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Abstract9

Information on vegetation status can be retrieved from satellite observations

by modelling and inverting canopy radiative transfer. Agricultural monitoring

and yield forecasting could greatly benefit from such techniques by coupling

crop growth models with crop specific information through data assimilation.

An indicator which would be particularly interesting to obtain from remote

sensing is the total surface of photosynthetically active plant tissue, or Green

Area Index (GAI). Currently, the major limitation is that the imagery that

can be used operationally and economically over large areas with high temporal

frequency have a coarse spatial resolution. This paper demonstrates how it

is possible to characterize the regional crop specific GAI range along with its

temporal dynamic using MODIS imagery by controlling the degree at which

the observation footprints of the coarse pixels fall within the crop-specific mask

delineating the target. This control is done by modelling the instrument’s point

spread function and by filtering out less reliable GAI estimations in both the

spatial and temporal dimensions using thresholds on 3 variables: pixel purity,

observation coverage and view zenith angle. The difference in performance

between MODIS and fine spatial resolution to estimate the median GAI of

a given crop over a 40×40 km study region can be reduced to a RMSE of

0.053 m2/m2. The consistency between fine and coarse spatial resolution GAI

estimations suggest a possible instrument synergy whereby the high temporal
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resolution of MODIS provides the general GAI trajectory and while high spatial

resolution can be used to estimate the local GAI spatial heterogeneity.

Keywords: Green area index, leaf area index, canopy radiative transfer, crop1

growth monitoring, regional scale, MODIS, pixel purity, observation coverage,2

Point Spread Function3

1. Introduction4

Monitoring vegetation dynamics over the Earth’s surface is of paramount5

importance for agricultural, hydrological, meteorological and climate applica-6

tions. The surface of green foliage is the main interface between atmosphere7

and vegetation, thereby governing the exchanges of energy, water and carbon.8

Both the radiative transfer and the functioning of a vegetation canopy are driven9

by the leaf area index (LAI), defined as half the total developed area of green10

leaves per unit of ground horizontal surface area (Chen & Black, 1992). LAI11

is a state variable in various land surface models, and more specifically in crop12

growth models (e.g. CERES (Ritchie & Otter, 1985), WOFOST (van Diepen13

et al., 1989) and STICS (Brisson et al., 1998)). Providing an estimation of such14

biophysical variables at relevant spatial and temporal resolutions can assist and15

potentially improve modelling approaches by either forcing the model or by16

controlling its temporal trajectory using assimilation techniques (Moulin et al.,17

1998; Cayrol et al., 2000; Dorigo et al., 2007).18

Earth observation from satellite remote sensing provides synoptic and timely19

coverage which can be used to derive land surface variables such as LAI over20

large geographic extents. It is however necessary to characterize and invert the21

complex and non-linear relationship between canopy structure and reflectance22

(Myneni et al., 1995). For crops such as cereals in which all main aerial plant23

organs (leaves, stems, ears) are green and photosynthetically active, it is more24

appropriate to use the term of green area index (GAI) to refer to the biophys-25

ical variable retrieved from remote sensing since the radiance measured by the26

instrument is made of electromagnetic radiation reflected from all plant organs27

2
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(Duveiller et al., 2011). While estimating such information on canopy status1

at field level from high spatial resolution imagery has been done throughout2

the past decades with increasing performances, a real challenge is to estimate3

it over large geographical extents. LAI datasets have been produced at global4

scale (e.g. Sellers et al., 1994; Los et al., 2000; Myneni et al., 2002; Masson et al.,5

2003; Deng et al., 2006; Baret et al., 2007) but their spatial resolution (at best6

1 km) is much too coarse to be crop specific over many landscapes across the7

world.8

Satellite remote sensing is intrinsically confronted to a trade-off between9

spatial, temporal, spectral and radiometric resolutions. The high observation10

frequency necessary to detect anomalies due to climatic variability comes at11

the expense of coarser observation supports, which in turn results in measur-12

ing a signal originating from a larger and potentially more heterogeneous area.13

