
HAL Id: hal-01317618
https://hal.science/hal-01317618v1

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for quality of context management
Zied Abid, Sophie Chabridon, Denis Conan

To cite this version:
Zied Abid, Sophie Chabridon, Denis Conan. A framework for quality of context management. QuaCon
2009 : 1st International Workshop on Quality of Context, Jun 2009, Stuttgart, Germany. pp.120 -
131, �10.1007/978-3-642-04559-2_11�. �hal-01317618�

https://hal.science/hal-01317618v1
https://hal.archives-ouvertes.fr


A Framework for Quality of Context Management

Zied Abid, Sophie Chabridon, and Denis Conan

Institut TELECOM, CNRS UMR Samovar
9 rue Charles Fourier, 91011 Évry, France

Firstname.Lastname@institut-telecom.fr

Abstract. Context-aware computing has to deal with a huge amount
of context data. Taking into account the quality of these data becomes
a corner stone of an efficient context management solution. Information
on the quality of context helps taking appropriate decisions and allows
to identify uncertain context information saving processing time for de-
riving a pertinent description of the observed phenomenon.
This paper presents a work in progress for integrating Quality of Con-
text in COSMOS (COntext entitieS coMpositiOn and Sharing) [4,13],
a component-based framework for managing context data in ubiquitous
environments, and illustrates it throughout the example of the composi-
tion of context information to implement a network connectivity vs energy
adaptation situation.

Key words: context-aware computing, quality of context, component-based
middleware.

1 Introduction

With the proliferation of wireless connectable devices, the environment can be
enriched with sensors acquiring a huge amount of context data that is to be
analysed by computing systems. We consider context as being “any information
that can be used to characterize the situation of entities (i.e. whether a per-
son, place or object) that are considered relevant to the interaction between a
user and an application, including the user and the application themselves”[7].
Context-aware computing allows to detect specific conditions requiring some
adaptation actions. This calls for context integration and context abstraction
methods. Context integration concerns the extraction of the most accurate con-
text from a number of noisy and conflicting contexts. Context abstraction, or
context reasoning, allows to derive a higher-level application-relevant context
from a number of lower-level context data [15]. Taking into account the quality
of context data becomes a corner stone of an efficient context management solu-
tion and has given rise to a large number of research works over the past decade.
The importance of the quality of context as such for context-aware computing
has first been raised by [3]. This concept has then been refined with a notion
of worth: quality of context is any inherent information that describes context
information and can be used to determine the worth of the information for a



specific application [10]. Information on the quality of context helps taking ap-
propriate decisions and allows to identify uncertain context information saving
processing time for deriving a pertinent description of the observed phenomenon.

This paper proposes to integrate Quality of Context in COSMOS1 (COntext

entitieS coMpositiOn and Sharing), which is our framework for managing con-
text data in ubiquitous environments [4,13]. The COSMOS framework relies on
the Fractal2 component-based middleware [2]. Fractal presents some origi-
nal features among which two are important to us: recursivity and component
sharing. Recursivity (which has given its name to Fractal) allows components
to be nested within composite components. With sharing, a given component
instance can be included (or shared) by more than one component, saving mem-
ory and other system resources. COSMOS then provides the concepts of context
node and context management policies translated into Fractal software com-
ponents.

COSMOS reorganises the classical functionalities of a context manager to
systematically introduce a 3-steps cycle of data collection, data interpretation,
and situation identification. Although situation identification actions should not
be too frequent, processing context information is an activity that must be con-
ducted more often, while data gathering is a third activity that must be con-
tinuous. Thus, we have three different activities with different frequencies. We
decouple as much as possible these activities in order to obtain a non-blocking
and usable framework.

QoC is supported in COSMOS through the notion of QoC operator that can
integrate various kinds of QoC parameter operators, dedicated to a particular
QoC parameter e.g. Up-to-Dateness. This approach is generic and our framework
can easily be extended by adding new operators. Moreover, we propose several
modes to transmit QoC. The QoC data can be communicated either as meta-
data in a context report or separately. This contributes to provide a flexible
framework that can be adapted to the requirements of various applications.

This paper is organised as follows. Section 2 presents the design of our COS-
MOS framework. Section 3 details the way we propose to integrate Quality of
Context in COSMOS. Section 4 presents the case study of a network connec-

tivity vs energy adaptation situation. Section 5 positions our work with respect
to other research dealing with QoC in context management. Finally, Section 6
concludes this paper and identifies some perspectives.

