
HAL Id: hal-01317715
https://hal.science/hal-01317715

Preprint submitted on 18 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Controlling the Elasticity of Web Applications on Cloud
Computing - Extended Version

Michel Albonico, Jean-Marie Mottu, Gerson Gerson Sunyé

To cite this version:
Michel Albonico, Jean-Marie Mottu, Gerson Gerson Sunyé. Controlling the Elasticity of Web Appli-
cations on Cloud Computing - Extended Version. 2016. �hal-01317715�

https://hal.science/hal-01317715
https://hal.archives-ouvertes.fr

Controlling the Elasticity of Web Applications on Cloud
Computing

Extended Version

Michel Albonico
AtlanMod team (Inria, Mines

Nantes, Lina)
UTFPR, Brazil and Mines

Nantes, France
michelalbonico@utfpr.edu.br

Jean-Marie Mottu
AtlanMod team (Inria, Mines

Nantes, Lina)
University of Nantes

jean-marie.mottu@inria.fr

Gerson Sunyé
AtlanMod team (Inria, Mines

Nantes, Lina)
University of Nantes

gerson.sunye@univ-nantes.fr

ABSTRACT
Web applications are often exposed to unpredictable work-
loads, which makes computing resource management di�-
cult. The resource may be overused when the workload is
high and underused when the workload is low. A solution
to deal with unpredictable workloads is to migrate Web ap-
plications to cloud computing infrastructures, where the re-
source is varied according to demand, i. e., elasticity. With
elasticity, all the resource variations happen during the Web
application runtime. To deal with this, the Web applica-
tion, and its service layers must behave in an elastic man-
ner, which comprises adaptation tasks. These tasks may
introduce functional and non-functional errors into the Web
application. To �nd these errors, we must test the Web ap-
plication when the adaptation tasks are performed, during
the resource variations. Some tests may require a speci�c
sequence of resource variations, which are di�cult to be
achieved without controllability. Therefore, in this paper,
we propose an approach that controls the required resource
variations. We validated our approach by conducting seve-
ral experiments on Amazon EC2 cloud infrastructures. In
these experiments, we successfully lead the Web application
through the required resource variations.

CCS Concepts
�Networks ! Cloud computing; �Information systems

! Web applications; �Software and its engineering !

Organizing principles for web applications;

Keywords
Web application, elasticity, elasticity states, controllability,
cloud computing.

1. INTRODUCTION
Web application workloads vary in an unpredictable way.

This variation may lead to both, resource overuse or under-
use, when the workload is high or low. A way to improve
the workload variations processing is by migrating Web ap-
plications to cloud computing infrastructures, which provide
elasticity, i. e., the resource is varied according to demand.
Elastic infrastructures vary the resource (allocate, and

deallocate) at application runtime. To deal with these vari-
ations, the Web application and its service layers (database,

application container, etc.) must behave in an elastic man-
ner. This comprises adaptation tasks [7], which may be
represented by the operations listed by Bersani et al. [3]:
component synchronization, registration, and data replica-
tion.
Adaptation tasks may introduce functional, and non-

functional errors into the Web application. For instance,
a functional error may happen due to an inconsistency on
data replication, which may result in an unexpected Web
page content. Non-functional errors, such as rejected re-
quests and long response times, may result from a delay in
a new resource allocation (e. g., Web server), or a problem
in recon�guring the load balancer. To �nd these errors, the
application must be tested when the adaptation tasks are
performed. Otherwise, they do not occur, and cannot be
discovered.
Testing Web applications through elasticity may be im-

practicable without controllability. Each test may require
speci�c elastic behavior, which implies in an exact sequence
of resource variations. This sequence may take too long to
happen, or not happen when it is not controlled. Therefore,
it is necessary an approach that ensures the reproducibility
of resource variations according to the test needs.
The reproducibility of resource variations may be con-

trolled by exposing the Web application to proper work-
load variations. Regarding the generation of Web applica-
tion workload, some work addressed this topic for the last
years [14, 13, 10, 8], though none of these work considers
elasticity. Other work [9, 5] vary the workload expecting
by resource variations. However, they do not control the
resource variations.
In this paper, we propose an approach that controls the

generation of workload variations according to the required
resource variations. We also propose an implementation of
this approach, which executes automatically. This imple-
mentation is executed in three phases: pro�ling, workload
calculation and application leading. In the pro�ling phase,
the application is exposed to a workload pattern, then we
gather the resource usage pro�le related to this workload
pattern. In the workload calculation phase, we estimate
(based on the resource usage pro�le) the workload intensi-
ties necessary to request the required resource variations.
Then, in the application leading phase, we expose the ap-
plication to each one of the calculated workload intensities
until the resource variations are completed.
We validate our approach conducting experiments on

