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1. Introduction
This paper describes the participation of the LIA laboratory to the Human Assisted Speaker Recognition (HASR)
evaluation, which is part of the NIST-SRE 2010 campaign. The submission of the LIA for this task is based on a human
decision. Samples were rated by three listeners, system decision being based on majority voting. Confidence scores were
defined by mapping human decision to scores distribution of a SVM-based automatic system.

This paper describes in section 3, the automatic system used for scores mapping is presented. In section 2 the algo-
rithms used for listening stimuli generation and the protocol for samples listening and rating. Subsections 2.1 and 2.2
describe the algorithms used for automatic extracts selection from each model or test segment, and for extracts normalisa-
tion and concatenation. Subsection 2.3 describes the listeners involved and the listening protocol. Subsection 2.4 presents
the calculations made on human decisions to obtain scores submitted to NIST. Finally, the characteristics of the submitted
system are summarized and perspectives for future work are presented in section 5.

2. Human evaluation protocol
2.1. Extracts selection

In order to perform extracts selection, recordings are pre-processed by using Linear-Frequency Cepstral Coefficients
(LFCC). Extraction of these parameters is described in Section 3.1. Once the LFCC parameters are computed, the energy
coefficients are first normalised using a mean removal and variance normalisation in order to fit a 0-mean and 1-variance
distribution. The energy component is then used to train a three component GMM, which aims at selecting informative
frames. The frames carrying the highest level of energy are selected through the GMM and labeled speech. Once the
speech segments of a signal are selected, a final process is applied in order to refine the speech segmentation:

1. Overlapping speech segments between both sides of a conversation are removed;

2. Morphological rules are applied on speech segments to discard segments too short to be used in a listening task, by
adding or removing speech frames.

For each trial, 6 seconds-long extracts are automatically selected from the model and test segments and concatenated
to build the audio stimulus presented to listeners. Extracts selection was guided by 2 criteria:

• Selected extracts should include a proportion as large as possible of speech frames;

• For both model and test segments, the extracts should include only speech frames corresponding to the interviewee,
excluding speech turns of the interviewer audible in the channel of interest.

This selection is achieved by means of tools implemented in the MISTRAL/ALIZE [1] toolkit.
Once the signal parameterization and speech frames detection described supra is performed, 6 seconds-long extracts

are extracted from the channel of interest of the model and test segments. Interventions of the interviewer are excluded
thanks to the speech frames redundancy across channels. For each original file (model and test segment), the initial
threshold is set to a minimum of 70% speech frames not appearing in the other channel and iteratively decreased when
necessary to end up with a minimum number of selected segments of 7 (i.e. a minimum total duration of 42 seconds for
each file of a model/test pair). Although this method generally succeeds in selecting extracts that mainly include speech



Listeners decision System decision Confidence score calculation Male score (N=36) Female score (N=114)
3 false Certain false Average impostor score - 2 σimp -2.45 (N=12) -2.13 (N=33)

2 false, 1 true Uncertain false Average impostor score 0.62 (N=8) 0.69 (N=20)
1 false, 2 true Uncertain true Average client score 6.51 (N=7) 5.44 (N=39)

3 true Certain true Average client score + 2 σtarget 12.19 (N=9) 10.85 (N=22)

Table 1: Mapping of human decision and SVM-based automatic system scores, for each target speaker gender and each
inter-listener level of agreement .

frames corresponding to the interviewee, for 3 model/test pairs out of 150 (2 male target speakers, 1 female) it is unable
to find in either the model or test segment extracts including enough useful information to make human decision possible.
As a result, selection of appropriate 6 seconds-long extracts is performed manually by one of the listeners for these 3 files.

2.2. Rules for the generation of stimuli

Selected extracts are then combined in the audio stimulus, generated using the Praat software [2]. Extracts from the
model segment in the one hand and from the test segment in the other hand are chosen alternatively. A 1000 Hz, 50
milliseconds-long beep surrounded by two 75 milliseconds-long silent parts is inserted between consecutive segments
to signal inter-extract switching. All extracts included in the generated stimulus are normalised to the same acoustic
intensity. This level of normalised intensity ias set to 70 dB, and lowered when necessary (down to 66 dB for 4 model/test
pairs) to avoid clipping.

2.3. Human evaluation participants and protocol

Three native French listeners (2 female aged 25 and 36, 1 male aged 31) with experience in phonetics and speech analysis,
and without any known hearing impairment, evaluated independently the 150 stimuli generated. For each trial, they were
requested to decide whether the extracts alternated in the stimulus had been uttered by the same speaker or not. Although
this information was not directly used in submitted results, listeners were also requested to rate their confidence in this
judgment in a 0-5 scale for further analyses.
Listeners evaluated the stimuli in a quiet environment using closed headphones. For stimuli comprising a large amount of
noise (especially low-frequency noise) in either the model or test segment, they were given the possibility to band-filter
the signal using the Praat software [2] after visual inspection of the power spectrum, in order to reduce the perceptual
heterogeneity caused by the difference of recording channels. When they considered a single listening as not sufficient
for decision making, they were allowed to listen to the generated stimulus by selecting parts or as a whole as many times
as necessary. Listeners took 12 to 180 seconds for decision making (mean: 66 seconds).

2.4. System scoring

For each trial, the decision of the human system submitted to NIST is defined by majority voting among the decisions
taken by the three listeners. The confidence score submitted to NIST for HASR evaluation is defined from the level of
agreement between listeners. In order to make possible comparisons between human performances and that of the SVM-
based automatic system described in section 3, the inter-listener level of agreement is mapped to the impostor and client
scores distribution obtained with this system and SRE 2008 data, as summarised in table 1.