2 Presentation of COSMOS

This section presents the foundations of our work by summarising the principles
of the COSMOS framework. We present the basic building units for composing
of a context policy, that is context nodes.

1 http://picoforge.int-evry.fr/projects/svn/cosmos/
2 http://fractal.ow2.org



Concepts and properties of a context node The basic structuring concept
of COSMOS is the context node [4] which is a context information modelled by
a software component. Context nodes are organised into hierarchies to form con-
text management policies. Context nodes possess some properties which define
their behaviour with respect to the context management policy. A context node
can be passive or active. An active node is equipped with an activity to execute a
given task. Communication into the hierarchy of context nodes may be bottom-
up (notification) or top-down (observation). Observation (or notification) reports
are messages formed of sub-messages and typed chunks. For instance, the infor-
mation on the WIFI bit rate is stored in a chunk of type WifiBitRateChunk. A
context node which receives data transmitted by a notification or an observation
may be blocking or non-blocking. Non-blocking nodes propagate observations
and notifications. Blocking nodes stop the traversal: for observations, the most
up-to-date context information is transmitted without polling child nodes, and
for notifications, context data is used to update the state of the node but parent
nodes are not notified. COSMOS allows all kinds of combinations in the prop-
erties of context nodes (active/passive, observation/notification, blocking/non-
blocking). This makes it possible to tune very precisely the level of computing
resources used and to balance it with the requirements of applications.

COSMOS provides the developer with pre-defined generic context operators.
They are organised following a typology: Elementary operators for collecting
raw data, memory operators, such as averagers requiring a history of values
or translation operators, data mergers, abstract or inference operators, such as
additioners or thresholds operators. The only programming is in the context ope-
rators. Following the component-based software development principles, with a
sufficiently large library of context operators, there should be no programming
at all, but only declarative composition of context nodes.

Architecture of a context node Each context node extends the abstract
composite ContextNode depicted in Figure 1. The interfaces Pull and Push are
the interfaces for the observation and the notification, respectively. The abstract
composite ContextNode contains at least one operator (ContextOperator primi-
tive component) as well as the message and activity managers. The Message

Manager is in charge of handling the observation and notification reports which
are sent and received by the component on the Pull and Push interfaces. The
Activity Manager provides the support for dealing with active components. The
Child (or children) is optional and can be a composite or primitive ContextOper-

ator component. Child, Message Manager and Activity Manager components can
be shared with other components, saving computing resources.

Pattern-oriented architecture of COSMOS For mapping context policies
to context node hierarchies, COSMOS follows well-known design patterns [8],
Factory method, Composite, Flyweight, and Singleton, enabling a scalable, ex-
tensible and efficient architecture [13].



Activity Manager

Message Manager

*

observeOnlyOnce(true), notifyOnlyOnce(false)

Context node attributes with their default value:

Context
Operator

{
*

[pull−obs−out] Pull

periodNotify(0), notifyThrough(true)
periodObserve(0), observeThrough(true)

nodeName

Context Node

[push−notif−in] Push
Child

[pull−obs−in] Pull

[push−notif−in] Push

[push−notif−out] Push

[push−notif−out] Push
*

Fig. 1: Core architecture of a ContextNode component.

3 Quality of Context management

We present in this section the way we propose to manage quality of context
within the COSMOS framework. We detail the component based architecture
that allows us to compute QoC parameters and to integrate them into the mes-
sages transmitted from context sources to the application.

3.1 Integrating QoC in COSMOS

In order to have a flexible framework, we propose three modes to transmit con-
text information. The first two modes deal with QoC information while the last
mode ignores it and allows to transmit context information without QoC. As
shown in the case 1 of Figure 2, the first mode consists in injecting QoC in-
formation as meta-data into the context information itself before sending it to
upper layers. This mode is useful to filter context according to a particular pol-
icy: for instance, no context message is sent if the completeness parameter is less
than 50 %. The second mode sends QoC information independently from any
context information in a separate message (cf. Figure 2-2). This mode enables
to supervise the QoC of the system, with a limited overhead as only QoC data
is computed and extracted. The third mode allows to transmit context informa-
tion with standard child and/or parent components that cannot deal with QoC
(cf. Figure 2-3). This mode is proposed to remove the cost of managing QoC
information when this additional information is not necessary. It also ensures
ascending compatibility with applications developed with previous versions of
COSMOS not supporting QoC.

