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A Gradient scheme for the discretization of Richards Equation

We propose a finite volume method on general meshes for the discretization of Richards equation, an elliptic -parabolic equation modeling groundwater flow. The diffusion term, which can be anisotropic and heterogeneous, is discretized in a gradient scheme framework, which can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. More precisely, we implement the SUSHI scheme which is also locally conservative. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon energy-type estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present the results of a number of numerical tests.

Richards equation

In this article, we study Richards equation using Kirchhoff transformation. Let Ω be a open bounded polygonal subset of R d (d = 1, 2 or 3) and let T be a positive real number; Richards equation in the space-time domain Q T = Ω × (0, T ) is given by

∂ t φ (x)θ (p) -div k r (θ (p))K(x)∇(p + z) = 0, (1) 
where p(x,t) is pressure head. The function θ (p) is the water saturation, φ (x) is the porosity, K(x) is the absolute permeability tensor and the scalar function k r (θ )
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F(s) := s 0 k r (θ (τ))dτ,
and suppose that the function F is invertible. Then we set u = F(p) in Q T and c(u) = c(F(p)) = θ (p). We remark that Kirchhoff's transformation leads to ∇u = k r (θ (p))∇p. Thus, the equation (1) becomes

∂ t φ (x)c(u) -div K(x)∇u -div k r (c(u))K(x)∇z = 0. (2) 
Next, we consider the equation ( 2) together with the inhomogeneous Dirichlet boundary and the initial conditions

u(x,t) = û(x) a.e. on ∂ Ω × (0, T ), u(x, 0) = u 0 (x)
a.e. in Ω .

We make the following hypotheses: (H 1 ) c is a continuous nondecreasing function such that there ξ > 0 and ξ ≥ 0

satisfying |c(u)| ≤ ξ (1+|u|) for all u ∈ R and |c(u)-c(v)| ≥ ξ |u-v| for all u, v ∈ R. (H 2 ) k r is a continuous function such that 0 ≤ k r ≤ k r . (H 3 ) K is a bounded function from Ω to M d (R)
, where M d (R) denotes the set of real d × d matrices. Moreover for a.e. x in Ω , K(x) is a symmetric positive definite matrix and there exist two positive constants K and K such that the eigenvalues of

K(x) are included in [K, K]. (H 4 ) u 0 ∈ L 2 (Ω ), û ∈ H 1 (Ω ) and φ ∈ L ∞ (Ω ) is such that 0 < φ ≤ φ (x) ≤ φ for a.e. x ∈ Ω .
Definition. A function u(x,t) is said to be a weak solution of Problem (2) -(3) if:

(i) u(x,t) -û(x) ∈ L 2 (0, T ; H 1 0 (Ω )), (ii) c(u) ∈ L ∞ (0, T ; L 2 (Ω )), (iii) - T 0 Ω φ (x)c(u(x,t))∂ t ϕ(x,t) dxdt - Ω φ (x)c(u 0 (x))ϕ(x, 0) dx + T 0 Ω K(x)∇u(x,t) • ∇ϕ(x,t) dxdt + T 0 Ω k r (c(u(x,t))K(x)∇z • ∇ϕ(x,t) dxdt = 0, (4) 
for all ϕ ∈ L 2 (0, T ;

H 1 0 (Ω )) with ϕ(•, T ) = 0 and ∂ t ϕ ∈ L ∞ (Q T ).
The discretization of Richards equation by means of gradient schemes has already been proposed by Eymard, Guichard, Herbin and Masson [START_REF] Eymard | Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation[END_REF], where they consider Richards equation as a special case of two phase flow; however, they make the extra hypothesis that the relative permeability k r is bounded away from zero.

Gradient discretization

Following [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF] we define a gradient discretization D of Problem ( 2) -(3) on a vector space X D , or more precisely its subspace X 0 D associated with the homogeneous Dirichlet boundary condition, and the two following linear operators:

• A gradient operator on the matrix domain:

∇ D : X D → L 2 (Ω ) d .
• A function reconstruction operator on the matrix domain:

π D : X D → L 2 (Ω ). Coercivity: We assume that ∇ D • L 2 (Ω ) d defines a norm on X 0 D . A gradient dis- cretization D is said to be coercive if there exists C D ≥ 0 such that for all v ∈ X 0 D one has π D v L 2 (Ω ) ≤ C D ∇ D v L 2 (Ω ) d .
Consistency: Let u ∈ H 1 0 (Ω ), and let us define

S D (u) = inf v∈X 0 D ∇ D v -∇u L 2 (Ω ) d + π D v -u L 2 (Ω ) .
Then, a sequence of gradient discretizations

(D (m) ) m∈N is said to be consistent if for all u ∈ H 1 0 (Ω ), lim m→+∞ S D (m) (u) = 0.
Limit Conformity: For all q ∈ H div (Ω ), we define

W D (q) = sup 0 =v∈X 0 D 1 ∇ D v L 2 (Ω ) d Ω ∇ D v • q + π D vdiv(q) dx. (5) 
Then, a sequence of gradient discretizations (D (m) ) m∈N is said to be limit conforming if for all q ∈ H div (Ω ), lim m→+∞ W D (m) (q) = 0.

