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1.-Introduction

In order to predict the thermal (and the associated thermo-mechanical) behavior within complex heterogeneous media, a usual approach consists in determining the effective thermal properties and/or temperature fields through homogenized heat transfer models. This approach is very interesting in several industrial domains such as in aeronautics or automotive. A typical example is the design of complex parts for new airplane structure where the use of composite materials with highly anisotropic thermal properties (due to the orientation of fibers) becomes more and more systematic [START_REF] Thomas | Thermal properties of composite materials-Experimental characterization and microstructural approach[END_REF]. However, the determination of the effective thermal conductivity tensor is a tricky task. Consequently, reliable and efficient methods, initially developed for mechanical models [START_REF] Bornet | Homogénéisation en mécanique des matériaux 1-Hermes Science-Paris[END_REF], are thus required for its determination. From an experimental point of view, specific devices such as classical transient laser flash (LF) [START_REF] Degiovanni | New Thermal-Diffusivity Identification applied to Flash Method[END_REF]- [START_REF] Parker | Flash method for determining thermal diffusivity, heat capacity and thermal conductivity[END_REF], hot wire [START_REF] Anderson | Thermal conductivity of some rubbers under pressure by the transient hot-wire method[END_REF] methods, or a specific hot disc method [START_REF] Thomas | An experimental device for the simultaneous estimation of the thermal conductivity 3-D tensor and the specific heat of orthotropic composite materials Compos[END_REF] can be used to estimate the effective thermal properties. Another possibility is to make calculations from a representative volume element [START_REF] Thomas | Representative volume element of anisotropic unidirectional carbon-epoxy composite with high fiber volume fraction -Compos[END_REF] of the anisotropic actual medium, knowing the thermal conductivity of each phase. The heat transfer modeling according to a multi-scale analysis [START_REF] Bensoussan | Asymptotic Analysis for periodic structures -North Holland Ed[END_REF]- [START_REF]Homogenization techniques for composites media[END_REF]- [START_REF] Auriault | Homogenization of Coupled Phenomena in Heterogeneous Media[END_REF] is complementary to the experimental approach and quite powerful. It aims on one hand to determine the effective thermal properties from data known at the scale of the components, and on the other hand to have a better understanding of the "edge effects" [START_REF] Fudym | Heat diffusion at the boundary of stratified media Homogenized temperature field and thermal constriction[END_REF]- [START_REF] Dumontet | Study of boundary layer problem in elastic composite materials-RAIRO-Modélisation mathématique et analyse numérique[END_REF] which may disrupt the temperature field of the homogenized heat conduction model close to the boundaries of the spatial domain. To our knowledge, this second aspect is rarely discussed in the literature. Consequently, within the framework of the estimation process of effective properties, which would result on the comparison of experimental surface temperatures with the solutions of homogenized models, more insight have to be done in the analysis of these "edge effects", to know when they can be neglected or not. More generally, it is well-known that errors associated to modeling in the inverse analysis of experimental data should imply biased estimation (systematical errors) of the unknown model parameters [START_REF] Beck | Inverse Heat Conduction, Ill-posed problems[END_REF]. A previous work [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF], devoted to the heat conduction steady state analysis within heterogeneous periodic structures, shows how correcting terms can be introduced in the multiscale asymptotic method to take into account these "edge effects", in the case of a homogenized 3-D heat conduction problem. The results were obtained by following the works of Dumontet [START_REF] Dumontet | Study of boundary layer problem in elastic composite materials-RAIRO-Modélisation mathématique et analyse numérique[END_REF] in elasticity. In this paper, a space-time homogenization approach, based on the multi-scale asymptotic expansion method, is developed first to model the transient heat conduction problem within periodic structures. Such approach was also studied in [START_REF] Kaminski | Homogenization of transient heat transfer problems for some composite materials[END_REF][START_REF] Larsson | Variationally consistent computational homogenization of transient heat flow[END_REF]. However, the introduction of additional terms to correct the edge effects in transient state was not considered. We show how these transient correcting terms can be introduced and calculated, depending on the classical boundary conditions in heat transfer problems. Moreover, correcting terms have also to be added to take into account "short time" effects. Numerical results are presented in the case of a simple multilayered media, but the method is quite general and it could be used for periodic heterogeneous structures, like in plain weave fabric composites [START_REF] Dasgupta | Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique[END_REF]. The last section is devoted to the discussion of numerical results of the heat transfer modeling in a LF experiment where numerical data of Fudym et al [START_REF] Fudym | Heat diffusion at the boundary of stratified media Homogenized temperature field and thermal constriction[END_REF] are thus used for this purpose. The heterogeneous solution is compared to the homogenized one, computed with and without correcting terms, and to the analytical homogeneous solution. Specifically, the LF method is based on the heating of the front surface of a thin sample (with parallel faces) with a nearly instantaneous pulse of light (compared to the heat conduction characteristic time of the medium). The influence of the heat losses by convection is also considered. The temperature rise on the back face is measured as a function of time (thermocouple or IR detector), and it is used to determine the thermal diffusivity (in the direction normal to the back face) of the sample. The bias, due to the estimated value of the thermal diffusivity when edge effects are neglected in the homogenized model, is evaluated.

2.-Problem statement -Heat conduction in the heterogeneous material

Let us consider a piece of heterogeneous periodic material, figure 1, defined in a bounded domain Ω ⊂ R 3 . The macroscopic coordinates of a point of Ω are denoted 𝒙𝒙 = (𝑥𝑥 1 , 𝑥𝑥 2 , 𝑥𝑥 3 ) in a Cartesian coordinate system {𝟎𝟎, 𝒆𝒆 𝟏𝟏 , 𝒆𝒆 𝟐𝟐 , 𝒆𝒆 𝟑𝟑 }. The boundary ∂Ω is subdivided in four distinct parts ∂Ω = ⋃ 𝛤𝛤 𝑖𝑖 4 𝑖𝑖=1 , in order to consider the different usual kinds of boundary conditions associated to the heat conduction problem:

• A Fourier condition on 𝛤𝛤 1 : the normal outward component φ 𝜺𝜺 . 𝑛𝑛 of the heat flux is fixed by an external temperature 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒 and a heat transfer coefficient ℎ. • A Neumann condition on 𝛤𝛤 2 : the normal outward component φ 𝜺𝜺 . 𝑛𝑛 of the heat flux is fixed. • A Dirichlet condition on 𝛤𝛤 3 : the temperature is imposed.

• A periodic condition on 𝛤𝛤 4 . The initial condition is defined by the field 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙), 𝒙𝒙 ∈ Ω, which is isothermal or not. A spatially distributed volume heat source 𝑓𝑓(𝒙𝒙), 𝒙𝒙 ∈ Ω may be considered all over the spatial domain, at the macroscopic scale.