An experiment is performed by running the SVM-based system (cf. Section 3) according to the NIST-SRE 08 short2-
short3 protocol. In order to map the human decision on the automatic speaker recognition framework, mean and variance
of both the client and impostor scores distributions are estimated. The mapping values presented in Table 1 are selected
according to these score distributions. Table 1 also indicates the number of trials corresponding to each inter-listener level
of agreement for each target speaker gender. Overall, the three listeners took the same decision on 51% of trials.

3. Description of the automatic system
The speaker recognition system chosen to determine the human decision scores is a classical GMM-SVM system (Gaus-
sian Mixture Model - Support Vector Machine) using Latent Factor Analysis (LFA) [3], [4] for session variability mod-
elling. This system is based on the open-source biometric platform MISTRAL/ALIZE [1].



3.1. Front-end processing

Parameters extracted from speech signal (using the open source SPro toolkit [5]) are based on a filter-bank analysis
(linear filter). Feature vectors are composed of 19 Linear-Frequency Cepstral Coefficients (20ms window, 10ms shift),
its derivatives, the first 11 second derivatives and the delta energy. The frequency window is restricted to 300-3400 Hz.
An energy labelling is performed on the signal and only the frames deemed to be speech are processed by the speaker
recognition engine. Then simple feature normalisation is applied, so that the distribution of each cepstral coefficient is
0-mean and 1-variance for a given utterance.

3.2. World model

The UBM model size is set to 512 components (with diagonal covariance matrix). The UBM consists of a GMM trained
on telephone conversations from the Fisher English database [6] and microphone recordings from the NIST-SRE 2005
database.

3.3. Speaker model using Factor Analysis

According to the Latent Factor Analysis (LFA) modelling [3], speaker models are formed of three different components:
a speaker and session independent background model, a speaker dependent and a session dependent components [7], [4].
The resulting model can be written as:

m(h,s) = m +Dys + Ux(h,s) (1)

where m(h,s) is the session-speaker dependent mean super-vector, D is S × S diagonal matrix (S is the dimension of the
supervector), ys the speaker vector, U is the eigenchannel matrix of low rankR (a S×R matrix) and x(h,s) are the session
factors. Both ys and x(h,s) are normally distributed among N (0, 1). D satisfies the following equation I = τDtΣ−1D
where τ is the relevance factor required in the standard MAP adaptation.

3.4. SVM modelling

According to Equation 1, the Factor Analysis model estimates speaker supervectors normalised with respect to the session
variability. A distance between GMMs is computed by using a probabilistic kernel K [8]. This distance, well suited for a
SVM classifier when only mean parameters of the GMM models are adapted, is given by Equation 2 for two sequences
Xs and X ′s respectively spoken by speakers s and s′.
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where ms is taken form the model in Equation 1 (ms = m + Dys), and Σg is the covariance matrix of the component g
shared by the two models.

The LIA SpkDet toolkit benefits from the LIB-SVM library [9] to estimate SVMs and classify instances. SVM are
trained with an infinite (very large in practice) C parameter thus avoiding classification error on the training data (hard
margin behaviour). The negative labelled examples are speakers form the normalisation cohort.

3.5. Automatic system performance

The system was developed on NIST SRE 2008 data. Performance of this system are reported in Table 2 for the 8 conditions
of NIST-SRE 2008

NIST-SRE08 test Condition det1 det2 det3 det4 det5 det6 det7 det8

Male EER 6.69 1.22 6.68 8.42 4.69 5.37 2.28 1.31
DCFmin ×100 3.23 0.40 3.25 2.82 2.07 3.35 1.26 0.74

Female EER 10.03 2.10 9.88 10.81 8.55 8.59 3.55 3.95
DCFmin ×100 4.55 0.53 4.44 4.46 3.13 4.57 1.65 1.68

Table 2: Performance (% EER and DCFmin) of the SVM system used for HASR score mapping.



4. Computation time
Each model segment is approximately 180 seconds-long, while each test segment is approximately 300 seconds-long. In
addition to the time required by human processing presented in section 2.3, table 3 presents the computation time required
for a trial by each step of the automatic processing of speech signals. The parameterization of speech signals, used both
for listening stimuli generation and by the automatic system, is performed only once.

Automatic processing step Mean time (seconds) σ (seconds) Time (xRT)
Signal parametrization 3.70 0.08 0.008 xRT

Listening stimulus building 0.65 0.14 0.001 xRT
Automatic speaker verification 26.88 0.94 0.056 xRT

Table 3: Computation time mean per trial and standard deviation, for each automatic processing step. Mean computation
time is also indicated as a multiple of real time.

5. Conclusions
The results submitted for the HASR part of the HASR 2010 evaluation were based on majority voting by 3 listeners,
after automatic selection of extracts of interests from the model and test segments and their concatenation in a listening
stimulus for each of the 150 trials. Submitted confidence scores were obtained by mapping human decision to scores
distribution obtained on SRE 2008 data with the SVM-based automatic system presented in section 3.
Comparison of human vs. automatic system performances will be presented at the NIST SRE workshop, together with an
analysis of human performances. Moreover, human performance analysis will be extended by using individual confidence
scores and by evaluating differences between the model and test segments of each trial according to numerous perceptual
dimensions, including channel differences, specific phonetic and prosodic features, and speakers affective states.
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