out reaction time seconds

�si scale-in time seconds

�so scale-out time seconds

xsi scale-in wait time seconds

xso scale-out wait time seconds

Fig. 2: Web application pressure states.

If the workload increases to a level that drives resource
usage close to resource capacity, the application enters the
under-pressure state. In this state, the web application is on
its performance limits and some requests are not answered:
!r becomes bigger than �r.

If the workload decreases during the under-pressure state,
the application returns to the steady state. However, if the
workload keeps increasing, the application goes beyond its
performance limits and enters the stress state. During this state,
the application cannot answer most requests: �r tends to 0

transactions per second.
Table II resumes the different pressure states.

TABLE II: Pressure States Notation

State Notation
steady (S) !r �= �r

under-pressure (UP ) !r > �r

stress (ST ) !r > �r ^ �r ! 0

It is important to mention that when the application is pres-
sured (under-pressure or stress), some requests are delayed.
Then, the application may remain in the under-pressure state
even if the workload is drastically reduced. This because the
application processes all delayed requests before returning to
the steady state.

2) Elasticity States: Figure 3 represents the elasticity states:
states related to resource changes, which web application is
exposed.

At the beginning the web application is exposed to ready
state: resource configuration is steady. Then, if the web appli-
cation is exposed for a certain time ('so) to pressure states that
breach the scale-out threshold, the cloud elasticity mechanism
starts adding new resource. At this point, the web application
is exposed to the scaling-out state: period while the resource
is added.



Fig. 3: Elasticity states.

After a scaling-out, the web application returns to the ready
state. Then, if it is exposed for a certain time ('si) to pressure
states that breach the scale-in threshold, the cloud elasticity
mechanism start releasing resource. This puts the web ap-
plication in the scaling-in state: period while the resource is
released. After that, the web application returns to ready state
again.

III. PROPOSED LOAD GENERATION APPROACH

In this section, we describe our approach to automatically
generate workload variations for leading web applications
through elasticity states. Figure 4 presents the approach work-
flow, which is divided into two parts: warm-up and workload
generation.

Load Generation 
Parameters

Workload
Generation

Warm-up Warm-up Data
Desired Elasticity States

S = {s1, s2, …, sn}

Generated Workload

Fig. 4: Workload Generation Workflow.

At the beginning, the user sets the following required
parameters for workload generation: application, type of work,
desired elasticity states, and elasticity variables (see Table I).
However, some variables related to elasticity are only known
after a first execution. To discover these variables, we use the
warm-up phase, where the application is stimulated with type
of work previously set by user. Then, the workload generation
phase uses all parameters to generate necessary workload
variations.

A. Warm-up

In this section, we describe the warm-up strategies to
discover elasticity variables.

1) Thresholds: Thresholds define limits within which an
application remains in the ready state. Since they can be set for
different resources (processor, memory, bandwidth, etc.), all of
them must be monitored. While the workload generation phase
does not use thresholds as parameters directly, thresholds
simplify the discovery of other elasticity variables.

2) Scale-out Workload Level: Discovering scale-out work-
load level depends on whether scale-out threshold is known,
or not. When the threshold is known, application is stimulated
with a gradual workload level increasing until resource usage

breaches the threshold. Then, current workload level is used
as scale-out workload level.

When the threshold is unknown, application is also stim-
ulated with a gradual workload level increasing. However,
in this case the workload level is increased for more time,
lasting until a scale-out begins. At this moment, we calculate
the supposed time of threshold breaching by subtracting the
scale-out reaction time (see Section III-A3) from the time the
scale-out begins. Then, the workload level at the threshold
breaching time is used as scale-out workload level.

3) Scale-out Reaction Time: Scale-out reaction time is
discovered during the same execution used to discover the
scale-out workload level. It also depends on whether the
thresholds are known or not.

When the scale-out threshold is known, we increase the
workload until the threshold is breached and then we keep
the workload level at the same level until a scale-out begins.
Then, the time from the threshold breaching until the scale-out
begins is used as scale-out reaction time.

When the threshold is unknown, we set the reaction time
to 60 s, the minimal reaction time of most cloud providers.
Then, we observe whether some performance degradation
happens previously to 60 s before the scale-out begins. If there
exists some performance degradation during this period, the
time from first degradation until scale-out begins is used as
scale-out reaction time. Otherwise, the scale-out reaction time
remains at 60 s. In this case, we consider that the performance
degradation may be originated by resource exhaustion, which
characterizes a threshold breaching.

