
HAL Id: hal-01317719
https://hal.science/hal-01317719

Submitted on 18 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Monitoring-Based Testing of Elastic Cloud Computing
Applications

Michel Albonico, Jean-Marie Mottu, Gerson Gerson Sunyé

To cite this version:
Michel Albonico, Jean-Marie Mottu, Gerson Gerson Sunyé. Monitoring-Based Testing of Elastic
Cloud Computing Applications. ICPE Companion (LT Workshop), Mar 2016, Delft, Netherlands.
�10.1145/2859889.2859890�. �hal-01317719�

https://hal.science/hal-01317719
https://hal.archives-ouvertes.fr

Monitoring-Based Testing of Elastic Cloud Computing
Applications

Michel Albonico
AtlanMod team (Inria, Mines

Nantes, Lina)
UTFPR, Brazil and Mines

Nantes, France
michelalbonico@utfpr.edu.br

Jean-Marie Mottu
AtlanMod team (Inria, Mines

Nantes, Lina)
University of Nantes

jean-marie.mottu@inria.fr

Gerson Sunyé
AtlanMod team (Inria, Mines

Nantes, Lina)
University of Nantes

gerson.sunye@univ-nantes.fr

ABSTRACT
Applications that are exposed to large-scale workloads must
ensure elasticity, that is the ability to scale up and down
rapidly to meet the demand. Cloud infrastructures pro-
vide adaptation tasks, which allow applications to automati-
cally scale up and down straightforwardly. These adaptation
tasks drive the system to new states, which may expose im-
plementation errors and therefore must be tested. In this
paper, we focus on testing elastic applications during di�er-
ent elasticity-related states. This test is di�cult since the
elasticity states are not directly controlled by the tester. To
execute the test at di�erent elasticity-related states, we pro-
pose a monitoring-based procedure. This procedure consists
in monitoring the resource status to identify the occurrences
of the elasticity states at real-time, and in parallel, execute
the state-related tests. To validate our test procedure, we
performed experiments on Amazon EC2. These experiments
successfully identi�ed non-functional errors.

Keywords
Cloud computing; elasticity; testing; elasticity testing.

1. INTRODUCTION
Some applications are often exposed to huge workloads.

Sometimes, to deal with these workloads, the applications
must be scaled in a large manner. Managing large scale ap-
plications is not a trivial task, and it is di�cult to achieve
manually. The usage of cloud computing may improve the
management of these applications. Cloud computing infras-
tructures provide elasticity, where system resources are al-
locate and deallocated automatically, according to demand.
Elastic infrastructures vary the resources at runtime. To

deal with these variations, the application and its service lay-
ers (database, application container, etc.) must behave in an
elastic manner. This comprises adaptation tasks [7], which
may be represented by the operations listed by Bersani et

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16 Companion, March 12-18, 2016, Delft, Netherlands
c 2016 ACM. ISBN 978-1-4503-4147-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2859889.2859890

al. [4]: component synchronization, registration, and data
replication.
Adaptation tasks may introduce functional, and non-

functional errors into the application. Considering database
applications, for instance, a functional error may happen due
to inconsistencies on data replication, which may result in an
unexpected result. Non-functional errors may be character-
ized by rejected requests and unacceptable response times.
They may result from a delay in a new resource allocation
(e. g., database replication node), a problem in recon�guring
the master component, or even a problem in the algorithm
for master election.
Some of the adaptation tasks may only execute during spe-

ci�c resource variations periods, during resource allocation
and deallocation. We call these periods elasticity states and
classify them as: scaling-out (resource allocation), ready (re-
source steady), and scaling-in (resource deallocation). We
believe that to �nd most of the errors resulted from the
adaptation tasks, we should test the application during all
the elasticity states. This is a challenging task, since we
must identify the elasticity states at real time, and in par-
allel, execute the test accordingly.
In this paper, we focus on two questions about elasticity

testing:

� Question 1: Is it necessary to run the test of the ap-
plication during di�erent elasticity states?