3.2 Architecture

We define a QoC ContextNode as a COSMOS composite ContextNode (cf. Fi-
gure 1) responsible for computing QoC parameter values. It is composed of
Context Collectors which are themselves ContextNodes and a QoC Operator. A



Parameter
Pull QoC

QoC
Pull with 

Context Node
Child

Operator
QoC Parameter

Operator
QoC Aware

Context Node
Parent

pull()
pull()

Pull without
QoC

getValue()

pull()
pull()

compute()

(1)

(2)

(3)

pull()

Fig. 2: Sequence diagram

Legend :

shared

Component

with Upper Layer

[push−notif−out]

ActivityManager

MessageManager

QoC Operator
Pull

Pull

Pull

Pull

QoC Context Node

Push

Push

Push

[pull−obs−in]

Push[push−notif−in]

[pull−obs−out] Pull

Context Collector 1

Context Collector 2

Context Collector n

Fig. 3: QoC Context Node Architecture

Operator
QoC Parameter 

Shared 
Component
with upper
Layer

Legend :

Operator
Aware
QoC

push−notif−in Push−notif−out

MessageManager

QoC Parameter
Operator n

QoC Operator
ActivityManager

QoCParameter

1

pull−obs−outpull−obs−out pull−obs−in

Fig. 4: QoC Operator Architecture

Context Collector collects raw meta-data coming from sensors or another part of
the distributed system such as Measurement Time, Source Location, Data accu-

racy [12]. These raw meta-data are then transformed by the QoC Operator to
deliver QoC parameters as shown below.

QoC Operator The QoC Operator is responsible for extracting required data,
computing QoC and supplying it to upper layers via the Message Manager (cf. Fi-
gure 3). As shown by the inner architecture of a QoC Operator (cf. Fi-gure 4),
raw meta-data coming from different Context Collectors get analysed by a QoC

Aware Operator component which extracts relevant data and distributes them to



LessThan GreaterThan

Operator

UpToDateness Trustworthiness Accuracy Precision CompletenessSecurity

cosmoc.qoc.operator.parameters
0..n compute QoC

... Threshold

DoubleThreshold

Function Fuzzy Logic

Linear funcion Hysteresis

ComparisonArithmetic

Fig. 5: Relation between QoC Parameters and COSMOS Operators

QoC Parameter Operator components. Each QoC Parameter Operator computes a
specific QoC parameter such as accuracy, precision, up-to-dateness, etc.

QoC Parameter Operator The choice of the nature of the QoC Parameter

Operator component depends on what type of QoC the application needs and
what computing methods are available. We propose in Figure 5 a first list of
operators used in most of context-aware applications but other operators can
easily be added. We give as an example a way to compute the Up-to-Dateness
QoC parameter with function U(O) as presented in [12]:

U(O) =







1−
Age(O)

Lifetime(O)
if Age(O) < Lifetime(O)

0 Otherwise

where Age(O) = tcurr− tmeasure(O), with tcurr representing the current time
and tmeasure(O) the measurement time of object O.

After having been computed, QoC parameters are forwarded to a QoC Aware

Operator which is responsible for sending QoC information to upper layers.

QoC Aware Operator As introduced in Section 3.1, there are two modes to
transmit QoC information that we now present in further details.

Adding QoC to context information Raw QoC information is transmitted to
QoC Parameter Operators to be processed (cf. Figure 2-1). Afterwards, once com-
puted, QoC values can be either added in an existing message chunk or, taking
advantage of the flexibility of COSMOS, they can be placed into a new message
chunk dedicated to common QoC information like timestamp. In this mode, all
context information messages are enriched with QoC meta-data. This mode is
useful for applications interested in the QoC at the same time as the context
information itself, that is when QoC information is systematically required. As
a consequence, QoC parameters are strongly related to this context. This results



in a more reliable and accurate analysis. However, this method requires time
and resources to create a new message chunk or to update an existing one for
each context information, which also increases the cost of the transmission of
this information.

Sending QoC separately Periodically, or on request, only the QoC is transmitted
to upper layers (cf. Figure 2-2). This mode is well suited for applications that
do not require QoC information with a strong timing constraint and that can
wait for the next periodic information. It also suits applications requiring that
context information is passed as soon as possible without waiting for the next
notification. This enables to supervise the QoC of the system, with a limited
overhead as only QoC data is computed and extracted. In this mode, the QoC is
sent at the request of the application (Pull mode) or as a periodic report (Push
mode), so sending the QoC does not add any significant cost. One limitation is
that QoC information is not strongly related to a specific context information
instance. The QoC information sent may correspond to the last calculated QoC
or to an average of the previous untransmitted values.