Although technological improvements are bound to provide finer spatial reso-14

lution data with more frequent observations, coarse instruments will retain a15

valuable interest since they provide a long time record. Medium or moderate16

spatial resolution instruments, best represented by MODIS on-board of Terra17

and Aqua platforms(Salomonson et al., 1989), MERIS on-board of ENVISAT18

(Rast et al., 1999) and the forthcoming OLCI which will be on-board of the19

GMES Sentinel-3 platform (Nieke et al., 2008), offer an interesting combination20

of spatial and spectral resolutions with high temporal repetitivity. However,21

given their spatial resolutions (pixel size ranging from around 250 to 500 m),22

it is still required to address the issue of spatial heterogeneity in order to have23

crop specific information over many agricultural landscapes around the world.24

Large uncertainties arise when the reflectance encoded by a pixel originates25

either from a mixture of different land covers or from a single land cover with26

spatially heterogeneous properties. Intra-pixel spatial heterogeneity biases the27

estimation of land surface variables, such as LAI, when the relationship between28

this variable and the radiometric signal is non-linear (Friedl et al., 1995; Gar-29

rigues et al., 2006a). Geostatistics, and more precisely variograms, can be used30

to quantify landscape spatial heterogeneity from concurrent fine spatial resolu-31

3
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tion imagery (Garrigues et al., 2006b), providing the necessary information to1

correct the bias on the non-linear estimation of LAI (Garrigues et al., 2006a).2

The temporal changes in spatial heterogeneity can even be modelled to reduce3

the limitation of requiring concurrent imagery (Garrigues et al., 2008). Another4

approach for monitoring heterogeneous landscapes is to downscale coarse spa-5

tial resolution time series using unmixing-based data fusion (Zurita-Milla et al.,6

2009), thus creating fine spatial resolution synthetic images from which bio-7

physical variables can be retrieved. A common disadvantage of both methods8

(correcting the scaling bias and downscaling) is that they require a series of fine9

spatial resolution imagery, preferably during the increasing phase of LAI which10

unfortunately often coincides with the rainy season in many part of the world.11

Furthermore, modelling the spatial heterogeneity with these methods can be a12

complex issue, requiring serious approximations and a priori knowledge which13

might not be readily available for operational application.14

Both above-mentioned approaches provide elegant solutions to deal with15

intra-pixel heterogeneity in order to provide a spatially exhaustive coverage of16

land surface variable estimations from coarse spatial resolution data. However,17

their sophistication potentially induces more approximation errors, which can18

be avoided if spatially continuous maps are not mandatory. Rather than using19

all the pixels in a scene, the analysis can be restricted to a subset of a region’s20

pixels (Guissard et al., 2004; Kastens et al., 2005). Masking the cropland can21

significantly improve the accuracy of crop yield forecasts based on NDVI profiles22

(Genovese et al., 2001). But crop growth models are often specific to a given23

crop (or crop variety), and in order to couple them with remote sensing data24

it is preferable to use crop-specific masking. In some landscapes, like the north25

China plains, this is trivial since more than 90% of arable lands are covered by26

wheat during spring (Ren et al., 2008). Many landscapes are more fragmented:27

a crop specific field will be surrounded by other crops, and it is complicated to28

anticipate the patterns due to crop rotation. Furthermore, the size of a medium29

spatial resolution pixel is often, at best, of the same order of magnitude as30

the size of crop fields. In order to make proper use of medium resolution data31

4
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for crop growth monitoring, it is required to select pixels whose observational1

footprints fall within the target crop specific fields. A common misconception is2

that the observational footprint is the geometric projection of a rectangular pixel3

onto the Earth’s surface (Cracknell, 1998). The footprint rather depends on the4

instrument’s point spread function (PSF), which describes how the electromag-5

netic radiation coming from a point source is spread over the image plane as6

it is recorded by the imaging instrument. Duveiller & Defourny (2010) demon-7

strated how modelling the PSF and convolving it over a crop specific mask can8

yield a pixel purity map. This maps provides the crop specific pixel purity (π),9