� Question 2: Is it possible to execute the test during
di�erent elasticity states and to assign the test verdicts
accordingly?

To answer to these questions, we conduct two experi-
ments on Amazon EC2, using the MongoDB as the database
layer, and the Yahoo! Cloud Serving Benchmark as the
database application. In the �rst experiment, we focus on
non-functional benchmarking and we detect signi�cant per-
formance variation that only occur during the resource vari-
ations. This indicates that it is necessary to test the ap-
plication during di�erent elasticity states. To answer the
second question, we propose a test procedure, which consists
in monitoring the resource status to identify the elasticity
states, and switching the test (according to the test speci�-
cations) every time a di�erent elasticity state is identi�ed.
Using this test procedure, in a second experiment, we iden-
tify all the non-functional failures of the �rst experiment,
which are successfully assigned to the elasticity states dur-
ing which they occur.

http://dx.doi.org/10.1145/2859889.2859890

The rest of the paper is organized as follows. In the next
section, we present the major aspects of cloud computing
elasticity. In Section 3, we propose a procedure for testing
elasticity. In Section 4, we describe the experiments and
results. In Section 5 we discuss the related work. Finally, in
Section 6 we conclude.

2. BACKGROUND

2.1 Cloud Computing Elasticity
Di�erent authors [1, 3, 7, 4] have a common de�nition for

cloud computing elasticity : it is the ability of a cloud infras-
tructure modifying its resource con�guration as quickly as
possible, according to application demand.
Figure 1 represents the typical behavior of elastic cloud

computing applications. In this �gure, the resource demand
(continuous line) varies over time, at �rst increasing from
0 to 1.5 (demanding 50% more resources than the current
allocated resources) and then decreasing to 0.

1.5

Resource Allocation
Resource Demand
Scale-out Threshold

Scale-in Threshold
Scale-out Threshold Breaching
Scale-in Threshold Breaching

Time (s)

R
es

ou
rc

e
(P

ro
ce

ss
or

s)

2

1

0.4

0.8

1.6

scale-out reaction time

scale-out time scale-in reaction time

scale-in time

Legend

Figure 1: Representation of cloud computing elasticity.

When the resource demand exceeds the scale-out thresh-
old, and remains higher during the scale-out reaction time,
the cloud elasticity mechanism assigns a new resource. The
new resource is available after a scale-out time, the time
the cloud infrastructure spends to allocate the new resource.
Once the resource is available, the threshold values are up-
dated accordingly.
When the resource demand decreases, breaches the scale-

in threshold, and remains lower during the scale-in reaction
time, the cloud elasticity mechanism releases a resource. As
soon as the scale-in begins, the threshold values are updated
and the resource is no more available. Nonetheless, the in-
frastructure needs a scale-in time to release the resource.

2.2 Cloud Computing Elasticity States
Fluctuations in workload pressure the application, de-

manding di�erent amounts of resource. When the applica-
tion is deployed on a cloud infrastructure, those uctuations
lead to resource variation (elasticity). Figure 2 illustrates
the elasticity states of cloud applications.
At the beginning, the application is in the ready state: the

resource con�guration is steady. Then, if the cloud elasticity
mechanism adds a new resource, the application enters the
scaling-out state: the period while the resource is added.
Otherwise, if some resource is released, the application en-
ters the scaling-in state: the period while the resource is

Figure 2: Elasticity states and their transitions.

released. After a scaling-out or scaling-in, the application
returns to the ready state, and remains in this state until a
new resource variation is requested.

2.3 Adaptation Tasks
Given that the elasticity is related to the ability of an

application to adapt itself to workload changes and resource
demands, the existence of at least one speci�c adaptation
process is assumed [7]. We call these processes adaptation
tasks. For instance, coordination activities, such as master
election and data replication, may be considered as a type
of adaptation task.