4) Scale-out Wait Time: We discover the scale-out wait time
right after discovering the scale-out workload level and the
scale-out reaction time. When the scale-out is completed, we
immediately request a new scale-out (doubling the scale-out
workload level). Then, after the new scale-out completion, we
check the new reaction time.

If it is bigger than the previous one, we consider that there
is a wait time that delays the reaction time and use the value
of the last reaction time. If it is not, we consider that it is not
observable.

5) Scale-in Workload Level: To discover the scale-in work-
load level we also use two strategies: for known and unknown
scale-in thresholds. When the threshold is known, we base our
calculation on Liu [6]. The author considers that computing
capacity necessary to process a workload is linearly propor-
tional to workload variation. Thus, we calculate the scale-in
workload level as follows:

!si =

�
!so

>so

�
>si (1)

When the scale-in threshold is unknown, we gather the
scale-in workload level by experimenting the application.
Since this experimentation consists in leading the application
to a resource decreasing (scale-in), if the resource is at minimal
level, one scale-out is required before the experimentation.
In the experimentation, the application is stimulated with a
workload level that is decreased from scale-out workload level



multiplied by 2 (current amount of machines) to 0 transactions
per second. The workload decreasing rate is calculated as
follows: decreasing rate = !so='si, where the workload
variation is divided by the scale-in reaction time. If the
workload level reaches 0 transactions per second before scale-
in begins, it is kept at this level until the scale-in begins. Then,
we calculate the time that supposedly the threshold is breached
by subtracting 'si from the time the scale-in begins. After,
the scale-in workload level is set with the workload level at
calculated threshold breaching time.

6) Scale-in Reaction Time: To discover scale-in reaction
time, we need to conduct a new experiment in both of
situations, when the scale-in is known or unknown. For that,
likewise in scale-in workload level discovering, if the resource
is at minimal level, before experiment a scale-out is required.

When the scale-in threshold is known, we stimulate the
application with the scale-in workload level (that breaches the
threshold) until a scale-in begins. Then, the interval from the
beginning of experimentation until scale-in begins is used as
scale-in reaction time.

When the scale-in threshold is unknown, the scale-in thresh-
old breaching is not observable. Then, to be sure that the scale-
in threshold is breached, we reduce the scale-in workload level
to 0 transactions per second, since this is the minimal workload
level allowed. When the scale-in begins, we use the interval
from the experimentation beginning until scale-in begins as
scale-in reaction time.

7) Scale-in Wait Time: To discover the scale-in wait time,
we need two sequential scale-in. Therefore, the resource
amount must be two times bigger than minimal allocation.
In this case, if the resource amount is minimal, two previous
scale-out are required to discover the scale-in wait time.

In the scale-in wait time discovery, the application is first
stimulated with a workload level that requests one scale-in,
and when this scale-in finishes, we immediately reduce the
workload level in a way to request a new scale-in. Then, we
use the same strategy of scale-out wait time discovering, i. e.,
if the second reaction time suffers some increasing related to
first one, it is used as scale-in wait time.

8) Scale-out and Scale-in Times: We discover the scale-out
and scale-in times during the first experiments, which perform
resource scaling, i. e., scale-out and scale-in, respectively.
These two variables correspond to the time spent by cloud
infrastructure to perform each resource scaling. It is important
to mention that in the case of web applications, the scale-out
time comprehends the resource addition and the inclusion of
the new resource on load balancer.

B. Workload Generation

To lead a web application through elasticity states, we gen-
erate a stage-by-stage workload. A stage consists in varying
the workload to a workload stage level (!sl), then keep it at
this level during a workload stage time (!st). For each desired
elasticity state, we calculate a new stage.

For scale-out and scale-in states a stage is calculated as the
following formulas:

!slso = m!so (2a)
!slsi = m!si (2b)

!stso = 'so + �so + xso (2c)
!stsi = 'si + �si + xsi (2d)

where m is the amount of resource required. Indeed, a scale-
out allocates one new resource, increasing m of one, while a
scale-in releases a resource, decreasing m of one. For instance,
if the resource has been scaled out once and a new scale-out
is required, the m value is 3. Otherwise, if it has been scaled
out once, then a scale-in is required, the m value becomes 0.