a variable defining the proportion of signal encoded in a pixel which orginates10

from the targeted crop.11

The objective of this paper is to demonstrate whether it is possible to es-12

timate both the spatial range and temporal dynamic of crop specific GAI at13

regional scale from medium spatial resolution data. Regional scale is here un-14

derstood as a situation when the extent of the geographic coverage should be15

national or sub-national and the elementary unit of interest is a small area with16

similar agro-ecological growing conditions (preferably with an administrative17

delineation in order to link results to official statistics). This paper targets the18

population of all fields of a given crop within one such area, in which GAI is19

expected to vary due to differences in soil types, management practices, crop20

varieties, etc. despite being subject to the similar local weather. The charac-21

terisation of the GAI of this population with medium resolution imagery will22

be achieved by controlling the adequacy between observation footprint and the23

targeted fields using pixel purity. The impact of the selection of pixel purity24

thresholds on the characterization of the regional GAI will first be studied. A25

second analysis will then focus on how the observation geometry can further26

be used to filter out GAI estimations of lower quality to improve the temporal27

consistency of the GAI profiles. Finally, the results are validated using GAI28

maps obtained from high spatial resolution imagery acquired at various dates29

along the growing season.30

5
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2. Study site and data1

To achieve the above-mentionned objectives, both fine and coarse spatial2

resolution imagery needs to be available over a large agricultural landscape along3

the whole growing season. The chosen study site is 40 × 40 km in size and is4

located in the Danube Plain, centred on Fundulea (Romania, around 44.41◦ N,5

26.58◦ E). This agricultural landscape is dominated by relatively large fields6

(15 to 40 ha) of winter cereals (wheat and barley) alternating with summer7

crops (such as maize and sunflower). In 2001, imagery over the study site was8

intensely collected by high spatial resolution SPOT satellites thanks to a project9

called ADAM (Assimilation of spatial Data within Agronomic Models), whose10

aim was to develop and evaluate methods capable of exploiting high spatial11

satellite observations to optimize cultural practices, estimate the production,12

and evaluate environment impacts (Baret et al., 2001). The SPOT imagery in13

the ADAM dataset1 constitutes the high spatial resolution data used in this14

paper, while the coarse spatial resolution data are assured by MODIS imagery.15

2.1. SPOT imagery16

The imagery within the ADAM dataset is composed of a time series of17

cloud-free images acquired from the SPOT 1, 2 and 4 satellites. The two HRV18

(High Resolution Visible) instruments on-board of the SPOT 1 and 2 platforms19

measure radiance in the green, red and near-infrared domain (NIR). The two20

HRVIR (High Resolution Visible InfraRed) instruments on-board of the SPOT21

4 platform have an extra band which measures shortwave infrared wavelengths22

(SWIR). All images have a 20 m nominal ground sampling distance. The im-23

ages have been accurately calibrated both radiometrically and geometrically by24

CNES (Centre National d’Etudes Spatiales, Toulouse, France). Both top-of-25

atmosphere (TOA) and top-of-canopy (TOC) reflectance imagery are available,26

the atmospheric correction having been done with the SMAC model (Rahman27

1All the data is available at http://kalideos.cnes.fr/

6
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& Dedieu, 1994) using aerosol characteristics measured with an automated sun-1

photometer on the ground. For the present experiment, a subset of 16 TOC2

reflectance images are used. These are distributed along the winter wheat grow-3

ing season between DoY (day-of-year) 60 and DoY 180. Table 1 presents the4

characteristics of the selected images, including the type of instrument and ac-5

quisition geometry i.e. view zenith angles (VZA), sun zenith angles (SZA) and6

relative azimuth angles (RAA).7

[Table 1 about here.]8

2.2. MODIS imagery9

MODIS provides observation in 36 spectral bands: 29 bands with a spatial10

resolution at nadir close to 1 km, 5 bands with a spatial resolution close to 500 m11

and 2 bands with a spatial resolution close to 250 m.2 MODIS scans the Earth12

with a 2340 km swath, providing a global coverage every 1-2 days. MODIS data13

has the great advantage of being pre-processed, free and readily available to the14