Amazon EC21. In these experiments, we use the bulletin-
board benchmark application RUBBoS2 to represent the
Web application class, and its own benchmark tool to gener-
ate the workload. Both, the Web application and the bench-
mark tool, are realistic and previously used in literature [15,
11]. In these experiments, our approach is able to lead the
Web applications according to required resource variations.
It allows to control a sequence of resource variations deter-
ministically, by allocating or releasing virtual machines (the
resource we considered).
This approach is the �rst step in direction to test Web

applications through elasticity. In a future work, we will ad-
dress the aspects of the test, such as test case, test strategy
and test oracle.
The paper is organized as follows. In the next section,

we present the major aspects of elastic Web applications.
Section 3 introduces our approach. The experiments and
their results are described in Section 4. Section 5 discusses
related work. Finally, Section 6 concludes.

2. BACKGROUND

2.1 Cloud Computing Elasticity Behavior
Di�erent authors [1, 2, 7, 3] have a common de�nition for

cloud computing elasticity : it is the ability of a cloud infra-
structure modifying its resource con�guration as quickly as
possible, according to application demand.
Figure 1 represents the typical behavior of elastic cloud

computing applications. In this �gure, the resource demand
(continuous line) varies over time, at �rst increasing from
0 to 1.5 (demanding 50% more resources than the current
allocated resources) and then decreasing to 0.

1.5

Resource Allocation
Resource Demand
Scale-out Threshold
Scale-in Threshold
Scale-out Threshold Breaching
Scale-in Threshold Breaching

Time (s)

R
es

ou
rc

e
(P

ro
ce

ss
or

s)

2

1

0.4

0.8

1.6

scale-out reaction time

scale-out time scale-in reaction time

scale-in time

Legend

Figure 1: Representation of cloud computing elasticity.

When the resource demand exceeds the scale-out thre-
shold, and remains higher during the scale-out reaction time,
the cloud elasticity mechanisms assign a new resource. The
new resource is available after a scale-out time, the time
the cloud infrastructure spends to allocate the new resource.
Once the resource is available, the threshold values are up-
dated accordingly.
When the resource demand decreases, breaches the scale-

in threshold, and remains lower during the scale-in reaction

1https://aws.amazon.com
2http://jmob.ow2.org/rubbos.html

time, the cloud elasticity mechanisms release a resource. As
soon as the scale-in begins, the threshold values are updated
and the resource is no more available. Nonetheless, the in-
frastructure needs a scale-in time to release the resource.

2.2 Cloud Computing Elasticity States
Fluctuations in workload pressures the Web application.

When this application is deployed on a cloud infrastructure,
those
uctuations lead to resource variation (elasticity). We
classify the resource variation according to resource status,
which we call elasticity states. Figure 2 illustrates the elas-
ticity states that Web applications running on a cloud infra-
structure are exposed.

Figure 2: Elasticity states.

At the beginning the application is exposed to the ready
state, when the resource con�guration is steady. Then, if the
application is exposed for a certain time (scale-out reaction
time) to a pressure that breaches the scale-out threshold,
the cloud elasticity mechanisms start adding a new resource.
At this point, the application is exposed to the scaling-out
state: period while the resource is added.
After a scaling-out, the application returns to the ready

state. When the application is at the scaling-out state, if
it is exposed for a certain time (scale-in reaction time) to
a pressure that breaches the scale-in threshold, the cloud
elasticity mechanisms start releasing some resource. This
puts the application in the scaling-in state: period while
the resource is released. After that, the application returns
to ready state again.