The heterogeneous fields in the spatial domain Ω, are denoted respectively 𝑇𝑇 𝜖𝜖 (temperature) and φ 𝜀𝜀 (heat flux density). These fields over the time interval �0, 𝑡𝑡 𝑓𝑓 � satisfy the following set of transient heat conduction equations together with the different kinds of boundary and initial conditions:

⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧𝜌𝜌𝐶𝐶 𝑝𝑝 𝜕𝜕𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝑡𝑡) 𝜕𝜕𝑡𝑡 -𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒 [φ 𝜺𝜺 (𝑥𝑥, 𝑡𝑡)] = 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑛𝑛 Ω × �0, 𝑡𝑡 𝑓𝑓 � φ 𝜀𝜀 (𝒙𝒙, 𝑡𝑡) = 𝑲𝑲𝛁𝛁 𝒙𝒙 𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝑡𝑡) 𝑑𝑑𝑛𝑛 Ω × �0, 𝑡𝑡 𝑓𝑓 � 𝑇𝑇 𝜀𝜀 (𝑥𝑥, 𝑡𝑡 = 0) = 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙) 𝑑𝑑𝑛𝑛 Ω φ 𝜀𝜀 (𝒙𝒙, 𝑡𝑡). 𝑛𝑛 = ℎ(𝑇𝑇 𝜀𝜀 -𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒 ) 𝑜𝑜𝑛𝑛 𝛤𝛤 1 × �0, 𝑡𝑡 𝑓𝑓 � φ 𝜀𝜀 (𝒙𝒙, 𝑡𝑡). 𝒏𝒏 = 𝐹𝐹 𝑜𝑜𝑛𝑛 𝛤𝛤 2 × �0, 𝑡𝑡 𝑓𝑓 � 𝑇𝑇 𝜀𝜀 (𝑥𝑥, 𝑡𝑡) = 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒 on 𝛤𝛤 3 × �0, 𝑡𝑡 𝑓𝑓 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑃𝑃 𝑃𝑃𝑜𝑜𝑛𝑛𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑜𝑜𝑛𝑛𝑐𝑐 𝑜𝑜𝑛𝑛 𝛤𝛤 4 × �0, 𝑡𝑡 𝑓𝑓 � (1)
where n is the outward normal unit; 𝜌𝜌, 𝐶𝐶 𝑝𝑝 and 𝑲𝑲 are respectively the density, the heat capacity and the thermal conductivity tensor of the heterogeneous medium which is assumed to have a periodic structure. The periodic cell (see the figure 1), is denoted

𝑌𝑌 = ∏ [0, 𝑙𝑙 𝑖𝑖 ] 𝟑𝟑 𝒊𝒊=𝟏𝟏
and 𝒚𝒚 = (𝑦𝑦 1 , 𝑦𝑦 2 , 𝑦𝑦 3 )𝜖𝜖 𝑌𝑌 are the coordinates of a cell point. The scale factor 𝜀𝜀 is the ratio between the size of Y and the size of Ω the microscopic coordinates are thus defined from 𝒚𝒚 = 𝜀𝜀 -1 𝒙𝒙. Each component 𝑘𝑘 𝑖𝑖𝑖𝑖 (𝒚𝒚); 𝑑𝑑, 𝑗𝑗 = 1,2,3 of the thermal tensor and the parameter 𝜌𝜌𝐶𝐶 𝑝𝑝 (𝒚𝒚) are cellperiodic and depend on the local variable 𝒚𝒚 (microscopic scale) in the cell domain Y. 

3.1-Multi-scale asymptotic expansion method

It is assumed that the thermal conductivity of each components of the heterogeneous structure have the same order of magnitude, which means that the thermal contrast is not too large. The same assumption is done for the heat capacities. The influence of large contrast is not considered here and should lead to more developments, as described for example in [START_REF] Auriault | Homogenization of Coupled Phenomena in Heterogeneous Media[END_REF]. Assuming that the scale factor ε is small enough, the asymptotic expansion method [START_REF]Homogenization techniques for composites media[END_REF] may be used and the temperature 𝑇𝑇 𝜀𝜀 is expanded, like for steady state solutions [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF], under the following form:

𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = 𝑇𝑇 0 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝜀𝜀𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝜀𝜀 𝟐𝟐 𝑇𝑇 2 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + ⋯ ; 𝒙𝒙 𝜖𝜖 Ω, 𝒚𝒚 𝜖𝜖 𝑌𝑌

where 𝑇𝑇 𝑘𝑘 is the approximation of 𝑇𝑇 𝜀𝜀 at the order k and is supposed to be spatially periodic at the microscopic scale. The time variable appears in the asymptotic development as a simple parameter. Consequently, the heat flux density φ 𝜺𝜺 (𝒙𝒙, 𝑡𝑡) = 𝑲𝑲𝑲𝑲 𝒙𝒙 𝑇𝑇 𝜺𝜺 (𝒙𝒙, 𝑡𝑡) can be expanded such that:

φ 𝜀𝜀 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = 𝜀𝜀 -1 φ -𝟏𝟏 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + φ 𝟎𝟎 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝜀𝜀φ 𝟏𝟏 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + ⋯ (3) 
By injecting the development (2) in the transient heat conduction equation (1), and using the property that an entire series is equal to zero if and only if each of its term is null, [START_REF] Bensoussan | Asymptotic Analysis for periodic structures -North Holland Ed[END_REF][START_REF]Homogenization techniques for composites media[END_REF][START_REF] Auriault | Homogenization of Coupled Phenomena in Heterogeneous Media[END_REF] it results in a new equation for each power of 𝜀𝜀:

• At the order 𝑘𝑘 = -2, it comes: 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)𝑲𝑲 𝒚𝒚 𝑇𝑇 0 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡)�=0. Furthermore, since 𝑇𝑇 0 is periodic, it implies that 𝑲𝑲(𝒚𝒚)𝑲𝑲 𝒚𝒚 𝑇𝑇 0 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = 0. Hence the function 𝑇𝑇 0 does not depend on the microscopic variable: 𝑇𝑇 0 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡). Consequently, φ -𝟏𝟏 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = 𝑲𝑲(𝒚𝒚)𝑲𝑲 𝒚𝒚 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) = 𝟎𝟎.

• At the order 𝑘𝑘 = -1, it comes: 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)( 𝑲𝑲 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) + 𝑲𝑲 𝒚𝒚 𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡))� = 0; the equation satisfied by the function 𝑇𝑇 1 is:

� 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)( 𝑲𝑲 𝒙𝒙 𝑇𝑇 0 (𝑥𝑥, 𝑡𝑡) + 𝑲𝑲 𝒚𝒚 𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡))� = 0 𝑑𝑑𝑛𝑛 𝑌𝑌 𝑇𝑇 1 𝑝𝑝𝑃𝑃𝑃𝑃𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑃𝑃 𝑜𝑜𝑛𝑛 𝜕𝜕𝑌𝑌 (4) 
Consequently, the new variables 𝜔𝜔 𝑖𝑖 (𝒚𝒚), 𝑑𝑑 = 1,2,3 may be introduced at the microscopic scale, such that:

𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = � 𝜕𝜕𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) 𝜕𝜕𝑥𝑥 𝑖𝑖 3 𝑖𝑖=1 𝜔𝜔 𝑖𝑖 (𝒚𝒚) (5) 
And they are solution of the cell problems (i=1,2,3):

� 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)(𝒆𝒆 𝒊𝒊 + 𝑲𝑲 𝒚𝒚 𝜔𝜔 𝑖𝑖 (𝒚𝒚))� = 0 𝑑𝑑𝑛𝑛 𝑌𝑌 𝜔𝜔 𝑖𝑖 periodic on 𝜕𝜕𝑌𝑌 (6) 
At the order k = 0 , we get: 

𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)( 𝑲𝑲 𝒙𝒙 𝑇𝑇
The function 𝑇𝑇 2 exists and is cell periodic if and only if the integral of the left term on the cell Y is equal to zero [START_REF] Bensoussan | Asymptotic Analysis for periodic structures -North Holland Ed[END_REF], which leads to: + 𝛁𝛁 𝒚𝒚 𝜔𝜔 𝑖𝑖 (𝒚𝒚)) ⊗ 𝒆𝒆 𝒊𝒊 � 𝑑𝑑𝒚𝒚 𝛁𝛁 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡)� = 𝑓𝑓(𝑥𝑥) [START_REF] Bensoussan | Asymptotic Analysis for periodic structures -North Holland Ed[END_REF] Remark: (𝒖𝒖 ⊗ 𝒗𝒗) denotes the dyadic product of two vectors, that is the matrix product of 𝒖𝒖 by v, considered respectively as a column matrix and a row matrix.