scientific community from the NASA Distributed Active Archive Center3. The15

MODIS data used in this paper are the daily reflectance data at 250 m of spatial16

resolution for which 2 bands are available encoding reflectance respectively in17

the red and near-infrared spectral domains. This data are known as MOD0918

and are part of collection 5 products. These level 2 products are all stored in19

the same grid, known as the L2G grid (see Wolfe et al., 1998, for details). In20

this grid, the is data is projected using a Sinusoidal projection with a specific21

spheroid (a sphere with a radius of 6371007.181 m), and is distributed by tiles22

of 4800 × 4800 pixels.23

MODIS has some specific observational characteristics (see figure 1) that24

must be taken into account when studying ground objects which are close to25

2Although MODIS products are generally referred to as having 1 km, 500 m and 250 m

spatial resolution, the actual values are smaller and correspond respectively to 30, 15 and 7.5

arcseconds of the spheroid.
3https://wist.echo.nasa.gov/api/

7
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the pixel size. MODIS is a whiskbroom scanner whose integration time as the1

rotating mirror scans the Earth is nearly a whole detector width (Schowengerdt,2

2007) causing much higher spatial inter-pixel correlation in the cross-track direc-3

tion than in the along-track direction. Furthermore, the MODIS pre-processing4

step of gridding, i.e. assigning an observation to a predefined system of grid,5

introduces a “pixel-shift” (Wolfe et al., 1998). This shift can be quantitatively6

described by the notion of “observation coverage” or obscov (Wolfe et al., 1998)7

which is a ratio between: (1) the intersection area between the nominal ob-8

servation and the grid cell; and (2) the nominal area of the observation. The9

distribution of obscov values across a tile varies with the revisit cycle (figure 2).10

Tan et al. (2006) used this obscov value, which is provided along with MODIS11

reflectance products, to show the impact that gridding artifacts may have on12

compositing and band-to-band registration of MODIS data. These problems13

are compounded by the large across-track scan angle range of MODIS which14

results in view zenith angles (VZA) that can reach 65◦. As the view zenith an-15

gle increases, so does the surface observed by the detector. This jeopardizes the16

quality of MODIS data since: (i) consecutive scan lines overlap when the VZA is17

different from 0◦ (the so-called “bow-tie” effect (Wolfe et al., 2002)) causing dis-18

continuities of the latitude/longitude fields provided with the data (Khlopenkov19

& Trishchenko, 2008); and (ii) with a high VZA, individual observations cover20

several adjacent grid cells since the grid cell size is fixed throughout the im-21

age. Since the nominal area of the observation defining obscov increases with22

VZA, both variables are not independent. However they provide information23

at different levels. Depending on how the observations will be positioned with24

respect to the grid, some observations with high VZA have higher obscov than25

their neighbours and can therefore be considered as more reliable. Similarly,26

low VZA does not guarantee a good observation since its obscov may be lower27

than its neighbours. These patterns of pixel vicinity are displayed on figure 328

for a 200 × 200 pixel zone near the study area.29

[Figure 1 about here.]30

8
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[Figure 2 about here.]1

[Figure 3 about here.]2

3. Methodology3

The necessary processing steps to prepare comparable GAI products from4

SPOT and MODIS imagery are henceforth described. The general flowchart in5

figure 4 may guide the reader throughout the following descriptions.6

[Figure 4 about here.]7

3.1. Creating a crop specific mask8

First and foremost, it is necessary to identify the target objects in the scene.9