Workload stage levels calculation (Equations 2a and 2b)
consists in multiplying the workload level (!so, or !si) by m.
The Equations 2c and 2d are used to calculate the workload
stage times, where we sum the reaction time ('so, or 'si),
the scaling time (�so, or �si), and the wait time (xso, or xsi).
In both, workload stage level and workload stage time, the
type of variables is chosen according to the state nature, i. e.,
scale-out, or scale-in.

For ready state, we calculate the stage as follows:

!slr = :�!sl (3a)
!str = manually set (3b)

As discussed in Section II-B, a ready state happens naturally
after scale-out, and scale-in states. Then, to keep this state,
the workload stage level remains the same of previous stage
(Equation 3a). Since in the ready state we do not need to wait
for resource changes, the workload stage time is set by the
user, according to his requirements.

C. Load Generator Architecture

Some cloud providers have policies to avoid attacks, such
as denial-of-service, for example. In these cases, high number
of requests coming from the same source are usually blocked.
Since in our approach we generate up to thousand requests per
second, this may be interpreted as an attack. To avoid that, we
distribute our tool components, following recommendations
of Amazon tutorial [7]. Distributing our tool components
allows to split the total amount of requests among several
components. This distribution prevents false-positive attacks,
allows the generation of higher workload levels, in addition to
be more realistic than having a unique client.

Figure 5 illustrates our tool architecture, which is composed
by a coordinator, and several generators.

Fig. 5: Our tool architecture.



The coordinator has several roles: front-end, generation of
workload variations, synchronization of load tasks executions.
Each generator performs exactly the same load tasks received
from coordinator. These tasks mimic requests from real-world
web applications, such as a page reading, a log-in form
sending, etc.

In the current version, our tool is implemented in Java.
The workload generation parameters are set using a property
file. And, all synchronization is made using remote method
invocation (RMI). If an application programming interface
(API) is available, the monitoring tasks are performed using it.
Otherwise, a virtual machine used to host the web application
is accessed remotely, and common Linux tools are used for
monitoring tasks. The remote access is also used if frequent
monitoring (e. g., every second) is necessary, since this is
usually not allowed by the cloud providers APIs. In the cases
where remote access is not allowed, our tool also allows to
monitor cloud infrastructures by reading resource status on
cloud provider status pages.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experiments and their results.
Experiment 1 and 2 verify the influence of different workload
levels for scaling resources in and out, respectively. Experi-
ment 3 aims at validating our approach, using it to lead web
applications through different elasticity states. Experiments 1
and 2 are only executed on Amazon EC2 cloud provider,
and the experiment 3 is executed on both, Amazon EC2 and
Google cloud providers.

In both cloud providers, we use small machines from a
single geographic region. Amazon machines (t2.small) have 1
virtual CPU (2:5GHz), 2GB of memory, and 10GB of disk.
Google machines (g1.small) have 1 virtual CPU (1:38GHz),
1:7GB of memory, and 10GB of disk. The default auto-
scaling web hosting services of each cloud provider are used
as elastic infrastructure. We consider the default web pages
from these services as web applications.3

A. Warm-up

Most elasticity variables from Amazon EC2 are previously
known, thus only the workload levels, and scaling times
must be discovered using the warm-up phase. Some elasticity
variables from Google are also previously known, although
in our experiments we discover all of them, simulating an
infrastructure where no variables are known.

Figure 7 illustrates the workload variation used in warm-
up phase to discover the unknown Amazon EC2 elasticity
variables. The workload is incremented until the resource
usage breaches the scale-out threshold, when the scale-out
workload level is gathered. Then, it is kept at same level until a
scale-out is performed, and the scale-out scaling time is calcu-
lated. After the scale-out, the workload level is immediately
reduced to scale-in workload level (calculated according to

3The infrastructure configurations can be reproduced by following the
procedures we describe on Google Docs document available at this link:
https://goo.gl/k7ZkUI.

Section III-A5), and it is kept until a scale-in is performed. At
this moment the scale-in scaling time is calculated.
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Fig. 7: Warm-up workload variation (Amazon EC2).

Table III presents all Amazon EC2 elasticity variables.