Compactness: A sequence of gradient discretizations (D (m) ) m∈N is said to be compact if for all sequences v m ∈ X 0

D (m) , m ∈ N such that there exists C > 0 with ∇ D (m) v m L 2 (Ω ) d ≤ C for all m ∈ N, then there exist v ∈ L 2 (Ω ) such that lim m→+∞ π D (m) v m -v L 2 (Ω ) = 0. For N ∈ N * , let us consider the time discretization t 0 = 0 < t 1 < • • • < t n-1 < t n • • • < t N = T of the time interval [0, T ].
We denote the time steps by δt n = t nt n-1 for all n ∈ {1, • • • , N} while δt stands for the whole sequence

(δt n ) n∈{1,...,N} . For all v = v n ∈ X D n=1,••• ,N we set π D,δt v(x,t) = π D v n (x) and ∇ D,δt v(x,t) = ∇ D v n (x) for all (x,t) ∈ Ω × (t n-1 ,t n ], n ∈ {1, . . . , N}.
Discrete variational formulation: For a given u 0 , ûD ∈ X D find u = u n ∈ X D n∈{1,...,N} such that for each n ∈ {1, . . . , N}, u n -ûD ∈ X 0 D and for all v ∈ X 0

D Ω φ c(π D u n ) -c(π D u n-1 ) δt n π D v dx + Ω K(∇ D u n + k r (π D u n )∇z) • ∇ D v dx = 0 (6)
Proposition 1 There exists at least one solution of (6); moreover there exists a positive C only depending on φ , φ , ξ , ξ , K, K, k r , Ω , T , u 0 , û as well as on c(π

D u 0 ) -c(u 0 ) L 2 (Ω ) , π D ûD -û L 2 (Ω ) and ∇ D ûD -∇ û L 2 (Ω ) such that c(π D,δt u) L ∞ (0,T ;L 2 (Ω )) + ∇ D,δt u L 2 (Q T ) d ≤ C (7)
for any solution u of (6).

Proof. In order to keep this presentation short, we only prove below the priori estimate [START_REF] Haverkamp | A Comparison of Numerical Simulation Models for One-Dimensional Infiltration[END_REF], and only in the case of homogeneous Dirichlet boundary conditions; the adaptation to the inhomogeneous case is straightforward, and the existence of a discrete solution can be deduced using a standard argument based upon the topological degree. Let u = (u n ) n∈{1,...,N} be a solution of ( 6) and define

A n D,δt (v) = Ω φ c(π D u n ) -c(π D u n-1 ) δt n π D v dx, B n D,δt (v) = Ω K∇ D u n • ∇ D v dx, C n D,δt (v) = Ω Kk r (π D u n )∇z • ∇ D v dx, (8) 
for all n ∈ {1, . . . , N} and v ∈ X 0 D . The terms defined above satisfy 

A n D,δt (v) + B n D,δt (v) +C n D,δt (v) = 0 for all v ∈ X 0 D . (9) 
∑ n=1 δt n A n D,δt (u n ) ≥ Ω φ (ξ (π D u m ) -ξ (π D u 0 )) dx. ( 10 
) For all a ∈ R it holds 1 2 ξ a 2 ≤ ξ (u) ≤ c(a)a ≤ (c(a)) 2 ξ , therefore m ∑ n=1 ∆t n A n D,∆t (u n ) ≥ 1 2 ξ φ π D u m 2 L 2 (Ω ) - 1 ξ φ c(π D u 0 ) 2 L 2 (Ω ) . (11) 
Using the assumptions

(H 2 )-(H 3 ) we deduce that B n D,δt (u n ) ≥ K ∇ D u n 2 L 2 (Ω ) d and that C n D,δt (u n ) ≤ k r K|Ω | 1/2 ∇ D u n L 2 (Ω )
d for all n ∈ {1, . . . , N}. Combining these inequalities with (9) and (11) gives