This resumes to having a mask covering the area where the target crop, winter10

wheat, is to be found in the 2001 growing season. This information could come11

from various sources other than remote sensing: one could imagine an online12

vector database of the fields which would be updated by farmers after sowing.13

However, in this case the only possibility was to classify a set of high spatial14

resolution images available in the ADAM database. Since this is not the main15

concern of this study, the methodology used to create this crop mask is only16

briefly described below.17

Five SPOT4 images that are well-distributed along the season were selected18

from the ADAM database to provide the necessary information to capture win-19

ter wheat phenology and discriminate it from other crops across the landscape.20

NDVI and NDWI are calculated for each image and grouped together in a syn-21

thetic 10-band image. This image is then segmented using the multiresolution22

segmentation algorithm (Baatz & Schäpe, 2000) implemented in Definiens De-23

veloper 7 software (Definiens, 2008). The resulting segments, or objects, group24

spatially-adjacent pixels which have similar trajectories for both vegetation in-25

dices over the 5 selected dates. Such multi-temporal segmentation techniques26

have been used successfully to isolate spatial entities exhibiting change (e.g. De-27

sclée et al., 2006; Duveiller et al., 2008; Bontemps et al., 2008). The segments28

9
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are then clustered into groups using an unsupervised classification technique1

(ISODATA), and these groups are then labelled manually based on visual inter-2

pretation and expert knowledge of the landscape.3

3.2. Neural network GAI retrieval4

In this paper, GAI is retrieved from multispectral reflectance using neural5

network techniques (NNT) trained over canopy radiative transfer simulations.6

This hybrid approach combines advantages of statistical and physical approaches7

in biophysical variable retrieval (Dorigo et al., 2007; Baret & Buis, 2008). The8

approach is based on the algorithm conceived by Baret et al. (2007) to derive9

the global LAI product developed within the CYCLOPES (Carbon cYcle and10

Change in Land Observational Products from an Ensemble of Satellites) project11

from SPOT/VEGETATION data. The radiative transfer model used is PRO-12

SAIL (Baret et al., 1992), a coupling of the canopy reflectance model SAIL13

(Verhoef, 1984) to the leaf optical properties model PROSPECT (Jacquemoud14

& Baret, 1990). The CYCLOPES algorithm was later adapted for winter wheat15

GAI retrieval from the SPOT/HRV(IR) imagery in the ADAM database by16

Duveiller et al. (2011). This adaptation consisted in: (i) changing the number17

of neurons with respect to the change in different input bands; (ii) using the18

appropriate spectral response curves for the HRV and HRVIR instruments; and19

(iii) using a characterisation of the soil background reflectance specific to Fund-20

ulea4. The same method was used here to derive GAI maps from SPOT imagery21

and the method was also adapted to retrieve GAI from MODIS reflectance in22

the red and near-infrared domains. Back-propagation neural networks with two23

hidden layers of respectively 5 and 1 neurons are employed. The required input24

values are VZA, SZA, RAA and the top of canopy reflectance in the different25

bands. Further description on the construction, training and performance of26

4Note that the change from LAI in CYCLOPES to GAI in Duveiller et al. (2011) is just a

question of terminology since the green elements modelled in PROSAIL can be considered to

be approximations of either leaves, stems of ears as long as these are green

10
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the neural networks can be found in Duveiller et al. (2011).1

3.3. Modelling the spatial response of MODIS2

Since the aim is to compare GAI retrieved from instruments with different3

spatial resolution, it is necessary to ensure that the observation footprints of4

both products coincide. Given the large difference in scale between the SPOT5

and MODIS support, the observation footprint of SPOT can be assumed to be6

equivalent to the square projection of the pixel. However, due to the complex7

acquisition system of MODIS, the spatial response of the coarse instrument8

cannot be neglected.9

Having a measure of the spatial response of an instrument in orbit is not10

easy. Although it is measured in a laboratory under controlled conditions before11

launching the orbiting platform, there is the possibility for change in a system’s12