TABLE III: Amazon EC2 Elasticity Variables

Variable Value Known how?
>si 20% CPU set up
>so 60% CPU set up
�si 90 seconds set up
�so 270 seconds set up
xsi 300 seconds set up
xso 300 seconds set up
!so 128 tps (65% CPU ) discovered
'so 300 seconds discovered
!si 30 tps (15% CPU ) discovered
'si 600 seconds discovered

Figure 8 shows the workload variations used to discover
Google elasticity variables. Since the thresholds are not
known, the workload is incremented until a scale-out be-
gan. Then, the reaction time is calculated, and the scale-
out workload level is gathered. The workload level is then
reduced to scale-out workload level value and kept at this level
until the scale-out completes, when we also gather the scale-
out scaling time. To know the scale-in reaction and scaling
times, the workload level is reduced to zero after the scale-out
completion and kept at this level until a scale-in is performed.
The next workload variations (from time 1000 s) correspond to
scale-in workload level discovering. The workload is increased
in a way a new scale-out is triggered, then it is decreased
gradually and when reaches zero it is kept at this level until a
scale-in begins. Then, the scale-in workload value is gathered.
After, the workload is increased in two steps, aiming two
sequential scale-out, where is gathered the scale-out wait time.
Two sequential scale-in are then requested, to gather the scale-
in wait time.

All the values gathered in Google warm-up phase are
presented in Table IV.

B. Experiment 1

This experiment attempts to demonstrate that wrong work-
load levels induce unexpected resource changes. For that, we

https://goo.gl/k7ZkUI
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(a) Scale-out resource allocation.
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(b) Scale-in resource allocation.
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Fig. 6: Effects of different pressure states on elasticity (Amazon EC2).
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Fig. 8: Warm-up workload variation (Google Cloud).

TABLE IV: Elasticity Variables (Google Cloud)

Variable Value Known how?
!so 30 tps (resource amount = 1) Discovered
'so 60 seconds Discovered
�so 165 seconds Discovered
'si 600 seconds Discovered
�si 30 seconds Discovered
!si 24 tps (resource amount = 2) Discovered
xso 60 seconds Discovered
xsi 60 seconds Discovered

use three different workload levels: low (!so=2 = 64 tps),
ideal (!so = 128 tps), and high (2!so = 256 tps). The
web application is exposed to each workload level on different
executions, where the workload level is kept steady during the
whole execution. Each execution lasts the double of workload
stage time (as discussed in Section III-B) to verify whether
the workload level is able to keep the resource amount after
the first scale-out.

Figure 6a illustrates the resource changes derived from
the different workload levels used in this experiment. When
the web application is exposed to the low workload level
(64 tps) there is no resource change. With the ideal workload
level (128 tps) one resource change is triggered, then the
resource remained unchanged until the end of web application
execution. The high workload level triggers two resource
changes instead of one. At the beginning of Figure 6c, we

can see that the high workload level also exposes the web
application to a period of stress.

C. Experiment 2

Experiment 2 attempts to demonstrate that correct workload
levels are also important for leading web applications through
resource scale-in. In this experiment, we also expose the web
application to three different workload levels in distinct exe-
cutions, accordingly to Experiment 1. Although, before each
execution we lead the web application to two resource scale-
out, wherein for that we consider the ideal workload level of
previous Experiment 1. This strategy is used to verify whether
some workload levels lead the web application through more
than one resource scale-in. Since in this experiment the amount
of resource is equal to 3, to request one resource scale-in the
m value is equal to 2 (see Section III-B) . Then, the workload
levels are calculated as follows: low (2!si=2 = !si = 30 tps),
ideal (2!si = 60 tps), and high (2 � 2!si = 120 tps).

Figure 6b illustrates all the resource changes triggered for
each workload level. When the workload level is high the
resource is not scaled in, with the ideal workload level the
resource is scaled once, and the low workload level triggers
two resource scale-in.

D. Experiment 3

This experiment is conducted to verify whether our ap-
proach is able to lead web applications through predefined
elasticity states. It is conducted in both, Amazon EC2 and
Google Cloud. Whole experiment was conducted according to
strategies presented in Section III-B.

In this experiment we try to lead the web application
through following sequence of states:

S1 = fSO; SO; SO; SI; SI; SIg (4)

where SO is a scaling-out and SI is a scaling-in state.
Figure 9 shows the relation between the generated workload

and resource variations. According to this figure, all resource
variations happen according to predefined desired states. The
comparison of workload variations to answered requests (Fig-
ure 10) shows that the web application is not pressured (under-
pressure or stress pressure states) at any moment.