3.2-Effective thermal properties

Finally, by introducing the effective thermal properties of the homogenized medium:

�𝜌𝜌𝐶𝐶 𝑝𝑝 � * = 1 |𝑌𝑌| ∫ 𝜌𝜌𝐶𝐶 𝑝𝑝 𝑑𝑑𝑦𝑦 𝑌𝑌 and 𝑲𝑲 * = 1 |𝑌𝑌| ∫ � 𝑲𝑲(𝒚𝒚) ∑ (𝒆𝒆 𝒊𝒊 + 𝛁𝛁 𝒚𝒚 𝜔𝜔 𝑖𝑖 (𝒚𝒚)) ⊗ 𝒆𝒆 𝒊𝒊 3 𝑖𝑖=1 � 𝑌𝑌 𝑑𝑑𝒚𝒚 (9a) (9b) 
The function 𝑇𝑇 0 (𝑥𝑥, 𝑡𝑡) satisfies the macroscopic scale heat conduction equation ( 8), which can be rewritten

⎩ ⎪ ⎨ ⎪ ⎧ �𝜌𝜌𝐶𝐶 𝑝𝑝 � * 𝜕𝜕𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) 𝜕𝜕𝑡𝑡 -𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒 [𝑲𝑲 * 𝛁𝛁 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡)] = 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑛𝑛 Ω × �0, 𝑡𝑡 𝑓𝑓 � 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡 = 0) = 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙) 𝑑𝑑𝑛𝑛 Ω (10) 
And the heat flux, at the order k =0, is given by:

φ 𝟎𝟎 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) = �𝑲𝑲(𝒚𝒚) �(𝒆𝒆 𝒊𝒊 + 𝛁𝛁 𝒚𝒚 𝜔𝜔 𝑖𝑖 (𝒚𝒚)) ⊗ 𝒆𝒆 𝒊𝒊 3 𝑖𝑖=1 � ∇ 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) (11) 
Effective properties ( 9) are defined with spatial periodic boundary conditions on the cell 𝑌𝑌, then if no boundary conditions are fixed on 𝛤𝛤 × �0, 𝑡𝑡 𝑓𝑓 � such periodic conditions would be "naturally" satisfied. When the actual boundary conditions (see equations ( 1)) are not periodic, "edge effects" appears and specific mathematical developments are required, as demonstrated below.

3.3-Numerical illustration (Case #1) of "short time effects"

The motivation of this first numerical example is to highlight only the "short time effects" which appears in transient state according to this homogenized approach. To illustrate this phenomenon, we consider a very simple bi-layered periodic structure, figure 2, already studied in steady state [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF] and we compare the heterogeneous field 𝑇𝑇 𝜀𝜀 with the homogenized solution (𝑇𝑇 0 + 𝜀𝜀𝑇𝑇 1 ). The thermal and geometrical data are given in table 1. The spatial domain Ω is a square. To avoid edge effects, the functions 𝑇𝑇 𝜀𝜀 , 𝑇𝑇 0 and 𝑇𝑇 1 are computed with spatial periodic boundary conditions on 𝛤𝛤 × �0, 𝑡𝑡 𝑓𝑓 �. The multilayered stack is characterized by the thickness 𝑙𝑙/2 of each layer, by the thermal contrast = 𝑘𝑘 𝑓𝑓 𝑘𝑘 𝑚𝑚 ⁄ , the ratio of the heat conductivity of the conductive layer over the insulating one, and the ratio of the heat capacities

𝑲𝑲(𝒚𝒚) = � 𝑘𝑘 11 0 0 𝑘𝑘 22 �, with 𝑘𝑘 𝑖𝑖𝑖𝑖 (𝒚𝒚) = � 𝑘𝑘 𝑚𝑚 , if y ϵ (layer 1) 𝑘𝑘 𝑓𝑓, if y ϵ (layer 2) i=1,2 𝜌𝜌𝐶𝐶 𝑝𝑝 (𝒚𝒚) = � 𝜌𝜌 𝑚𝑚 𝐶𝐶 𝑝𝑝𝑚𝑚 , if 𝒚𝒚 𝜖𝜖 (layer 1) 𝜌𝜌 𝑓𝑓 𝐶𝐶 𝑝𝑝𝑓𝑓 if 𝒚𝒚 𝜖𝜖 (layer 2)
The effective thermal properties for such structure are easily found by using standard heat conduction rules:

𝑘𝑘 11 * = 𝑘𝑘 𝑚𝑚 +𝑘𝑘 𝑓𝑓, 2 , 1 𝑘𝑘 22 * = 1 2 ( 1 𝑘𝑘 𝑚𝑚 + 1 𝑘𝑘 𝑓𝑓
). More generally, they are determined by computing first at the microscopic scale, the functions 𝑤𝑤 𝑖𝑖 , 𝑑𝑑=1, 2, on the cell domain Y, and by using the equation (9b). For this example, they are plotted on figure 3 and the numerical values which quantify the non isotropic property of the homogenized medium, are equal to:

𝑲𝑲 * = � 𝑘𝑘 11 * 𝑘𝑘 21 * 𝑘𝑘 12 * 𝑘𝑘 22 * � = � 2.6 0 0 0.38 � (𝑊𝑊 𝑚𝑚 -1 𝐾𝐾 -1 ) �𝜌𝜌𝐶𝐶 𝑝𝑝 � * = 1 |𝑌𝑌| ∫ 𝜌𝜌𝐶𝐶 𝑝𝑝 𝑑𝑑𝑦𝑦 𝑌𝑌 = 0.683 * 10 6 (𝐽𝐽 𝑚𝑚 -3 𝐾𝐾 -1 )
Consequently, the characteristic times in the directions 𝒆𝒆 𝟏𝟏 , 𝒆𝒆 𝟐𝟐 , at the microscopic scale, are respectively: Knowing the effective thermal properties, the solution 𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝑡𝑡) of the transient heat conduction equation in the heterogeneous medium can be compared with the homogenized solution, given by the asymptotic expansion, equation [START_REF] Bornet | Homogénéisation en mécanique des matériaux 1-Hermes Science-Paris[END_REF]. At the order 𝑘𝑘 = 1, the solution is 𝑇𝑇 0 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝜀𝜀𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡).