PSF after launch due to thermal focus change or instrument outgassing in the13

space environment (Schowengerdt, 2007). Some techniques can be used to mea-14

sure the on-board PSF based on specific ground targets in the imagery ((e.g.15

Ruiz & Lopez, 2002)). However, for instruments such as MODIS, the spatial16

resolution is often too coarse to find appropriate targets and synchronized high17

spatial resolution imagery might be required (e.g. Rojas et al., 2002). MODIS18

is equipped with a Spectro-radiometric Calibration Assembly (SRCA) (Xiong19

& Barnes, 2006), which can measure and monitor the actual on-orbit modula-20

tion transfer function (MTF)5. Nevertheless, this measurement does not take21

into account the spatial response distortions caused by atmospheric effects. The22

impact of the spatial response on the imagery available to the user is further23

distorted pre-processing steps such as resampling.24

Given the above-mentioned difficulties in measuring the spatial response,25

a general but conservative model is built for this study. The net instrument26

PSF can be modelled by taking into account its different components: the elec-27

5The MTF is the counterpart of the PSF in the spatial frequency domain and characterizes

the attenuation of the spatial frequencies by the imaging instrument

11
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tronic PSF, the detector PSF, the image motion PSF and the optical PSF1

(Schowengerdt, 2007). For the sake of simplicity the electronic components is2

neglected. The detector is modelled by a uniform square pulse function:3

PSFdet(x, y) = rect(x/ν) · rect(y/ν) (1)

where x and y are the spatial coordinates with their origin at the centroid4

of the ground-projection of the detector’s instantaneous field of view, ν is the5

detector width and rect(x/ν) is the rectangular function (which is a square6

pulse of amplitude one and width ν). While the along-track image motion can7

be disregarded for MODIS, the across-track must be taken into account since8

the integration time corresponding to image motion as the rotating mirror scans9

the Earth is nearly a whole detector width (Schowengerdt, 2007). The detector10

and image motion PSFs can be combined into a scan PSF:11

PSFscan(x, y) = PSFdet(x, y) ∗ PSFIM (x, y) (2)

This scan PSF is modelled as a triangular PSF in the across-track direction612

and as a rectangular PSF in the along-track direction. PSFscan must therefore13

be inclined according to the angle, j, between the ground track of the satellite14

and the north–south direction. This angle varies with the latitude, ϕ, according15

to Capderou (2005):16

j = arctan

[

cos i− (1/κ) cos2 ϕ
√

cos2 φ− cos2 i

]

(3)

where κ is the satellite’s daily recurrence frequency and i is the inclination angle17

(i.e. the angle between the orbital plane and the equatorial plane). Finally, the18

optical component is assumed to have a Gaussian behaviour19

PSFopt(x, y) = exp

(

−
x2 + y2

2(νσ)2

)

(4)

where σ is the standard deviation of the Gaussian curve. In this case νσ was20

set to the plausible value of 50 m. The net PSF is a convolution of the scan21

6Which is the along-scan direction for MODIS since it is a whisk-broom instrument.

12
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PSF obtained in equation 2 with the optical PSF of equation 4 as illustrated in1

figure 5 and resumed by the following equation:2

PSFnet(x, y) = PSFscan(x, y) ∗ PSFopt(x, y) (5)

PSFnet is also depicted in 3 dimensions in figure 6. The corresponding MTF3

model was compared to the on-board MTF measurements provided MODIS4

Characterization Support Team. The result, shown in figure 7, indicate that5

the model provides a reasonable approximation. Furthermore it confirms that6

the value of 50 m for σ in PSFopt is plausible since the modelled spatial response7

(the solid line) is close to the validation measurements (the crosses).8

[Figure 5 about here.]9

[Figure 6 about here.]10

[Figure 7 about here.]11

3.4. Convolution of the spatial response over the SPOT imagery12

The next step to make the observation footprints of SPOT and MODIS coin-13

cide is to convolve the MODIS spatial response model over the SPOT products14

(the crop mask and the GAI maps). To do so, the PSFnet is discretized to 2015

m: the spatial resolution of the SPOT images. The change in support is then16

realized by applying a bi-dimensional convolution of the spatial response model17

over the target image Img:18

ΠImg(x, y) = Img(x, y) ∗ PSFnet(x, y). (6)