Regarding the ease of use of our framework, describing such an architecture
with FractalADL [11] would be cumbersome and error-prone for users. So we
have defined a first version of a domain specific language (DSL) for describing
the composition of context nodes and context processors [13] that we will extend
with QoC declarations.

4 Application scenario

In this section, we add QoC meta-data to an application scenario originally pro-
posed for mobile commerce [13]. We consider a family shopping at a mall, each
member of the family having a mobile device. This application allows them to
share information, to consult product information, to download discount tick-
ets, to be notified of advertisements, or to find the location of a product or a
shop in the mall. The parents want their children to remain in the mall, with
their devices connected as far as possible, so that everybody knows the loca-
tion of the other family members. Nevertheless, a family member can disconnect
for some periods of time in order to save their battery. The COSMOS context
policy for this network connectivity vs energy scenario is shown in Figure 6. It
involves different network technologies, such as Bluetooth or WIFI, and requires
the application to adapt itself depending on network connectivity and context in-
formation availability. Each adaptation situation (in the upper part of Figure 6)
is isolated in a context tree with the possibility of sharing sub-trees between
policies.

We consider three QoC parameters in this scenario, Trustworthiness, Up-to-

Dateness and Precision and detail below the way they are dealt with in our
framework.



WiFi
bit rate variable?

Is bit rate

WiFi
manager

detector
Connectivity

Average bit rate
if variable

Active observer Active observer and notifier

WiFi link
quality

Average
link quality

lifespan
Battery

Battery
time leftcharge state

Battery Bluetooth
link quality

Bluetooth
manager

detector
Connectivity

Periodic Heartbeat
Sender/Receiver

counters
Heartbeat

Location

Failure
detector

(with location)

Network call

(with location)
Service

Group Membership

Adaptation situation
detection

Data interpretation

Data gathering

Legend: Blocking notification Blocking observation

System call

WiFi adjusted bit rate

Decision stabilisation

WiFi download enabled

WiFi browsing
enabled

System call

Active notifier

TrustWorthiness

Security enabled

Battery
manager

Bluetooth availability

Bluetooth detectable

Bluetooth notification
enabled

enabled
Bluetooth observation

System call

Disconnection
detector

Up−to−dateness

Precision

(2)

(3)

(1)

F
ig

.6:
A

p
p
lication

scen
a
rio

-
M

on
itorin

g
N

etw
o
rk

C
o
n
n
ectiv

ity
an

d
B

attery
L
evel



Trustworthiness Adding trustworthiness to this system is essential to measure
how much a device can trust data coming from a connection even before testing
the link quality of the connection or starting to download data. We consider that
trustworthiness depends on the identity of the data sender which may correspond
to a family device, a mall information source, a shop in the mall, or be unknown.
A trustworthiness manager observes the WIFI and Bluetooth managers that are
directly connected to the system. The sender id can be extracted as a MAC3, IP
or DNS address (for WIFI sources), device name or BD_ADDR4 (for Bluetooth
sources).

Here are some examples for trustworthiness values :

– 1 (100 %) known device: Value given to family devices. MAC or BD_ADDR
address is unique and can be identified, therefore each family device can be
registered into the application’s configuration file.

– 0.5 (50 %) verifiable device id: Value given to mall or shops devices. These
devices are trusted enough when their name or IP address can be verified
(with the access provider of the mall for instance).

– 0 (0 %) unknown device: for all other devices without a specific information
or not known at all.

In the data interpretation layer (cf. Figure 6-1), the trustworthiness is de-
rived from the information coming from the Bluetooth manager and the WIFI

manager. It then helps to decide whether to give direct access or not to incom-
ing data to upper layers. Thus, context information has not to get up along the
whole context node hierarchy.

Up-to-Dateness We propose to measure the freshness of the information coming
from the Disconnection detector as well as from the Failure detector ((cf. Fi-
gure 6-2). As these data are critical, up-to-dateness may be used to optimize
connection management for better result and also to save energy.

– If failure or disconnection’s up-to-dateness value is high (the event just hap-
pened), the group membership service can try to reconnect to the concerned
sender/receiver in order to continue the current action (send/receive).