( ) ( ) s k l C s k l C p c p c
To capture "short time effects", the time step is chosen equal to ∆𝑡𝑡 = 0.01𝑐𝑐 up to 𝑡𝑡 = 5𝑐𝑐, and to ∆𝑡𝑡 = 0.1𝑐𝑐, up to the final time 𝑡𝑡 𝑓𝑓 = 90𝑐𝑐. The solutions are compared on figures 4a-4b, at the locations (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚) and (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚). The plot shows clearly, for short times (𝑡𝑡 < 5𝑐𝑐), a difference between the heterogeneous and the homogenized solutions, while both solutions are quite similar for longer times. It is observed that for short times (close to the initial time 𝑡𝑡 = 0) 𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) ≠ 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) + 𝜀𝜀𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) In fact, even if the field 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡 = 0) satisfies the initial condition 𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝑡𝑡 = 0) = 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙), it is obvious in this example from the equations ( 5), [START_REF] Thomas | An experimental device for the simultaneous estimation of the thermal conductivity 3-D tensor and the specific heat of orthotropic composite materials Compos[END_REF], that it is not the case at the microscopic scale, especially when 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙) is not uniform:

• Here, 𝛁𝛁 𝒙𝒙 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0 and 𝜔𝜔 2 ≠ 0 imply that 𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡 = 0) ≠ 0,

• it results that 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡 = 0) + 𝜀𝜀. 𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡 = 0) ≠ 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙). The deviation between (𝑇𝑇 0 + 𝜀𝜀𝑇𝑇 1 ), the homogenized solution (at the order k = 1) and the heterogeneous one 𝑇𝑇 𝜀𝜀 , at short times, is not specific to this example, but is a consequence of the asymptotic expansion method. It is shown in the next section, how these "short time effects" can be corrected. More generally, it means that the asymptotic expansion method developed above, provides a solution which satisfies the initial condition at the macroscopic scale, but does not guaranty that the initial condition of the functions 𝑇𝑇 𝑘𝑘 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡 = 0), 𝑘𝑘 ≥ 1, are equal to zero.

4.-Correction of the "short time effects "

4.1-Correcting terms

In order to correct this problem of initial condition, correcting terms with an exponential time decreasing are introduced at short times. As in the spatial domain, a double asymptotic scale in the time range is considered [START_REF] Piatnitski | A parabolic equation with rapidly oscillating coefficients[END_REF][START_REF] Aubry | Ccf modelling with use of a two-timescale homogenization model[END_REF][START_REF] Yu | Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales : a coupled thermo-viscoelastic example problem[END_REF][START_REF] Fish | Space-time multiscale model for wave propagation in heterogeneous media[END_REF], by introducing a "fast time" variable 𝜏𝜏 = 𝑡𝑡. 𝜀𝜀 -2 , and correcting terms, defined as the functions 𝑇𝑇 𝑠𝑠𝑒𝑒 𝑘𝑘 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏), 𝑘𝑘 ≥ 1, are added, leading to: 

𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) = 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) + 𝜀𝜀[𝑇𝑇
𝜕𝜕𝜕𝜕 𝜕𝜕τ = 𝑎𝑎 𝜕𝜕 2 𝜕𝜕 𝜕𝜕𝑦𝑦 2 .
Thus, the variable 𝜏𝜏 = 𝑒𝑒 𝜉𝜉 with 𝜉𝜉 = 𝜀𝜀 2 ≪ 1 is well convenient as a time variable at the micro-scale. The fact that 𝜉𝜉 = 𝜀𝜀 2 is very small allows us to consider that both time variables are (almost) independent and suggests to extend the asymptotic approach to the time interval, as it is done in the spatial domain.

By substituting this new asymptotic expansion in the heterogeneous heat conduction equation (1) we get a series of "time boundary layer" problems for each power of 𝜀𝜀. At the order 𝑘𝑘 = 1, according to developments similar to the double spatial scale approach [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF], we obtain:

𝑇𝑇 𝑐𝑐𝑡𝑡 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) = � 𝜕𝜕𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) 𝜕𝜕𝑥𝑥 𝑖𝑖 3 𝑖𝑖=1 𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏) (13) 
Consequently, the "short time" correcting term at the order 𝑘𝑘 = 0, for the approximation of the heat flux density can be expressed:

φ 𝒔𝒔𝒔𝒔 𝟎𝟎 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) = �𝑲𝑲(𝒚𝒚)(𝑲𝑲 𝒚𝒚 𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏))�𝛁𝛁 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) (14) 
where the new variables 𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏), 𝑑𝑑 = 1,2,3 are the solutions of the transient periodic cell problems

� 𝜌𝜌𝐶𝐶 𝑝𝑝 𝜕𝜕𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏) 𝜕𝜕𝜏𝜏 -𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 �𝑲𝑲(𝒚𝒚)(𝑲𝑲 𝒚𝒚 𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏))� = 0 𝑑𝑑𝑛𝑛 𝑌𝑌 × �0, 𝑡𝑡 𝑓𝑓 � 𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏 = 0) = -𝜔𝜔 𝑖𝑖 (𝒚𝒚) 𝑑𝑑𝑛𝑛 𝑌𝑌 𝑧𝑧 𝑖𝑖 periodic 𝑜𝑜𝑛𝑛 𝜕𝜕𝑌𝑌 (15) 

4.2-Numerical example (Case #2)-Correction of short time effects-

The previous numerical example (case #1) is thus continued. The function 𝜔𝜔 1 (𝒚𝒚) is equal to zero in Y, hence the function 𝑧𝑧 1 (𝒚𝒚, 𝜏𝜏) = 0, too. The function 𝑧𝑧 2 (𝒚𝒚, 𝜏𝜏) is computed according to equation system [START_REF] Beck | Inverse Heat Conduction, Ill-posed problems[END_REF].

The resulting first order correcting term 𝛿𝛿 1 (𝒙𝒙, 𝑡𝑡) = 𝑇𝑇 𝑠𝑠𝑒𝑒 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏 = 𝑡𝑡𝜀𝜀 -2 ), is plotted at different locations (figure 5). For practical reason, only the "slow" variable 𝑡𝑡 is chosen for plotting the time variations of 𝛿𝛿 1 (𝒙𝒙, 𝑡𝑡). It is observed that these terms tends towards zero whatever the location, but depending on the local thermal property (insulated or conductive layer), these terms take positive or negative values. Therefore, the homogenized solution without correcting terms (𝑇𝑇 0 + 𝜀𝜀. 𝑇𝑇 1 ) over-or underestimates the heterogeneous solution. Now the homogenized solutions (𝑇𝑇 0 + 𝜀𝜀[𝑇𝑇 1 + 𝑇𝑇 𝑠𝑠𝑒𝑒 1 ]) computed with the correcting terms 𝑇𝑇 𝑠𝑠𝑒𝑒 1 , according to the new asymptotic expansion, are compared to the heterogeneous solutions on the figures 5a-5f. A very good agreement can be observed, whatever the spatial location. This numerical example illustrates the interest and the efficiency of the method. steady state provides heat flux density φ 𝟎𝟎 and temperature 𝑇𝑇 0 fields, which are good approximations of the heterogeneous solutions φ 𝜀𝜀 and 𝑇𝑇 𝜀𝜀 far enough from the boundary ∂Ω of the spatial domain. However, this approximation is not satisfactory anymore close to the boundary. This is first due to the loss of spatial periodicity. The second reason is that φ 𝟎𝟎 is generally not compatible with an arbitrary Neumann or Fourier conditions, since these conditions are only satisfied in a weak sense. Consequently, it is necessary to improve the accuracy of the homogenized solutions (temperature and/or heat flux) in the vicinity of the boundary. Correcting terms of spatial edge effects have thus to be determined. Following the same approach than in the steady state analysis, a new asymptotic expansion is considered, which involves correcting terms at different order 𝑇𝑇 𝑏𝑏𝑏𝑏 𝑘𝑘,𝑚𝑚 , 𝑘𝑘 ≥ 1. Their spatial variations are exponentially decreasing [START_REF] Amar | On the exponential decay for boundary layer problems -C[END_REF] and vanish far enough from the boundary 𝛤𝛤 𝑖𝑖 :