Every pixel of the resulting image ΠImg(x, y) displays the value corresponding19

to a MODIS observation whose centroid falls at that (x, y) coordinate. When20

applied to the crop specific mask, the result is what will henceforth be referred21

to as a crop specific pixel purity map. This map indicates the purity of MODIS22

observations with respect to our target crop: winter wheat. When the convolu-23

tion is applied to the GAI maps, the resulting convolved maps indicate the GAI24

13
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that can be expected when estimated with a MODIS observation support. It1

must be acknowledged that this does not take into account the gridding effect2

that may occur when the MODIS observation is stored in the L2G grid.3

3.5. Producing adequate MODIS time series4

The last step consists in building GAI time series for an ensemble of points5

were MODIS crop specific pixel purity is above a certain threshold. Two types of6

time series are to be produced: (i) simulated MODIS GAI time series obtained7

from the convolved GAI maps produced from SPOT imagery (TSsim); and8

(ii) actual MODIS GAI time series obtained by retrieved GAI from MODIS9

reflectances (TSobs). While the latter contain GAI estimations obtained with10

variable observation geometry (i.e. VZA and obscov), the former are simulations11

of GAI obtained from MODIS in ideal conditions: that is at nadir and without12

gridding artifacts.13

To identify the desired pixels in the L2G grid that must be used, the geolo-14

cation of their centroids in the MODIS sinusoidal projection is retained. These15

values are re-projected into the Gauss-Kruger projection in which the SPOT16

products within the ADAM database are projected. For each point, the corre-17

sponding MODIS purity is extracted from the crop specific pixel purity map.18

It must be acknowledged that this procedure for associating the purity to a cell19

in the L2G grid is an approximation because gridding artifacts are neglected20

(normally the centroid of the observation footprint is not going to be the same21

as the grid cell centroid). Pixel purity must therefore be taken as an indicator of22

the amount of interesting information present in the cell rather than an absolute23

measurement.24

Since the main interest of this paper is time series dominated by wheat, only25

MODIS grid cells with at least 75% of purity are kept for the analyses. For these26

pure enough grid cells and for all available dates, the MODIS reflectances are27

transformed into GAI using a MODIS specific NNT to produce TSobs. This set28

of time series also contains information on VZA and obscov for every individual29

MODIS acquisitions. To produce the other set of time series, TSsim, GAI is30

14
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simply extracted from the convolved GAI maps for all selected grid cells in the1

same way as purity was obtained from the crop specific pixel purity maps.2

3.6. Temporal smoothing3

The SPOT high spatial resolution imagery do not necessarily coincide in4

time with the MODIS observations. In order to compare the GAI derived from5

both instruments, a canopy structural dynamic model (CSDM) can be used6

to smooth out one of the GAI estimation time series. The CSDM is a sim-7

ple semi-mechanistic model which describes the combined effect of growth and8

senescence with respect to thermal time by means of a mathematical expression.9

The CSDM both smooths the residual errors associated to each individual GAI10

estimation and describes continuously the biophysical variable’s time course11

from a limited number of observations during the growth cycle (Koetz et al.,12

2005). In this study, a CSDM developed by Baret (1986) and improved by Lau-13

vernet (2005) is used, with the only difference that the biophysical variable is14

here labelled GAI instead of LAI. The mathematical expression is the following:15

GAI(tt) = k ·

[

1

(1 + e−a(tt−T0−Ta))c
− eb(tt−T0−Tb)

]

(7)

where a and b define the rates of growth and senescence, c is a parameter16

allowing some plasticity to the shape of the curve, k is a scaling coefficient and17

T0, Ta and Tb are the thermal times of plant emergence, mid-growth and end18

of senescence. The CSDM is further parametrized so as to yield zero GAI once19

senescence is finished.20

The driving variable of the CSDM is thermal time (tt) or cumulated growing21

degree-days. The thermal time for a single day tti is calculated in the following22

way:23

tti =

[

(Tmax + Tmin)

2

]

− Tbase (8)

based on the daily minimum (Tmin) and maximum (Tmax) air temperatures24

recorded at the Fundulea meteo station. Tbase is the temperature below which25

the process of interest, in this case winter wheat growth, does not progress. The26