2.3 Workload Variation
In the literature, several work related to Web application

benchmark [14, 13, 10, 8] conduct experiments by increasing
the workload (intensity, number of clients, etc.) gradually
over time. In this section, we discuss the e�ects on request-
ing elasticity states using this kind of workload
uctuation.
We consider a gradual variation where the workload in-

creases in a rate that requests elasticity changes as soon as
possible. At this rate, which we call hurried rate, a new
scale-out threshold is breached immediately after the previ-
ous scaling-out state is completed.
Figure 3 (a) illustrates a hurried rate. The workload in-

creases the resource demand in a rate determined by the
gradient formula (m = y=x). For this calculation, the y
is represented by the workload intensity that leads the re-
source usage to a level that breaches the threshold, while
the x is represented by the total scaling time (reaction time
+ scaling time). In this �gure, we also can see that at this
rate, the resource is often overused. To avoid the resource
over usage, we should increase the workload in a lower rate.
Figure 3 (b) illustrates a low rate. This rate is also de-

termined by the gradient formula, though we represent the
y by the di�erence between the total of resource and the
resource usage that breaches the threshold. With this rate,
the resource is not over used, but the resource variation oc-
curs after a very long time, and moreover, the next one will
be very far away. Therefore, the low rate prevents to test
sequence of elasticity states, which could last many hours,
or even days.

Resource Allocation
Resource Demand
Scale-out Threshold
Scale-out Threshold Breaching

Legend

Time (s)

2

1
0.8

1.6

2.4

R
es

ou
rc

e
(P

ro
ce

ss
or

s)

total scaling time ()

Over usage

initial time

Time (s)

1
0.8

(a)

(b)

Figure 3: (a) Hurried rate and (b) Low rate for increasing
the resource demand gradually.

3. OUR APPROACH
In this section, we describe our approach to lead Web ap-

plications through elasticity states. In our approach we re-
quest the elasticity states by varying the workload in stages,
instead of gradually, attempting to solve the problems dis-
cussed in the Section 2.3. We variate the workload in in-
tensity, keeping the same workload pattern during all the
leading process.
As workload pattern, we consider the set of requests sent

to the Web application, which we represent in the Table 1.
In this table, we consider that, except the requests R2 and
R3, all the other requests are executed in parallel. In this
case, the requests R2 and R3 are executed in sequence (R2,
then R3), since the request R2 is set as predecessor of R3.
However, this is only an illustrative case, and other workload
patterns may di�er from this one. Considering the workload
pattern from Table 1, the variation of the workload consists
in multiplying the amount of each request by the desired
intensity. In this case, all the requests remain the same,
only the concurrency is varied.

ID Request Amount Predecessor

R1 GET /index.html HTTP/1.1 10 �

R2 GET /news.php HTTP/1.1 5 �

R3 GET /news.php?id=1 HTTP/1.1 4 R2
R4 POST /registration.html HTTP/1.1 2 �

Table 1: Example of workload pattern.

Figure 4 illustrates our approach to variate the workload
intensity, and as a consequence, to request the elasticity
states.

Workload
Pattern

Workload
Calculation

Multipliers Required Elasticity States
S = {s1, s2, …, sn}

User Entry

Execution Outcome

Tool Execution

Legend:

Profiling

Target
Application

Application
Leading

Workload Intensities

144 288 432 120 90

Thresholds

Figure 4: Approach work
ow.

At the beginning of our approach, the user sets the fol-
lowing required parameters: workload pattern, target ap-
plication, thresholds, and required elasticity states. The
workload pattern describes the set of requests sent to the
Web application. The target application corresponds to the

root Uniform Resource Identi�er (URL) of the Web appli-
cation. The thresholds parameter expresses the values of
the scale-in and scale-out thresholds set in the cloud com-
puting infrastructure. Finally, the required elasticity states
expresses the sequence of elasticity states through which the
Web application must be led.
After the user set all the required parameters, our ap-

proach executes automatically. This execution is divided
into three phases: pro�ling, workload calculation, and appli-
cation leading.

3.1 Profiling
To lead the target Web application through the required

elasticity states, we expose it to the workload intensities
that lead the resource usage to levels that breach the thresh-
olds (scale-in, and scale-out). To calculate these intensities,
in the pro�ling phase, we discover which are the workload
intensities necessary to breach the thresholds when the re-
source amount is equal to one. We call these workload in-
tensities as multipliers, and use the symbols Iso and Isi to
denote the scale-out and scale-in multipliers, respectively.
Then, based on the multipliers, we are able to calculate
the intensities necessary to breach the thresholds when the
amount of resource is greater than one (Section 3.2).
To discover the multipliers, we expose the Web applica-

tion to a workload intensity that increases gradually in a
hurried rate (see Section 2.3) until the scale-out threshold
is breached. We use this rate, since it is fast, and does
not stress the application until the scale-out threshold is
breached. Since the scale-in threshold is lower than the
scale-out threshold, going up to the scale-out threshold, al-
lows to discover both multipliers (Isi, and Iso).
Table 2 shows an example of multipliers. In this exam-

ple, we consider that the scale-out threshold corresponds to
60% of CPU usage, while the scale-in threshold corresponds
to 20% of CPU usage. In this case, we also consider that
the discovered scale-out multiplier is equal to 144, while the
scale-in multiplier is equal to 30.