𝑇𝑇 𝝐𝝐 = 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) + 𝜀𝜀. �𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝑇𝑇 𝑠𝑠𝑒𝑒 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) + � 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) 𝟑𝟑 𝒎𝒎=𝟏𝟏 � + ⋯ ; 𝒙𝒙 𝝐𝝐 Ω, 𝒚𝒚 𝜖𝜖 𝑌𝑌 (16) 
The superscript values m= 1,2,3 corresponds to one of the three different kinds of boundary condition usually associated to the heat conduction problem (see the set of equations ( 1)). The vicinity of the boundaries 𝛤𝛤 𝑚𝑚=1,2,3 is defined as a strip 𝐺𝐺 𝑚𝑚 into the spatial domain Ω, in the normal direction to 𝛤𝛤 𝑚𝑚 , as illustrated on figure 6. The surface of 𝐺𝐺 𝑚𝑚 is denoted 𝛤𝛤 𝑚𝑚 ′ and 𝛤𝛤 𝑚𝑚 ′ ⊂ 𝛤𝛤 𝑚𝑚 : By substituting this new asymptotic expansion in the heat conduction equation and by identifying the terms for the different powers of 𝜀𝜀, we get a series of "spatial boundary layer" problems. At the order 𝑘𝑘 = 1, it comes:

𝑇𝑇 𝐵𝐵𝐵𝐵 1,𝑚𝑚 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) = � 𝜕𝜕𝑇𝑇 0 𝜕𝜕𝑥𝑥 𝑖𝑖 3 𝑖𝑖=1 (𝒙𝒙, 𝑡𝑡) 𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝒚𝒚, 𝜏𝜏) (17) 
The « short time » effects have to be taken into account over the entire spatial domain, thus even in the vicinity of the boundaries. Then the correcting term 𝑇𝑇 𝐵𝐵𝐵𝐵 1,𝑚𝑚 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) a priori depends of both time variables t and 𝜏𝜏. Consequently, the "edge effect" correcting term at the order 𝑘𝑘 = 0, for the approximation of the heat flux density can be written:

φ 𝒃𝒃𝒃𝒃 𝟎𝟎,𝒎𝒎 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏) = �𝑲𝑲(𝒚𝒚)𝑲𝑲 𝒚𝒚 𝝌𝝌 𝑚𝑚 (𝒚𝒚, 𝜏𝜏)�𝛁𝛁 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) (18) 
The functions 𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝒚𝒚, 𝜏𝜏), i= 1 to 3; m= 1 to 3, are the solutions of the following set of equations: 

⎩ ⎪ ⎨ ⎪ ⎧𝜌𝜌𝐶𝐶 𝑝𝑝 (
• Dirichlet condition (m = 3):

𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝒚𝒚, 𝜏𝜏) = -𝜔𝜔 𝑖𝑖 (𝒚𝒚)-𝑧𝑧 𝑖𝑖 (𝒚𝒚, 𝜏𝜏) (20b) 
Furthermore, we can determine the depth of the "heat conduction boundary layer" in steady state by solving numerically a specific eigenvalues problem set on 𝐺𝐺 𝑚𝑚 , depending on the kind of the boundary condition on 𝛤𝛤 𝑚𝑚 . For the above example, in the vicinity of 𝛤𝛤 𝑚𝑚=1 the exponential decreasing in space of 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚=1 in the 𝒆𝒆 𝟏𝟏 direction, can be written [START_REF] Amar | On the exponential decay for boundary layer problems -C[END_REF]:

𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝒚𝒚) = Ψ 𝑖𝑖 𝑚𝑚 (𝒚𝒚). 𝑃𝑃 -δ 𝑚𝑚 𝑦𝑦 1 (21)
where the parameter δ 𝑚𝑚 is given by the lowest solution of an eigenvalues problem and Ψ 𝑖𝑖 𝑚𝑚 (𝒚𝒚) is the associated eigenvector on the sub-domain 𝐺𝐺 𝑚𝑚 . Hence the depth 𝑑𝑑 𝑚𝑚 of the spatial boundary layer close to 𝛤𝛤 𝑚𝑚 where the correcting term 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 does not spatially vanish can be estimated by 𝑑𝑑 𝑚𝑚 ≈ 3 δ 𝑚𝑚

. More mathematical developments and numerical results can be found in [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF]. In practice, the sub-domain 𝐺𝐺 𝑚𝑚 where 𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝒚𝒚, 𝜏𝜏) is computed, is truncated at the distance 𝑑𝑑 𝑚𝑚 from Γ m ′ along the 𝒆𝒆 𝟏𝟏 direction, according to the exponential decreasing property of 𝜒𝜒 𝑖𝑖 𝑚𝑚 (𝑦𝑦, 𝜏𝜏) (𝜒𝜒 𝑖𝑖 𝑚𝑚 tends towards zero when 𝑦𝑦 1 → ∞). The Dirichlet condition 𝜒𝜒 𝑖𝑖 𝑚𝑚 �𝑦𝑦 1 = 𝑑𝑑 𝑚𝑚 , 𝜏𝜏� = 0, is thus naturally chosen, with 𝑑𝑑 𝑚𝑚 large enough, see [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF].

5.2-Numerical example (Case #3)-Correcting edge effects due to Neumann condition -

To illustrate the interest in determining the correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 associated to a Neumann boundary condition (m=2), the previous example is continued, with the following data (see figure 7):

• The initial condition is isothermal 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥) = 0,

• The heat flux density on the front face is assumed to be uniform and fixed (Neumann boundary condition) to a constant value: 𝐹𝐹(𝑡𝑡) = 2. 10 3 𝑊𝑊 𝑚𝑚 -2 , • The temperature is imposed on the back face (Dirichlet boundary condition),

• Periodic conditions are considered on the other boundaries, to avoid "corner effects". It can be observed on the plots depicted in figures 8a-8d, that the resulting correcting term 𝑇𝑇 𝐵𝐵𝐵𝐵 1,𝑚𝑚 vary both in space and time. The homogenized solution is plotted on the front face (𝑥𝑥 1 = 0), in the insulating layer (𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚) and in the conductive layer (𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚). Without correcting term, these plots show a strong deviation with the heterogeneous solution in the insulating layer, while the agreement with the corrected homogenized solution is quite good. The correcting terms 𝑇𝑇 𝐵𝐵𝐵𝐵 1,𝑚𝑚 are still varying in space from the boundary (𝑥𝑥 1 = 0); their profiles are exponentially decreasing in space whereas they increase in time up to a stationary solution (t > 0.3s). The spatial depth is lower than the value (𝑑𝑑 𝑚𝑚=2 = 0.5𝑚𝑚𝑚𝑚) predicted by the solution of the eigenvalues problem in the stationary study. The correcting terms which result of the Dirichlet condition on the back face can be neglected. More details are given in [START_REF] Matine | Modeling of thermo-physical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects[END_REF].