3. ELASTICITY TEST PROCEDURE
In this section, we present a procedure for testing the elas-

ticity of cloud applications. For this, we expose the applica-
tion to a workload that leads it through di�erent elasticity
states. In parallel, we run our elasticity test procedure which
monitors the resource status to identify the elasticity states,
and executes the tests according to their test speci�cations.
This section details the two parts of the test procedure:

test speci�cation and test execution. Here, we do not address
aspects related to the workload generation. This is done by
using a proper benchmark/load tool [2].

3.1 Test Modelization
Figure 3 presents the model of how we specify test struc-

ture, which is composed by one or more TestCase elements.
Each one of the Test Case element sets test activities, which
consist in sending inputs to the application, gathering the
outputs (application reaction to these inputs), asserting
these outputs, and returning the test case verdict. These el-
ements are implemented by JUnit TestCase classes, wherein
the outputs are asserted by using JUnit assertion methods.
Additionally, Test Case elements are also related to one or
more elasticity states, which is set in the variable eState.

Figure 3: Elasticity Test model.

3.2 Test Execution
The test execution is represented by the Algorithm 1.

This algorithm receives as input the test speci�cation (T),
discussed in the previous section, and the execution time-
out (eto) as the stopping condition. In the Algorithm 1,
we �rst start a monitoring process. The monitoring pro-
cess gathers information from di�erent sources (i. e., API,
HTTP reading, and SSH session), which makes it indepen-
dent of cloud provider. Based on the monitored information,

we identify the occurrences of elasticity states. In parallel,
we execute the test cases related to the current elasticity
state. This process is repeated up to the execution time
(tbegin � current time < eto).
The test execution is switched in a while loop, at each

loop we execute all the test cases associated to the current
elasticity state (cs). After each test case execution, we store
its verdict (JUnit assertion) into a matrix (V csi;tc). To pre-
vent verdict overwriting, we use the index i in the current
state. Since the application remains in the same state for
a while, several adaptation tasks may run throughout this
period. Using the while loop, the associated test cases are
re-executed along the current elasticity state (cs), which al-
lows us to cover all the adaptation tasks.

Algorithm 1: Test Execution

Data: Test Speci�cation T , Execution Timeout eto
mon monitor();
i = 0;
tbegin current time;
while tbegin � current time < eto do

foreach tc � T:testCases do

i = i+ 1;
csi mon:currentState();
if tc:states.contains(csi) then

V csi;tc run(tc);
end

end

end

4. EXPERIMENTS
To answer the two motivation questions (Section 1) of the

paper, we conduct two experiments. Both of them focus on
non-functional problems. In the �rst one, we benchmark
the application to check the existence of performance prob-
lems during resource variation (scale-in and scale-out elastic
states). In the second one, we check whether we are able to
execute a test during di�erent elasticity states, and set the
test verdict accordingly. In both experiments, the complete-
ness of the test is not an objective: we are interested in the
necessity and possibility of elasticity testing during di�erent
elasticity states. The performance and completeness of the
test is part of the future work.
In those experiments, we use a distributed MongoDB (ver-

sion r3:0:7) to represent an elastic database. The work-
load is generated by the Yahoo Cloud Serving Benchmark
(YCSB), which we consider as the database application.
Both, MongoDB and YCSB, are deployed on Amazon EC2
cloud infrastructure. The mongoDB components are de-
ployed on distinct virtual machines with standard capacity
(m3:medium): 1 vCPU (2:4GHz), memory (3:7GB), and
disk (10GB). The YCSB is deployed on a virtual machine
with large capacity machine (m3:large): 2 vCPU (2:4GHz),
memory (7:5GB), and disk (10GB).

4.1 First experiment: elasticity testing neces-
sity

In this experiment, MongoDB is deployed as a replica set.
We start the replica set with a master replica, then we ad-
d/remove two slave replicas one at a time, several times.