Threshold Threshold Value Multiplier Resource Amount

scale-out 60% of CPU usage Iso = 144 1
scale-in 20% of CPU usage Isi = 30 1

Table 2: Example of multipliers.

3.2 Workload Calculation
In the workload calculation phase, we calculate the work-

load intensities necessary to lead theWeb application through
the required elasticity states. For this, each calculated work-
load intensity should breach the threshold related to an elas-
ticity state.
We base the workload intensities calculation on the multi-

plier values, and on the results of Lloyd and Smith work [10].
This work shows that multiple web servers (a typical deploy-
ment of the Web applications on cloud) scale near-linearly
(> 99%). Therefore, we assume that the workload intensity
necessary to breach the threshold when the amount of re-
source is greater than one, is equal to the current amount
of resource multiplied by the corresponding multiplier, i. e.,
Iso for scale-out, or Isi for scale-in.
Table 3 exempli�es the calculation of the workload in-

tensities for a sequence of elasticity states. In this table,
the required states correspond to a sequence of three scale-
outs and two scale-ins, where after each elasticity state the
amount of resource is increased or decreased accordingly.

Elasticity State Formula Workload Intensity Resource Amount

scale-out 1Iso 144 1
scale-out 2Iso 288 2
scale-out 3Iso 432 3
scale-in 4Isi 120 4
scale-in 3Isi 90 3

Table 3: Example of workload intensities calculation.

3.3 Application Leading
During the application leading phase, we lead the Web ap-

plication through the desired elasticity states. This consists
in exposing the Web application to each one of the workload
intensity calculated in the previous phase until the elasticity
state related to the intensity is completed. This phase can
be better understood in the description of the Figure 6 (next
section).

3.4 Implementation Architecture
In this section, we explain the implementation of our ap-

proach. Figure 5 illustrates the components of the imple-
mentation architecture, which is composed by a coordinator,
and several generators.

Figure 5: Implementation architecture of our approach.

The coordinator has several roles: front-end, monitoring,
calculation of workload intensity variations and synchroniza-
tion of load tasks. Each generator runs and controls an in-
stance of a load generation application, leading it to perform
the load tasks received from the coordinator. Using multiple
generators reproduces a more realistic workload than using a
single instance, allows to generate high workload intensities,
and may prevent false-positive attacks.
Figure 6 shows the sequence diagram that represents the

implementation of the application leading phase. In this
diagram, for each calculated workload intensity, the coordi-
nator splits the workload generation task among the multi-
ple generators. Then, each generator generates its portion
of the workload, and when the coordinator identi�es that
the required elasticity state is performed, it sends the next
workload intensity to the generators. This process is re-
peated until all of the workload intensities are generated.
To identify the elasticity states, the coordinator monitors
the resource status on the cloud frontend.

Figure 6: Sequence diagram of the application leading phase.

In the current version, our tool is implemented in Java. All

the parameters are set using a property �le. The synchro-
nization tasks are performed by remote method invocation
(RMI). The generators run any load generation application
that has an API, or supports command line execution. If
an application programming interface (API) is available, the
monitoring tasks are performed using it. Otherwise, a vir-
tual machine used to host the web application is accessed
remotely, and the sysstat3 tool is used for monitoring. The
remote access is also used if frequent monitoring (e. g., ev-
ery second) is necessary, since this is usually not allowed by
the cloud providers APIs. In the case where remote access
is not allowed, our tool can also monitor the cloud infras-
tructures by reading the resource status on cloud provider
status pages.