6.-Application to the modeling of a heat pulse response into a periodic medium-

The laser flash [START_REF] Degiovanni | New Thermal-Diffusivity Identification applied to Flash Method[END_REF] device is used to perform classical thermal experiments aiming to determine experimentally the effective thermal properties of materials, heterogeneous or not. The data processing is based on the inverse analysis of measurements of the temperature rises which result of a heat pulse on a face of the sample. When these experiments are performed in order to characterize heterogeneous structures, the homogenized solutions of the transient heat conduction problem have to be compared to the measurements (instead of the heterogeneous solution). Then it is important to take into account these « short time » and « spatial edge » effects in the heat transfer modeling of the experiment (or at least to keep them in mind) to avoid biased estimation. In this section we perform the inverse analysis of such numerical experiments to illustrate the bias which would exist on the determination of the components of the thermal diffusivity tensor, when these effects are neglected.

6.1-The numerical measurements from the "heterogeneous solution" (Case #4)

The numerical example of the bi-layered structure is continued as sketched in figure 9, but new data given in table 2 are considered, as discussed in the work of Fudym et al [START_REF] Fudym | Heat diffusion at the boundary of stratified media Homogenized temperature field and thermal constriction[END_REF]. The heat pulse (duration = 0.001s) is imposed at the front face of a rectangular sample (the layers are normal to the 𝒆𝒆 𝟐𝟐 direction). Its thickness is 𝑃𝑃 = 5mm. The initial state is supposed to be uniform, 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙) = 0. The heat losses are modeled by a Fourier condition on the front and back faces with the external temperature 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒 = 0 and a heat transfer coefficient ℎ = 100𝑊𝑊. 𝑚𝑚 -2 . 𝐾𝐾 -1 . Of course, this value should be not so high in practice, but it has been chosen here to emphasize the "edge effects". For realistic values of the coefficient ℎ (for example ℎ = 10𝑊𝑊. 𝑚𝑚 -2 . 𝐾𝐾 -1 ), the magnitude of the correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 are much smaller. Adiabatic condition is assumed on the others boundaries. The resulting measurements are simulated on the back face. They are obtained by computing the solution 𝑇𝑇 𝜀𝜀 (𝒙𝒙, 𝑡𝑡) of the heat equation on the heterogeneous domain and plotted on the figures 10a-b. We observe that the temperature rise depends on the location of the sensor on the back face of the sample. The maximal temperature deviation in the insulated layer reaches 15% with respect to that of the conductive layer.

6.2-The temperature response with the space-time homogenized method.

The effective thermal properties computed with the data given in table 2, are calculated: The homogenized heat flux density component φ 𝟎𝟎 . 𝒆𝒆 𝟏𝟏 computed on the back face is plotted on figures 12a-b and compared to the heterogeneous solution φ 𝜺𝜺 . 𝒆𝒆 𝟏𝟏 . Without corrected terms, the homogenized solutions are underestimated in the insulating layer (𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚), while it is overestimated in the conductive layer (𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚).

The corrected solution φ 𝟎𝟎 + φ 𝑩𝑩𝑩𝑩 𝟎𝟎 is almost identical to φ 𝜺𝜺 in the conductive layer (figure 12b), whereas a deviation still exist in the insulating layer (figure 12a). It reaches a maximum at short times (𝑡𝑡 = 0.5𝑐𝑐) and finally tend towards zero further. In fact, the figures 12c and 12d illustrate how both components of the heat flux density φ 𝜺𝜺 at 𝑡𝑡 = 0.5𝑐𝑐 are not spatially uniform, and how the correcting terms φ 𝑩𝑩𝑩𝑩 𝟎𝟎 allows to take into account this non uniformity. 

6.3-The biased estimation of the thermal diffusivity

In the LF experiment, the value of the effective thermal diffusivity component 𝑎𝑎 // of the heterogeneous medium is estimated by matching the back face temperature measurements to the response of a homogenized heat conduction model. If no correcting terms (especially due to edge effects) are considered in the homogenized solution, a modeling error is done as illustrated above, then the matching process will give a biased estimation value 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 .

To evaluate this bias, the above numerical experiment is continued. Following the asymptotic expansion method, the "true" value of the effective thermal diffusivity 𝑎𝑎 // of the homogenized medium is thus equal to 𝑎𝑎 // * =18.3 * 10 -6 𝑚𝑚 2 . 𝑐𝑐 -1

The matching process which aims to get 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 from measurement data 𝑍𝑍(𝑡𝑡) is used in order to observe the influence on the location 𝑥𝑥 2 of the thermal sensor or IR detector, on the back face, in the three following cases: To conclude about these numerical experiments, let us underlined three main results:

• the homogenized solution without correcting terms is uniform on the back face and is identical to the homogeneous solution 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 computed with 𝑎𝑎 // = 𝑎𝑎 // * , the "true" value determined from the effective properties • the homogenized responses computed with the correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 (and the "true" value 𝑎𝑎 // * ) are quite identical for the three cases to the data 𝑍𝑍(𝑡𝑡) = 𝑇𝑇 𝜀𝜀 (𝑡𝑡), given by the heterogeneous model, and shown on figures 10b. • the homogeneous solutions 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (without correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 ), fit rather well the heterogeneous ones 𝑇𝑇 𝜀𝜀 only if the thermal diffusivity component 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 is chosen depending on the sensor location on the back face, which has no physical meaning.

These results confirm the interest in the determination and the analysis of the correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 of the homogenized model.

In practice, without morphological analysis of the medium at microscopic scale, the "true" value of the parameter 𝑎𝑎 // * is obviously unknown, and the correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 too, so the bias cannot be evaluated following the numerical process illustrated above. Moreover noisy measurements have to be taken into account. A specific inverse analysis has to be developed.

7.-Conclusions

A space-time homogenization approach of a transient heat conduction problem in a periodic composite material has been developed according to a homogenization approach based on an asymptotic expansion method. These mathematical results generalize the steady state analysis already developed by the authors. It leads to solve two of problems, i.e. at the macroscopic and the microscopic scales. These results are available for any 3-D periodic heterogeneous structure, when the thermal contrast remains relatively low.

Like in steady state, spatial correcting terms near the boundaries are required in the homogenized solution and evolve with time. Moreover, "short time" correcting terms are also needed (but in the whole spatial domain) to fit the heterogeneous solution with a good accuracy.