We execute the YCSB at this experiment, without using
our procedure. We send a YCSB workload (workload A)
to the application, whereas this workload is �xed at 2500
operations per second. The YCSB sends the operations to
the MongoDB within 10 seconds of interval and the test case
execution lasts� 22 minutes. We consider the number of op-
erations per second (ops) as the performance metric. Then,
we verify whether this property remains higher than 2000
ops. Otherwise, we consider it as a performance problem.
The YCSB executes continuously, without elasticity state

distinction, and the result is gathered after its execution,
from the logs. Figure 4 summarizes the result of this exper-
iment.

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100 120
P
e
rf

o
rm

a
n
ce

 -
 O

p
e
ra

ti
o
n
s

p
e
r

S
e
co

n
d
 (

o
p
s)

Time (x10s)

Measured Performance
Minimal Threshold

Figure 4: Result of the �rst experiment.

In Figure 4, the solid line represents the measured perfor-
mance, the dashed line represents the criteria performance,
the stripped areas represent the scaling-out states, the gray
areas represent the scaling-in states, and the other areas (no
outline) are the ready states. We see that during several
periods there are performance drops and that these drops
happen during any of the elasticity states. Most of them
happen at scaling states (scaling-out, and scaling-in), where
they always happen, and that only two of the performance
drops happen at ready states. The two performance prob-
lems at ready states happen due to adaptation tasks that
only occur once at the MongoDB run: when the benchmark
is warming up and during the master election (from a stan-
dalone to a distributed deployment).
We conclude this �rst experiment answering to the Ques-

tion 1 positively: it is necessary to run the tests of the ap-
plication during di�erent elasticity states since errors occur
during any of elasticity states.

4.2 Second experiment: elasticity test possi-
bility

In this experiment, we use our test procedure to set the
test according to the test speci�cation model (Section 3.1)
and to implement our test execution algorithm.
We repeat the MongoDB replica set con�guration and set

a unique test case, which is associated to every elasticity
state. The test case consists in sending to the MongoDB
a YCSB workload at a rate of 2500 operations per second.
Here, we aim at getting a �nite set of test verdicts, assigned
according to the reached elasticity states. For that, the test
case is associated to every elasticity state, which results in
its re-execution along the experiment (see Algorithm 1).
The verdict pass is assigned when the amount of opera-

 0

 10

 20

 30

 40

 50

 60

 70

 80

scaling-out ready scaling-in

v
e
rd

ic
ts

elasticity states

pass
fail

Figure 5: Result of the second experiment.

tions per second is higher than 2000, otherwise, the verdict is
fail. Figure 5 illustrates the amount of pass and fail verdicts
assigned to each elasticity state.
In the �gure, each stacked bar represents the verdicts of a

single elasticity state. We see that all the states have both
verdicts, pass and fail. This answers to the Question 2 pos-
itively: we made possible to execute a test exactly during
di�erent elasticity states, and to assign the test verdict ac-
cordingly. The proportion between pass and fail verdicts in
both experiments is similar, which indicates that our test
approach does not inuence the test case verdicts. For this
comparison, at the �rst experiment we consider the perfor-
mance drops (< 2000 ops) as fail, and the other performance
measurements as pass verdict.
At the �rst experiment we �nd the performance problems

manually, without identifying the elasticity states at real
time. In this manner, we must discover this information
after the execution, such as by analyzing log �les, which
may be toilsome and error-prone. Our test procedure verdict
assignment helps by analyzing test failures automatically,
at real time, and one elasticity state at a time (instead of
getting a continuous line of performance, such as the one of
the Figure 4).