Figure 11 shows that all desired states are triggered accord-
ingly to workload variations. Comparing workload variation
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Fig. 9: Leading a web application on Amazon EC2.
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and resource variation (Figure 12), we see that each workload
variation used to request a resource scale-out puts the web
application in an under-pressure state. This happens because
scale-out threshold is close to resource limits. In this case,
when the threshold is breached, the resource is consumed close
or beyond its limit, because of this some requests are delayed
or rejected. The second and third scale-outs put the web
application in stress states. Analysing the cloud infrastructure
logs we noted the stress states occurred due to cloud elasticity
mechanisms inserted a new machine (resource scaled-out) into
load balancer before all of its web hosting services be up. As a
result, part of requests (those sent to referred machine) could
not be answered. This problem was also reported to cloud
provider by proper support form4.

V. RELATED WORK

Meira et al. [8] propose a state machine to represent
the behavior of a Database Management Systems (DBMS)
exposed to workload variations. Additionally to steady, under
pressure, and stress, they also consider warm-up and thrashing
states. Warm-up comprehends the application start-up, which
is a natural process of any application, then we do not consider
it is related to elasticity. The trashing state is never reached
in web applications, therefore it is not considered either. We

4https://code.google.com/p/google-compute-engine/issues/detail?id=203
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Fig. 11: Leading a web application on Google cloud.
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Fig. 12: Answered requests (Google).

based our pressure states definition on, although we consider
web applications as study case.

Gambi et al. have two works that address elasticity testing
[9], [10]. In the first work, the authors predict elasticity state
transition based on workload variations, and test whether
cloud infrastructures react accordingly. Second work presents
a tool for automatic testing of cloud-based elastic systems,
however this tool does not take into account elasticity states.
Our approach is similar to first work in two points: both
trigger resource changes without stress, and consider elasticity
states and elasticity state transitions. However, the authors
classify the elasticity states according to allocated amount of
resource, while we also consider as elasticity state the periods
where the resource is being changed. We also use elasticity
state transitions for a distinct purpose than them, varying the
workload in a way to reach these state transitions.

Malkowski et al. [11] focus on controlling elasticity of n-
tier applications, such as web applications. This work is similar
to ours in two points: it takes care of n-tier applications, and
bases its models on previous application runs. Although, it is
carried out on cloud infrastructure side, while our approach
interacts directly with application (opposite side).

Manasce [12] and Draheim et al. [13] take care of web
applications load testing. Manasce only describes the quality
of service (QoS) factors and how to conduct load testing for
web sites. Draheim et al. propose a simulation of user behavior

https://code.google.com/p/google-compute-engine/issues/detail?id=203


in load testing of web applications. Therefore, neither of them
takes care about elasticity.

Other work are related to web performance measure-
ment [14]–[16]. These work only generate web traffic and
measure performance variables.

VI. DISCUSSION AND CONCLUSION

In this paper we proposed an approach that automates the
workload generation for leading web applications through
elasticity states. Our approach gathers the unknown elasticity
variables by experimentation, then automatically generates the
workload variations necessary to lead the web application
through a list of predefined elasticity states.

Results of Experiments 1 and 2 indicates that wrong work-
load levels lead web applications through unwanted elastic-
ity states. Another important issue to consider is that high
workload level put web applications under stress (Figure 6c).
Applications under stress are error prone, and errors related
to stress are present even in non-elastic infrastructures. Since
these errors are not related to elasticity, we claim the elasticity
test should avoid them. Otherwise, when any error is found
we must discover whether it was originated by elasticity or
stress. Same experiment results show that the ideal workload
levels drives web applications to desired elasticity state and
keeps them at this state. These results confirm our theory that
to generate correct workload variation is a critical task on
leading web applications through elasticity states.

Experiment 3 results show that in both, Amazon EC2 and
Google, our approach generates workload variations that lead
the web applications through the predefined elasticity states.
In the both cases, the web applications is lead without stress.
Considering that, we can say that our approach is able to lead
web applications through elasticity states, according to this
work objectives.

This paper is the first step towards an automated approach
for testing elastic systems. At the moment we lead web
applications through predefined elasticity states. Although, we
are also interested on aspects directly related to test of elastic
applications.

As future work, we intend to adapt our tool to support
any cloud infrastructure and to use a workload profiling tool,
such as JMeter, for simulating requests. We will also explore
functional and non-functional tests of elastic applications.
Finally, we intend to apply our approach on more complex
web applications architectures.
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