Following this approach, it was shown how the effective thermal diffusivity of such material may be biased, when it is estimated by fitting the experimental temperature rise from a laser flash experiment with the homogenized temperature computed without correcting terms. Numerical examples illustrate this bias, and suggest why a specific inverse analysis has to be developed. 
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 1 Figure 1: Spatial domain Ω of the heterogeneous periodic medium and the associated periodic cell Y

  Without volume heat source (𝑓𝑓 ≡ 0), we only consider the thermal relaxation phenomena, from a non isothermal initial condition: 𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥) = 100. 𝛹𝛹 𝐷𝐷 (𝒙𝒙), 𝒙𝒙 𝜖𝜖 Ω where 𝛹𝛹 𝐷𝐷 (𝒙𝒙) = 1, 𝑑𝑑𝑓𝑓 𝑥𝑥 𝜖𝜖 D; =0 else; is the spatial characteristic function of the sub-domain D, and D is the strip defined by two layers, between 𝑥𝑥 2 = 4.5𝑚𝑚𝑚𝑚 and 𝑥𝑥 2 = 5.5𝑚𝑚𝑚𝑚, as shown on figure 2.

Figure 2 :

 2 Figure 2: Schematic description of the multilayered medium and the periodic cell-Insulating layer (grey), conductive layer (blank). Case #1: non isothermal initial condition and periodic boundary conditions.

Figure 3 :

 3 Figure 3: Numerical solutions 𝜔𝜔 𝑖𝑖 (𝒚𝒚), i=1,2 computed on the periodic cell 𝑌𝑌

Figure 4 :

 4 Figure 4: Comparison of the homogenized and heterogeneous temperatures-Case #1.

Figure 5 : 5 .-Correction of spatial edge effects 5 . 1 -

 5551 Figure 5: Comparison of the corrected homogenized and heterogeneous temperatures for different locations-Case #2 / 5a-b: (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚)-; 5c-d: (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 2.8𝑚𝑚𝑚𝑚)-; 5e-f: (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 1.3𝑚𝑚𝑚𝑚)

Figure 6 :

 6 Figure 6: Presentation of the sub-domains G m into the spatial domain Ω, in the normal direction (𝒆𝒆 𝟏𝟏 ) to the boundaries Γ m In this example, both boundaries 𝛤𝛤 𝑚𝑚=2 (Neumann condition) and 𝛤𝛤 𝑚𝑚=3 (Dirichlet condition) are normal to the 𝒆𝒆 𝟏𝟏 direction. Each correcting term 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚 is defined for 𝑥𝑥 𝜖𝜖 𝛤𝛤 𝑚𝑚 , m=2 or 3, and 𝒚𝒚 = (𝑦𝑦 1 , 𝑦𝑦 2 ) 𝜖𝜖 𝑌𝑌. It is periodic in the 𝒆𝒆 𝟐𝟐 direction and exponentially decreasing along 𝒆𝒆 𝟏𝟏 .
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 78 Figure 7: Presentation of the multi-layered medium and the periodic cell -Case #3: isothermal initial condition together with a Neumann and a Dirichlet boundary conditions.

Figure 9 :

 9 Figure 9: Multi-layered medium -Case #4: heat pulse on the front face-isothermal initial condition together with Fourier boundary conditions are applied.

Figure 10 :

 10 Figure 10: Heterogeneous temperatures 𝑇𝑇 𝜀𝜀 (𝑥𝑥, 𝑡𝑡) computed for a laser flash experiment-Case #4. (10.a): inside the slab, at short times : t=0.001, 0.01, 0.05, 0.1s. (10.b) on the back face, at different locations.
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 1035 conductivity tensor : 𝑲𝑲 * = � (𝑊𝑊 𝑚𝑚 -1 𝐾𝐾 -1 ); and 𝜅𝜅 = 𝑘𝑘 𝑓𝑓 𝑘𝑘 𝑚𝑚 ⁄ = heat capacity: �𝜌𝜌𝐶𝐶 𝑝𝑝 � * = ∫ 𝜌𝜌𝐶𝐶 𝑝𝑝 𝑑𝑑𝑦𝑦 𝑌𝑌 10 4 𝐽𝐽 𝑚𝑚 -3 𝐾𝐾 -1 ; and 𝜌𝜌 𝑓𝑓 𝐶𝐶 𝑝𝑝𝑓𝑓 𝜌𝜌 𝑚𝑚 𝐶𝐶 𝑝𝑝𝑚𝑚 ⁄ = diffusivity components: 𝑎𝑎 // * = 18.3 * 10 -6 𝑚𝑚 2 . 𝑐𝑐 -1 ;𝑎𝑎 ┴ = 5.5 * 10 -6 𝑚𝑚 2 𝑐𝑐 -1 and the characteristic times in the directions 𝒆𝒆 𝟏𝟏 , 𝒆𝒆 𝟐𝟐 , at the microscopic scale, are respectively:The homogenized solutions on the back face, computed with and without first order correcting terms 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚=1 , from the multi-scale space-time expansion method (equations (16)), are shown on figures 11.a (insulating layer) and 11.b (conductive layer). The temperatures are compared to the heterogeneous solutions (see also figure10.b). The discrepancies observed without 𝑇𝑇 𝑏𝑏𝑏𝑏 1,𝑚𝑚=1 (red lines) are well corrected when this term is considered (blue lines), whatever the sensor location within the insulating or the conductive layer.

Figure 11 :

 11 Figure 11: Homogenized temperatures on the back face computed with and without the correcting terms and compared to the heterogeneous solution-Case #4. (11a): insulating layer (𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚), (11b) conductive layer at (𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚).

Figure 12 :

 12 Figure 12: Homogenized heat flux density on the back face, computed without and with the correcting terms compared to the heterogeneous solution-Case #4. (12a) at 𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚, insulating layer, (12b) at 𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚 conductive layer, (12c) heat flux density component in the direction 𝒆𝒆 𝟏𝟏 , at 𝑡𝑡 = 0.5s, (12d) heat flux density component in the direction 𝒆𝒆 𝟐𝟐 , at 𝑡𝑡 = 0.5s.

Figure 13 :

 13 Figure 13: Temperature residual errors resulting of the data matching process on the back face -Case #4 / -Influence of the sensor location. (a) insulating layer (x 2 = 5.3mm), (b) conductive layer (x 2 = 5.8mm), (c) average response.
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 12 Figure 1: Spatial domain Ω of the heterogeneous periodic medium and the associated periodic cell Y
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 3456 Figure 3: Numerical solutions 𝜔𝜔 𝑖𝑖 (𝒚𝒚), i=1,2 computed on the periodic cell Y Figure 4: Comparison of the homogenized and heterogeneous temperatures-Case #1 4𝑎𝑎: (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚)-insulating layer / 4b: at (𝑥𝑥 1 = 5𝑚𝑚𝑚𝑚; 𝑥𝑥 2 = 4.8𝑚𝑚𝑚𝑚)-in the conductive layer
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 789 Figure 7: Presentation of the multi-layered medium and the periodic cell -Case #3: isothermal initial condition together with a Neumann and a Dirichlet boundary conditions
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 10 Figure 10: Heterogeneous temperatures 𝑇𝑇 𝜀𝜀 (𝑥𝑥, 𝑡𝑡) computed for a laser flash experiment -Case #4. (10.a): inside the slab, at short times : t=0.001, 0.01, 0.05, 0.1s. (10.b) on the back face, at different locations.
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 11 Figure 11: Homogenized temperatures on the back face, computed with and without the correcting terms, compared to the heterogeneous solution-Case #4. (11a): insulating layer (𝑥𝑥 2 = 5.3𝑚𝑚𝑚𝑚), (11b) conductive layer at (𝑥𝑥 2 = 5.8𝑚𝑚𝑚𝑚).