4. EXPERIMENTS AND DISCUSSION
In this section, we present the experiments and discuss

their results. All the experiments are conducted on Amazon
EC2, where we set the scale-out threshold as 60% of CPU
usage, and the scale-in threshold as 20% of CPU usage. The
workload multipliers that breach these thresholds are pre-
dicted as: 144 (Iso), and 30 (Isi), the same as the values of
Section 3.1. The total scale-out time is equal to 360 seconds,
while the total scale-in time is equal to 120 seconds.
We represent the Web application with the PHP version

of the RUBBoS, a realistic web application modeled after an
online news forum like Slashdot4. The RUBBoS is deployed
on n web servers with a centralized database server. For each
web server we use a distinct virtual machine with a standard
capacity (m3:medium). The database server is deployed
on a large capacity machine (m3:large) at same geographic
region of the web servers, which avoids bottlenecks.
We generate the workload using the RUBBoS benchmark

tool5, where the workload intensity is varied in number of
clients. For the �rst two experiments, the RUBBoS bench-
mark is executed natively, and it is distributed over 10 ma-
chines. For the third experiment, we use our tool to con-
trol the RUBBoS benchmark. Our tool is deployed with
1 coordinator and 10 generators. In all the experiments,
the RUBBoS benchmark is deployed at same cloud provider
and geographic region of the Web application, which pre-
vents bandwidth problems. All the machines used to deploy
the RUBBoS benchmark are of the large capacity type.
Table 4 describes the con�guration of each machine type

used in the experiments.

Machine Type CPU Memory Disk

m3:medium 1 vCPU (2:4GHz) 3:7GB 10GB
m3:large 2 vCPU (2:4GHz) 7:5GB 10GB

Table 4: Machines con�guration.

4.1 Gradual Workload Variation in a Hurried
Rate

This �rst experiment is conducted to con�rm our assump-
tion about leading Web applications through the required
elasticity states by using a workload that varies gradually
over time in a hurried rate. The hurried rate is calculated
according to the gradient formula from Section 2.3. This re-
sults in an increasing rate equals to 0:4 (144=360) per second,

3http://sebastien.godard.pagesperso-orange.fr
4http://slashdot.org/
5Con�guration of the benchmark: https://goo.gl/nMm0ro.

http://sebastien.godard.pagesperso-orange.fr
http://slashdot.org/
https://goo.gl/nMm0ro

and a decreasing rate equals to 0:25 (30=120) per second. We
�rst increase the workload intensity from 0 to 1152, and at
the end of this increase we keep the workload at the higher
intensity for a certain time (total scale-out time), then we
decrease it from 270 to 0. This results in an execution time
bigger than one hour (enough time to gather the results that
con�rm our assumption).
Increasing the workload intensity up to 1152 gradually in a

hurried rate should lead the Web application to 7 scale-outs
(8 machines), based on the calculations that we make in the
Section 3.2. Also based on the calculation of the Section 3.2,
with 8 machines, the workload intensity necessary to request
a scale-in is equal to 240.
At the workload increase, the workload start being in-

creased from 0, which lasts a little (� total scale-out time)
until the �rst scale-out threshold is breached. To repro-
duce a beginning such as in the workload increase step, we
set 270 (240 + 30 = 270, where 30 is the scale-in intensity
factor) as the value from which the workload starts decreas-
ing. Thus, the workload is decreased during a certain time
(� total scale-in time) before breaching the �rst scale-in
threshold.
Figure 7 illustrates the behavior of the Web application,

and the cloud infrastructure during this experiment.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
 0

 2

 4

 6

 8

 10

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

 (
tp

s)

R
e
so

u
rc

e
 (

V
ir

tu
a
l
M

a
ch

in
e
s)

Time (s)

Answered Requests
Sent Requests (Workload)

Allocated Resource

Figure 7: Gradual workload variation in a hurried rate.

In this �gure, we can see that happen seven scale-outs, and
seven scale-ins, according to the expected behavior. How-
ever, if we compare the Sent Requests (Workload) and the
Answered Requests lines, we see that most of the time that
the workload increases, the amount of answered requests is
lower than the amount of sent requests. This behavior rep-
resents periods of stress, which occur due to the over usage
of resource (see Section 2.3). Therefore, this experiment
con�rms our assumption that requesting elasticity states by
varying the workload gradually in a hurried rate stresses the
application.