5. RELATED WORK
Gambi et al. have two works that address elasticity testing

[6, 5]. In the �rst work, the authors predict elasticity state
transition based on workload variations, and test whether
cloud infrastructures react accordingly. The second work
presents a tool for automatic testing cloud-based elastic sys-
tems, however this tool does not take into account elasticity
states. Our approach is similar to their �rst work since both
consider elasticity states. However, the authors classify the
elasticity states according to amount of resource allocated,
while we also consider as elasticity state the periods where
the resource is being allocated (i. e., scaling-out, and scaling-
in). In addition to these two work, Truong and Dustdar also
have two work [9, 8] related to elasticity testing. Their �rst
work proposes a building block for multi-dimensional elas-
ticity programming, which resembles our work in monitoring
the elasticity. However, they consider di�erent dimensions,
such as quality and costs elasticity. In the second work,
they claim for new techniques for testing elastic applications,
however they do not propose any test approach. Therefore,
to our knowledge, our work is the only one that focus on
testing applications during the scaling states.

6. CONCLUSION AND FUTURE WORK
In this paper we aim at answering two main questions: Is

it necessary to run the tests of the application during dif-
ferent elasticity states? Is it possible to execute the test
during di�erent elasticity states and to assign the test ver-
dicts accordingly? We answered to the two questions pos-
itively, based on the execution of a couple of experiments
on a large-scale application on Amazon EC2. The second
question is answered thanks to an elasticity test procedure
that we propose. Our test procedure innovates by running
the test through di�erent elasticity states, assigning the ver-
dicts automatically and at real time.
This paper is a step towards an approach to test appli-

cations through elasticity. At the moment, we are able to
identify the elasticity states at real time and to execute the
test according to test speci�cation, set by the user. As a
future work, we intend to consider test criteria helping se-
lecting test when testing elastic applications. We illustrate
this paper with non-functional testing, but we are currently
working on identifying speci�c elasticity bugs. We will also
focus on analyzing and categorizing the errors detected, it
will help when creating test cases seeking them but also
when debugging. In particular, we do not discriminate yet
between application errors and cloud infrastructure errors.

Acknowledgments
This work is supported by CAPES Fundation (Science With-
out Borders process 9070{13{3), Ministry of Education of
Brazil.

7. REFERENCES
[1] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore.

Database scalability, elasticity, and autonomy in the
cloud. Proceedings of DASFAA'11, 2011.

[2] M. Albonico, J.-M. Mottu, and G. Suny�e. Controlling
the Elasticity of Web Applications on Cloud
Computing. In Proceedings of the 31st SAC. ACM,
2016.

[3] L. Badger, T. Grance, R. Patt-Comer, and J. Voas.
Draft Cloud Computing Synopsis and Recommend-
ations. Nist Special Publication 800-146, 2011.

[4] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi,
C. Ghezzi, and S. Krsti�c. Towards the Formalization of
Properties of Cloud-based Elastic Systems. In
Proceedings of PESOS 2014. ACM, 2014.

[5] A. Gambi, W. Hummer, and S. Dustdar. Automated
testing of cloud-based elastic systems with AUToCLES.
In Proceedings of ASE 2013. IEEE, 2013.

[6] A. Gambi, W. Hummer, H.-L. Truong, and S. Dustdar.
Testing Elastic Computing Systems. IEEE Internet
Computing, 2013.

[7] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in
Cloud Computing: What It Is, and What It Is Not.
ICAC, 2013.

[8] H.-L. Truong and S. Dustdar. Programming Elasticity
in the Cloud. Computer, 2015.

[9] H. L. Truong, S. Dustdar, G. Copil, A. Gambi,
W. Hummer, D. H. Le, and D. Moldovan. CoMoT - A
Platform-as-a-Service for Elasticity in the Cloud. In
Proceedings of IC2E, 2014.

	Introduction
	Background
	Cloud Computing Elasticity
	Cloud Computing Elasticity States
	Adaptation Tasks

	Elasticity Test Procedure
	Test Modelization
	Test Execution

	Experiments
	First experiment: elasticity testing necessity
	Second experiment: elasticity test possibility

	Related Work
	Conclusion and Future Work
	References