1 2 ξ φ π D u m 2 L 2 (Ω ) + K m ∑ n=1 δt n ∇ D u n 2 L 2 (Ω ) d ≤ 1 ξ φ c(π D u 0 ) 2 L 2 (Ω ) + k r K|Ω | 1/2 m ∑ n=1 δt n ∇ D u n L 2 (Ω ) d .
Applying Young's inequality to the last term above, we obtain

k r K|Ω | 1/2 m ∑ n=1 δt n ∇ D u n L 2 (Ω ) d ≤ 1 2ε k r 2 KT |Ω | + ε 2 K m ∑ n=1 δt n ∇ D u n 2 L 2 (Ω ) d .
This leads to

1 2 ξ φ (π D,δt u) 2 L ∞ (0,T ;L 2 (Ω )) + (K - ε 2 K|) ∇ D,δt u 2 L 2 (Q T ) d ≤ 1 ξ φ c(π D u 0 ) 2 L 2 (Ω ) + 1 2ε k r 2 KT |Ω |. ( 12 
)
One completes the proof of the estimate ( 7) by choosing ε = K/K and using the assumptions (H 1 ) and (H 4 ).

The following result is rather standard and given without proof.

Proposition 2 Let u be a solution to [START_REF] Eymard | A combined finite volume scheme nonconforming/ mixedhybrid finite element scheme for degenerate parabolic problems[END_REF]. There exists a positive constant C only depending on φ , φ , ξ , ξ , K, K, k r , Ω , T , u 0 , û as well as on c(π

D u 0 ) -c(u 0 ) L 2 (Ω ) , π D ûD -û L 2 (Ω ) and ∇ D ûD -∇ û L 2 (Ω )
such that for all τ ∈ (0, T ), there holds

T -τ 0 Ω π D,δt u(x,t + τ) -π D,δt u(x,t) 2 dxdt ≤ Cτ.
Theorem 1. Let (D (m) , δt (m) ) m∈N be a family of discretizations, where (D (m) ) m∈N assumed to be limit conforming, consistent, compact and uniformly coercive in the sense that there exist C 1 such that C D (m) ≤ C 1 for all m ∈ N; moreover we assume that c(π

D (m) u 0 m ) -c(u 0 ) L 2 (Ω ) , π D (m) ûD (m) -û L 2 (Ω ) and ∇ D (m) ûD (m) -∇ û L 2 (Ω )
, max n δt (m),n tend to 0 as m → ∞. Let u m be a solution of (6) for all m ∈ N. Then, up to a subsequence

π D (m) ,δt (m) u m → u in L 2 (Q T ), ∇ D (m) ,δt (m) u m ∇u in L 2 (Q T ) d ,
where u ∈ L 2 (0, T ; H 1 (Ω )) is a solution of (4).

Proof. Using the compactness and the uniform coercivity of the sequence D (m) as well as Propositions 1 and 2, we deduce from Fréchet-Kolmogorov theorem that the sequence {π

D (m) ,δt (m) u m -π D (m) ûD (m) } is relatively compact in L 2 (Q T ).
Therefore, we may extract a subsequence of {u m } (denoted again by

{u m }) such that π D (m) ,δt (m) u m converges to some u ∈ L 2 (Q T ) strongly in L 2 (Q T ) and ∇ D (m) ,δt (m) u m is weakly convergent in L 2 (Q T ).
It follows from Lemma 7.1 of [START_REF] Angelini | A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation[END_REF] that the subsequence u m can also be chosen in such way that c(π D (m) ,δt (m) u m ) and k r (c(π

D (m) ,δt (m) u m ))
converge strongly in L 2 (Q T ) to c(u) and k r (c(u)) respectively; moreover one deduces from (7) that c(u) ∈ L ∞ (0, T ; L 2 (Ω )). Finally we deduce from the limit conformity of the scheme that uû ∈ L 2 (0, T ; H 1 0 (Ω )) and that ∇ D (m) ,δt (m) u m ∇u in L 2 (Q T ) d as m → +∞. Using again the limit conformity and consistency of the scheme we deduce that u is a weak solution of (4).

Numerical tests

The Hornung-Messing problem

The Hornung-Messing problem is a standard test (cf. for instance [START_REF] Eymard | The finite volume method for Richards equation[END_REF]). We consider a horizontal flow in a homogeneous ground Ω = [0, 1] 2 and set T = 1. The problem after Kirchhoff's transformation is given by Problem (2) with

c(u) = θ (p) = π 2 /2 -2arctan 2 ( u 2 -u ) if p < 0, π 2 /2 otherwise,
and suitable boundary and initial conditions. Let s = xzt, its solution is given:

u(x, z,t) =    2p(x, z,t) 1 + p(x, z,t) if p < 0, 2p (x, z,t) otherwise, p(x, z,t) 
=    -s/2 if s < 0,
-tan e s -1 e s + 1 otherwise.