4.2 Gradual Workload Variation in a Low
Rate

This second experiment intends to con�rm our assump-
tion about leading Web applications though the required
elasticity states by using a workload that varies gradually
over time in a low rate. Since this experiment would take
too long (� 9 hours) to be entirely executed, we only exe-
cute it during two scale-outs, which is enough to con�rm our
assumption. With these two scale-outs, we can measure the
total scale-out time, and see whether the Web application
is stressed (wherein the hurried rate stresses the application
even before the �rst scale-out). We consider the hurried
rate for the scale-ins, since with this rate (in the previous
experiment) the scale-ins are requested quickly, and without

stressing the Web application.
Figure 8 illustrates the results of this experiment execu-

tion.

Figure 8: Gradual workload variation in a low rate.

In this �gure, the lines that represent the Sent Requests
(Workload) and the Answered Requests are very close. Since
the execution time of this experiment is long, and the vari-
ation of the answered requests is low, it is not possible to
see the di�erence between the both lines without enlarging
the �gure. Therefore, we use a enlarged part of the �gure to
show more precisely the di�erence between the sent requests
and the answered requests. In this enlarged part, we can
see the answered requests line variate more than the sent
requests line. This variations happen since the RUBBoS
benchmark (used to generate the workload) uses a think-
ing time, which delays some requests, mimicking the real
users behavior. However, this is not a behavior related to
the stress of the Web application. The execution time of
this experiment is longer than in the previous experiment,
even that we request only two scale-outs, instead of seven
scale-outs, and seven scale-ins. This con�rms our second as-
sumption about gradual workload variation, where request-
ing elasticity states by varying the workload gradually in a
low rate takes too long.

4.3 Our Tool Validation
This last experiment is conducted to validate the abil-

ity of our approach leading Web applications through the
required elasticity states. For that, we use the same elastic-
ity states of the �rst experiment, i. e., 7 scale-outs, followed
by 7 scale-ins. We variate the workload intensity step-by-
step, according to the calculated workload intensities (see
Section 3.2):

� scale-out: 144, 288, 432, 576, 720, 864, 1008, 1152;
� scale-in: 240, 210, 180, 150, 120, 90, 60;

Figure 9 illustrates the results of this experiment execu-
tion.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 2

 4

 6

 8

 10

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

 (
tp

s)

R
e
so

u
rc

e
 (

V
ir

tu
a
l
M

a
ch

in
e
s)

Time (s)

Answered Requests
Sent Requests (Workload)

Allocated Resource

Figure 9: Step-by-step (controlled) workload variation.

In this �gure, the relation between the sent requests (Sent
Requests (Workload)) and the answered requests (Answered

Requests) shows that the Web application is not stressed at
any time. The total of allocated machines increases from
1 to 8, and then decreases from 8 to 1, according to ex-
pected. Our experiment executes within the same time than
when the workload increases in a hurried rate. Therefore, in
addition to lead the Web application through the required
elasticity states, our approach also solves the issues about
gradual workload variation, since it requests the elasticity
states in a minimal time, without stressing the application.

5. RELATED WORK
Gambi et al. have two work that address elasticity testing

[6, 4]. In the �rst work, the authors predict elasticity state
transition based on workload variations, and test whether
cloud infrastructures react accordingly. The second work
presents a tool for automatic testing cloud-based elastic sys-
tems, however this tool does not take into account elasticity
states. Our approach is similar to their �rst work in two
points: both trigger resource variations without stress, and
consider elasticity states. However, the authors classify the
elasticity states according to amount of resource allocated,
while we also consider as elasticity state the periods where
the resource is being allocated. We also control the elasticity
state, while they do not.
Malkowski et al. [12] focus on controlling the elasticity of

n-tier applications, such as Web applications. This work is
similar to ours in two points: it addresses n-tier applica-
tions, and it bases its models on previous application runs.
Although, it addresses the cloud infrastructure side, while
our approach interacts directly with application (opposite
side).
Other work are related to web performance measure-

ment [14, 13, 10, 8]. The Web performance is also addressed
by commercial tools, such as Apache JMeter6 and Blazeme-
ter7. However, none of them addresses the elasticity.