– If failure or disconnection’s up-to-dateness value is medium, new connections
can be postponed for a laps of time and another communication mechanism
is to be used.

– If failure or disconnection’s up-to-dateness value is low, future connections
to the concerned sender/receiver can be postponed or even canceled.

Precision In this example, the precision of the location information is used to
adapt this information with appropriate display (cf. Figure 6-3). An application
can have different map categories and precision degrees, and let the display
manager choose the best map to promote location information.

3 Media Access Control address
4 Bluetooth Device Address



5 Related work

The work presented in this paper proposes a component-based middleware ap-
proach for context management taking into account Quality of Context as meta-
data. In the design of our solution, we have taken a particular care of the per-
formance issue in terms of the cost of observations and notifications. We favor
a flexible architecture and try to save system resources in order to be able to
reach a good level of scalability without degrading performance when the num-
ber of observed context sources and context processors becomes very large. In
this section, we compare our work with other middleware frameworks for context
management.

The Context Toolkit is one of the first middleware framework for context
management. It is based on event programming and widget concepts introduced
by GUI (Graphical User Interfaces) [7]. In the same framework, all the follo-
wing functionalities are grouped: The interpreter for composing and abstracting
context information, the aggregator for the mediation with the application, the
service for controlling application actions performed on the context, and the
discoverer that acts as a registry. Following the same philosophy, interpretation
and aggregation functionalities have to be programmed in monolithic blocks:
One interpreter and one aggregator per application, independently of the num-
ber of widgets and the level of abstraction requested by the application. This
implies a lack of flexibility, that can impact performance and scalability. More-
over, the management of system resources consumed by context management
treatments and, in particular, activities management, is not addressed. Concer-
ning the quality of context, the authors of the Context Toolkit have considered
means to deal with the uncertainty of context data through its level of accuracy.
Three complementary approaches were proposed: passing ambiguity on to ap-
plications; attempting to disambiguate context automatically; and attempting
to disambiguate context manually. Only the latter manual approach has been
further investigated.

MoCoA provides an environment for building context-aware applications for
ad hoc networks based on sentient objects [14]. The low-level inference treat-
ments are organised as data merging pipes. MoCoA only allows notifications,
contrary to COSMOS that adds observations. The pipes are logically enclosed
in sentients objects, including the control of system resources’ consumption. But,
contrary to COSMOS, MoCoA neither details nor provides any means to exter-
nally specify these controls. Pipe treatments are complemented with inference
ones with facts and rules. Sensor fusion is then used to manage the uncertainty
of data captured from the real-world and to derive higher-level context informa-
tion. Fusion can perform a sum, an average function or might rely on a Bayesian
network. However, the quality of context data is not considered as a first-class
concept and remains restricted to a single certainty value.

Contextors [5] are software entities similar to data components, and their
meta-data (describing the data quality) as well as their controllers (modifying
the configuration) are available for both inputs and outputs. A Contextor is a
Java class that is associated to an XML descriptor. Thus, the software framework



builds, in an ad hoc manner, a container around the Contextor component. This
ad hoc component model is implicit and not configurable (e.g. for managing sys-
tem resources). For each Contextor using at least an activity, the local resource
consumption can not be controlled. Furthermore, the sharing of context nodes
supported by COSMOS is not addressed by Contextors. In addition, Contextors
exchange control information in order to ask to stop or force the data notifica-
tion for example. However, given that there is no explicit component model, it is
impossible to introduce new configurations, such as some new attributes or con-
trol modes. In COSMOS, the structure and the life-cycle of components is finely
managed by the Fractal controllers. One important aspect of the Contextor
is the notion of data quality. Unlike to our solution, this quality meta-data can
only be sent with the context data itself. We made the choice to provide different
modes of transmission of QoC information for more flexibility and to allow to
better tune the performance of the framework.

The list of quality parameters we consider is comparable to what is proposed
in [12]. However, a specificity of our implementation framework is that it benefits
from a component-based middleware following specific design patterns allowing
to control very precisely resource consumption and performance.

6 Conclusion and future work

This paper presents a work in its early stage on Quality of Context management.
We pay particular attention to performance and scalability issues by tailoring
QoC management respectively to applications requirements and performance
expectations. We are currently building a library of operators allowing to use
combinations of rule-based and probabilistic solutions when appropriate in order
to deal with uncertainty during the context abstraction process.