(13) In this test, we apply the Sushi scheme [START_REF] Eymard | Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. Sushi: a scheme using stabilization and hybrid interfaces[END_REF] using an adaptive mesh driven by the variations of the saturation. We prescribe the Neumann boundary condition deduced from (13) on the line x = 0 and an inhomogeneous Dirichlet boundary condition elsewhere. We use an initially square mesh, which is such that each square can be decomposed again into four smaller square elements. Whereas the standard finite volume scheme is not suited to handle such a non-conforming adaptive mesh, the SUSHI scheme is compatible with these non-conforming volume elements.

We introduce the relative error in L 2 (Q T ) between the exact and the numerical solution as well as the experimental order of convergence

err(u) = (u exact (x,t n ) -u D,δt (x,t n )) L 2 (Q T ) (u exact (x,t n )) L 2 (Q T ) , eoc = log(err(u i )/err(u i+1 )) log(h D i /h D i+1 ) ,
where u i is the solution corresponding to the space discretization D i . Table 1 shows the error using a uniform square mesh with various mesh sizes and time steps in the four first lines. Note that the scheme is only first order accurate with respect to time; therefore in order to obtain second order convergence we choose δt proportional to h 2 D . We also compare the error for the approximate saturation using a uniform mesh and an adaptive mesh with a similar number of unknowns. In both cases: about 300 unknowns (line 2 -line 5) and 1200 unknowns (line 3 -line 6), the adaptive mesh compared to the fixed one provides slightly better results for the saturation c(u). The observed computational gain is rather small (about 10 -20%), which is due to the fact that the area of high gradients of c is comparatively large. 1 Number of time steps N, mesh diameter h D , number of unknown N unk , the error of solution err(u), the saturation err(c(u)) and the experimental order of convergence eoc.

The Haverkamp problem

We consider the case of a sand ground represented by the space domain Ω = (0, 2)× (0, 40) on the time interval [0, 600]. The parameters are given by [START_REF] Haverkamp | A Comparison of Numerical Simulation Models for One-Dimensional Infiltration[END_REF] 

θ (p) =    θ s -θ r ) 1 + |α p| β + θ r , if p < 0,

  (u n ) for m ∈ {1, . . . , N}; we define ξ (u) = c(u)u -u 0 c(τ) dτ for all u ∈ R. For all a, b ∈ R, one has ξ (a)ξ (b) = (c(a)c(b))a -a b (c(τ)c(b)) dτ and since c is nondecreasing we have that ξ (a)ξ (b) ≤ (c(a)c(b))a. It implies that m

Fig. 1

 1 Fig. 1 Saturation at t = 0.1 seconds and at t = 0.4 seconds. The medium is unsaturated on the right-hand side of the space domain where θ < 4.9348 and fully saturated elsewhere.

  err(u) err(c(u)) eoc(u) Uniform 25 0.2 85 2.40 • 10 -2 1.60 • 10 -5 -Uniform 100 0.1 320 6.09 • 10 -3 4.13 • 10 -6 1.98 Uniform 400 0.05 1240 1.53 • 10 -3 2.90 • 10 -6 2.00 Uniform 1600 0.025 4880 3.76 • 10 -3 1.83 • 10 -6 2.02 Adaptive 200 0.143 302 5.62 • 10 -3 3.67 • 10 -6 -Adaptive 800 0.071 1232 1.32 • 10 -3 2.19 • 10 -6 -Table

1 +

 1 |Ap| γ , if p < 0, K s , otherwise, where θ s = 0.287, θ r = 0.075, α = 0.0271 β = 3.96, K s = 9.44e-3, A = 0.0524 and γ = 4.74. From θ and K, we have tabulated suitable values for the functions c and K c . We have taken here the initial condition p = -61.5, a homogeneous Neumann boundary condition for x = 0 and x = 1, the Dirichlet boundary condition p = -61.5 for z = 0 and p = -20.7 for z = 40. We use an adaptive mesh and the time step δt = 1 to perform a test. Figure 2-(a) represents the pressure profile at various times. In this test, no analytical solution is known. Therefore we compare our numerical solution with that of Pierre Sochala [8, Fig. 2.6, p. 35] which is obtained by means of a finite element method. Our results are quite similar to his.

Figure 2 -

 2 (b) shows the time evolution of the mesh at different times corresponding to the pressure profiles in Figure 2-(a).

Fig. 2

 2 Fig. 2 Time evolution of the pressure p and the adaptive mesh.