6. CONCLUSION
In this paper we propose an approach that automates and

controls the workload generation in order to lead Web appli-
cations through elasticity states. Our approach gathers the
unknown elasticity variables by experimentation, then calcu-
lates the workload variations, and leads the web application
through a list of required elasticity states automatically.
The results of the �rst and second experiments (Sec-

tions 4.1 and 4.2) indicates that the gradual variation of
the workload is not a good way to request the elasticity
states. In these experiments we see that when the elasticity
states are requested in a hurried rate, the Web application is
stressed. In addition, to not stress the Web application we
experiment the application with a low rate, which extends
the time of requesting the elasticity states. The third exper-
iment (Section 4.3) shows that our approach generates the
workload variations that lead the web applications through
the required elasticity states. In this experiment, the web
application is led without stress, and in a time close to the
Experiment 1 (fastest). Therefore, we can say that our ap-
proach is able to lead web applications through the required
elasticity states, allowing a reduced execution time.
This paper is the �rst step towards an approach to test

Web applications through elasticity. At the moment, we

6http://jmeter.apache.org/
7https://blazemeter.com/

lead web applications through required elasticity states. Al-
though, we are also interested on aspects related to the test,
such as test case and test oracle. As a future work, we in-
tend to propose an strategy to test Web applications through
elasticity.

Acknowledgments
This work is supported by CAPES Fundation (Science With-
out Borders process 9070{13{3), Ministry of Education of
Brazil.

7. REFERENCES
[1] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore.

Database scalability, elasticity, and autonomy in the
cloud. Proceedings of DASFAA'11, pages 2{15, Apr.
2011.

[2] L. Badger, T. Grance, R. Patt-Comer, and J. Voas.
Draft Cloud Computing Synopsis and Recommend-
ations. Nist Special Publication 800-146, 2011.

[3] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi,
C. Ghezzi, and S. Krsti�c. Towards the Formalization
of Properties of Cloud-based Elastic Systems. In
Proceedings of PESOS 2014, pages 38{47, New York,
NY, USA, 2014. ACM.

[4] A. Gambi, W. Hummer, and S. Dustdar. Automated
testing of cloud-based elastic systems with
AUToCLES. In Conference ASE 2013, pages 714{717.
IEEE, Nov. 2013.

[5] A. Gambi, W. Hummer, and S. Dustdar. Testing
elastic systems with surrogate models. In Workshop
CMSBSE'13, pages 8{11. IEEE, May 2013.

[6] A. Gambi, W. Hummer, H.-L. Truong, and
S. Dustdar. Testing Elastic Computing Systems. IEEE
Internet Computing, 17(6):76{82, 2013.

[7] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in Cloud Computing: What It Is, and What It Is Not.
ICAC, pages 23{27, 2013.

[8] W. Iqbal, M. Dailey, and D. Carrera. SLA-Driven
Dynamic Resource Management for Multi-tier Web
Applications in a Cloud. In Proceedings of CCGrid'10,
pages 832{837, May 2010.

[9] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
consumer can measure elasticity for cloud platforms.
In Proceedings of ICPE'12, page 85, New York, New
York, USA, Apr. 2012. ACM Press.

[10] C. U. S. Lloyd G. Williams. Web Application
Scalability: A Model-Based Approach. pages 215{226,
2004.

[11] S. Malkowski, M. Hedwig, D. Jayasinghe, J. Park,
Y. Kanemasa, and C. Pu. A new perspective on
experimental analysis of N-tier systems: Evaluating
database scalability, multi-bottlenecks, and economical
operation. In Proceedings of CollaborateCom'09, pages
1{10, Nov. 2009.

[12] S. J. Malkowski, M. Hedwig, J. Li, C. Pu, and
D. Neumann. Automated control for elastic n-tier
workloads based on empirical modeling. In Proceedings
of ICAC '11, pages 131{140, New York, USA, June
2011. ACM Press.

[13] D. Menasce. Load testing of Web sites. IEEE Internet
Computing, 6(4):70{74, July 2002.

[14] D. Mosberger and T. Jin. httperf - A Tool for
Measuring Web Server Performance. SIGMETRICS
Perform. Eval. Rev., 26(3):31{37, Dec. 1998.

[15] Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho,
Y. Nomura, and C. Pu. Lightning in the Cloud: A
Study of Transient Bottlenecks on n-Tier Web
Application Performance. 2014.

	Introduction
	Background
	Cloud Computing Elasticity Behavior
	Cloud Computing Elasticity States
	Workload Variation

	Our Approach
	Profiling
	Workload Calculation
	Application Leading
	Implementation Architecture

	Experiments and Discussion
	Gradual Workload Variation in a Hurried Rate
	Gradual Workload Variation in a Low Rate
	Our Tool Validation

	Related Work
	Conclusion
	References