Regarding the ease of use of our framework, we have defined a first version
of a domain specific language (DSL) for describing the composition of context
nodes and context processors [13]. As future work, we intend to extend this DSL
with QoC declarations.

Another research direction concerns the design of look-up mechanisms to find
a child in the context hierarchy with a specific QoC level. Indeed, the component
model we use is loosely typed, as mainly push and pull interfaces are defined.
Therefore, our framework could benefit from a type system like Dream Types [1],
allowing an operator to ask for a child node with a specific QoC type.

According to [6], specific probabilistic schemes are to be used at different
abstraction levels. Depending on the amount of available knowledge, we envisage
to experiment a method like FSI (Fuzzy Situation Inference) [9].

References

1. P. Bidinger, M. Leclercq, V. Quéma, A. Schmitt, and J.-B. Stefani. Dream Types:
A Domain Specific Type System for Component-Based Message-Oriented Middle-
ware. In 4th ESEC/FSE Workshop on Specification and Verification of Component-
Based Systems, Lisbon (Portugal), Sept. 2005.



2. É. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Frac-

tal Component Model and Its Support in Java. Software—Practice and Experi-
ence, special issue on Experiences with Auto-adaptive and Reconfigurable Systems,
36(11):1257–1284, Sept. 2006.

3. T. Buchholz, A. Kupper, and M. Schiffers. Quality of context information: What
it is and why we need it. In 10th Int. Workshop of the HP OpenView University
Association (HPOVUA), ACM, Geneva, Switzerland, 2003.

4. D. Conan, R. Rouvoy, and L. Seinturier. Scalable Processing of Context Infor-
mation with COSMOS. In Proc. 6th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems, volume 4531 of LNCS, pages
210–224, Cyprus, June 2007. Springer-Verlag.

5. J. Coutaz and G. Rey. Foundations for a Theory of Contextors. In 4th Inter-
national Conference on Computer-Aided Design of User Interfaces, pages 13–34,
Valenciennes (France), May 2002. Kluwer.

6. W. Dargie. The Role of Probabilistic Schemes in Multisensor Context-Awareness.
In 5th IEEE Int. Conf. on Pervasive Computing and Communications. PerCom’07.
IEEE Computer Society, Mar. 2007.

7. A. Dey, D. Salber, and G. Abowd. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Special issue on
context-aware computing in the Human-Computer Interaction Journal, 16(2–4):97–
166, 2001.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

9. P. D. Haghighi, S. Krishnaswamy, A. Zaslavsky, and M. M. Gaber. Reasoning about
context in uncertain pervasive computing environments. In 3rd IEEE European
Conf. on Smart Sensing and Context (EuroSSC), volume 5279 of Lecture Notes in
Computer Science (LNCS), pages 112–125. Springer-Verlag, Oct. 2008.

10. M. Krause and I. Hochstatter. Challenges in Modelling and Using Quality of Con-
text (QoC). In T. M. et al., editor, Mobility Aware Technologies and Applications
(MATA), volume 3744 of LNCS, pages 324–333. Springer-Verlag, 2005.

11. M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani. Supporting heterogeneous
architecture descriptions in an extensible toolset. In ICSE ’07: Proceedings of the
29th international conference on Software Engineering, pages 209–219, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

12. A. Manzoor, H. Truong, and S. Dustdar. On the Evaluation of Quality of Context.
In IEEE EuroSCC, 3d European Conference on Smart Sensing and Context, volume
LNCS 5279, Zürich, Switzerland, Oct. 2008. Springer.

13. R. Rouvoy, D. Conan, and L. Seinturier. Software Architecture Patterns for a
Context Processing Middleware Framework. IEEE Distributed Systems Online,
9(6), June 2008.

14. A. Senart, R. Cunningham, M. Bouroche, N. O’Connor, V. Reynolds, and V. Cahill.
MoCoA: Customisable Middleware for Context-Aware Mobile Applications. In
Proc. 8th International Symposium on Distributed Objects and Applications, vol-
ume 4275 of LNCS, pages 1722–1738, Montpellier (France), Nov. 2006. Springer-
Verlag.

15. J. Ye, S. McKeever, L. Coyle, S. Neely, and S. Dobson. Resolving uncertainty
in context integration and abstraction. In ICPS08: 5th Int. Conf. on Pervasive
Services, pages 131–140, New York, NY, USA, 2008. ACM.