Figure 12 :

 12 Figure 12: Homogenized heat flux density on the back face, computed without and with the correcting terms compared to the heterogeneous solution-Case #4. (12a) at x 2 = 5.3mm, insulating layer, (12b) at x 2 = 5.8mm conductive layer, (12c) heat flux density component in the direction e 1 , at t = 0.5s, (12d) heat flux density component in the direction e 2 , at t = 0.5s.

Figure 13 :

 13 Figure 13: Temperature residual errors resulting of the data matching process on the back face -Case #4 / -Influence of the sensor location. (a) insulating layer (x 2 = 5.3mm), (b) conductive layer (x 2 = 5.8mm), (c) average response.

Figure A. 1 :

 1 Figure A.1: Back face temperatures in a homogeneous slab, resulting of a heat pulse on the front face-Influence of the heat losses.

  1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝑲𝑲 𝒚𝒚 𝑇𝑇 2 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡))�

	= 𝜌𝜌𝐶𝐶 𝑝𝑝 -𝑓𝑓(𝒙𝒙)	𝜕𝜕𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡) 𝜕𝜕𝑡𝑡	-𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒 �𝑲𝑲(𝒚𝒚)( 𝑲𝑲 𝒚𝒚 𝑇𝑇 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝑲𝑲 𝒙𝒙 𝑇𝑇 0 (𝒙𝒙, 𝑡𝑡))�

Table 1 :

 1 

Thermal and geometrical data for the multilayered periodic structure-Cases #1 to #3 𝜅𝜅 = 𝑘𝑘 𝑓𝑓 𝑘𝑘 𝑚𝑚 ⁄ = 25.

  1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡) + 𝑇𝑇 𝑠𝑠𝑒𝑒 1 (𝒙𝒙, 𝒚𝒚, 𝑡𝑡, 𝜏𝜏)] + ⋯ ; 𝒙𝒙 𝜖𝜖 Ω, 𝒚𝒚 𝜖𝜖 𝑌𝑌[START_REF] Buannic | Higher-order effective modeling of periodic heterogeneous beams -Part 2 : derivation of the proper boundary conditions for the interior asymptotic solution[END_REF] The use of a double time scale is not specific to this homogenization problem. More generally, it consists in introducing a new time variable 𝜏𝜏, such that 𝜏𝜏 = (𝑎𝑎 is the thermal diffusivity); by introducing the spatial variable 𝒚𝒚 = 𝜀𝜀 -1 𝒙𝒙 at the micro-scale, the equation can be written under the form: 𝜀𝜀 2 𝜕𝜕𝜕𝜕 𝜕𝜕𝑒𝑒 = 𝑎𝑎

	𝑒𝑒 𝜉𝜉 𝜕𝜕 2 𝜕𝜕 𝜕𝜕𝑒𝑒 2 𝜕𝜕 2 𝜕𝜕 In 1-D transient heat conduction, at the macro-scale, we have 𝜕𝜕𝜕𝜕 𝜕𝜕𝑒𝑒 = 𝑎𝑎 𝜕𝜕𝑦𝑦 2 , which naturally introduces the new time variable with 𝜉𝜉 ≪ 1. 𝜏𝜏 = 𝑒𝑒 𝜀𝜀 2 , to get:

Table 2 :

 2 Thermal and geometrical data for the multilayered periodic structure-Case #4.

  • 𝑥𝑥 2 =5.3mm , sensor located in the layer #1, 𝑍𝑍(𝑡𝑡) = 𝑇𝑇 𝜀𝜀 (𝑃𝑃, 𝑥𝑥 2 , 𝑡𝑡) • 𝑥𝑥 2 =5.8mm, sensor located in the layer #2, 𝑍𝑍(𝑡𝑡) = 𝑇𝑇 𝜀𝜀 (𝑃𝑃, 𝑥𝑥 2 , 𝑡𝑡)

	Sensor location	Estimated value 𝑒𝑒𝑠𝑠𝑒𝑒 (𝑚𝑚 2 𝑐𝑐 -1 ) 𝑎𝑎 //	Bias ∆𝑎𝑎 = �𝑎𝑎 // * -𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 �	∆𝑎𝑎 𝑎𝑎 // *
	Insulating Layer #1	1.692.e-5	0.138.e-5	7.54%
	Conductive Layer #2	1.826.e-5	0.028.e-5	1.55%
	Average response	1.781.e-5	0.073.e-5	3.99%

• (IR detector) average value over the back face , 𝑍𝑍(𝑡𝑡) =

1 𝑏𝑏 ∫ 𝑇𝑇 𝜀𝜀 (𝑃𝑃, 𝑥𝑥 2 , 𝑡𝑡)𝑑𝑑𝑥𝑥 2 𝑏𝑏 0

These three thermal responses 𝑍𝑍(𝑡𝑡) are plotted on the figures 10b. They are the heterogeneous solution 𝑇𝑇 𝜀𝜀 (𝑃𝑃, 𝑥𝑥 2 , 𝑡𝑡) which have been first computed on the back face (section 6.1) with the data given in table

2

. Details of the matching process can be found in

[START_REF] Degiovanni | New Thermal-Diffusivity Identification applied to Flash Method[END_REF]

. It allows for each thermal response 𝑍𝑍(𝑡𝑡) to determine the parameter 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 for which the homogenized response 𝑍𝑍 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡) gives the best fit: 𝑍𝑍(𝑡𝑡) ≈ 𝑍𝑍 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡) = 𝑇𝑇 𝑃𝑃𝑥𝑥𝑎𝑎𝑃𝑃𝑡𝑡 �𝑥𝑥 = 𝑃𝑃, 𝑡𝑡; 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 �. The solution 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is recalled in appendix 1. The temperature residual errors 𝑍𝑍(𝑡𝑡) -𝑍𝑍 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡) are plotted in figures 13a-c. The three estimated values 𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 of the thermal diffusivity component 𝑎𝑎 // and the resulting bias ∆𝑎𝑎 = �𝑎𝑎 // * -𝑎𝑎 // 𝑒𝑒𝑠𝑠𝑒𝑒 � are summarized in table 3.

Table 3 :

 3 Biased estimations of the thermal diffusivity component 𝑎𝑎 // -Influence of the sensor

	location-Case #4
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 3 Biased estimations of the thermal diffusivity component 𝑎𝑎 // -Influence of the sensor location

Appendix 1: The analytical response of a LF experiment for a 1-D homogeneous medium

The temperature rise 𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒-1𝐷𝐷 (𝑥𝑥 = 𝑃𝑃, 𝑡𝑡) on the back face of a homogeneous slab, resulting of a heat pulse on the front face, can be obtained analytically by solving the 1-D heat conduction equation [START_REF] H S Carslaw | Conduction of Heat in Solids[END_REF]. The initial temperature field is uniform and equal to the external temperature, which is assumed to be constant during the experiment. Fourier conditions are considered on both faces. The following data are assumed to be given:

• the thickness e of the slab.

• the energy density 𝜑𝜑 of the heat pulse.