15
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base temperature used here for winter wheat is 0◦C and the starting date for the1

temperature sum is October 1st, 2000, which corresponds to the sowing period.2

3.7. Statistical indicators3

The following analyses will also require to quantify the correspondence be-4

tween GAI products. The discrepancies between a given product and a reference5

product will be compared using the statistical indicators presented in table 2.6

Amongst these, B and S are two subcomponents of the total discrepancy quan-7

tified by the RMSE and are related by the formula: RMSE2 = B2 + S2.8

[Table 2 about here.]9

4. Results10

The analysis of the data generated in this study is focused on answering11

three questions concerning GAI estimation from both fine and coarse spatial12

resolution.13

4.1. How does pixel purity influence GAI regional estimation?14

This question can be reasoned by analysing the bias that may occur between15

the median GAI obtained over all wheat fields in the region from fine spatial16

resolution and the median GAI obtained from coarse spatial resolution GAI17

estimations. This bias, δ, is expected to occur because wheat GAI estimations18

from coarse spatial resolution can be contaminated by the signal from non-wheat19

surfaces located within the observation footprint. Therefore, δ depends on the20

crop specific pixel purity threshold (π) used to select a the population of coarse21

spatial resolution GAI estimates that will represent the regional estimation.22

To analyse how δ varies with π along the growing season, only the convolved23

and original GAI maps derived from SPOT are used. For every date in which24

there is a SPOT image, the median GAI of the region is calculated using all25

wheat pixels in the corresponding original GAI map. δ is then calculated for26

16
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increasing values of π by subtracting the median GAI obtained from pixel pop-1

ulation of the convolved maps selected using the given threshold π. Figure 82

describes the evolution of δ with respect to π for the various dates at which3

GAI maps are available (the curves in figure 8 are actually 4th order polyno-4

mials fitted on punctual δ values obtained with 100 discrete π values from 1 to5

100).6

[Figure 8 about here.]7

Figure 8 clearly shows how the π values used to select GAI estimations from8

the convolved maps have an effect on how well these estimations represent the9

median regional GAI obtained from the original GAI maps. Both the magnitude10

and the direction of this effect varies along the growing season. Early in the11

season (dark curves on figure 8) the bias is practically close to zero for all values12

of π because GAI values are low overall and there is little difference between13

the target (winter wheat) and non-target surfaces (mostly other crops). Later14

in the season, the winter wheat has higher GAI than neighbouring surfaces and15

thus, selections of “purer” pixels (higher π) are necessary to limit the contami-16

nation effect from non-wheat surfaces which would bring down the median GAI17

estimation (thereby increasing δ). Late in the season (light curves on figure 8),18

summer crops surrounding the target winter wheat fields have a higher GAI,19

and therefore δ takes negative values when π is low and contamination occurs.20

Overall there is a convergence towards δ = 0 when purity thresholds increase: a21

high π threshold will generally result in a smaller |δ| by favouring observations22

which are more dominated with the target crop7. This illustrates the impor-23

tance of pixel purity on the regional GAI estimation. The convergence of the24

curves in figure 8 also indicates that the GAI retrieval algorithm is not really25

scale dependent for the considered spatial resolutions.26

7Note, however, that if π is too restrictive and the reduction of selected pixels is too severe,

the pixel selection might not be representative of the median GAI across the study area any

more, thereby causing an increase in |δ|

17



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press. DOI : 10.1016/j.rse.2011.05.026 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

The minimum pixel purity requirements to study the landscape can be de-1

fined by fixing a |δ| which can be considered as acceptable. To illustrate how2

this minimum acceptable pixel purity is temporally dependent along the win-3

ter wheat growing season, the π values at which the curves in figure 8 reach4

|δ| = 0.10 and |δ| = 0.05 are displayed on the top panel of figure 9. Since it5

is inconvenient to change the pixel purity thresholds along the season (because6

this creates gaps in the time series), it is more practical to know the potential7

bias that can occur with a fixed pixel purity threshold and how this bias evolves8

along the season. This is illustrated on the bottom panel of figure 9 for different9

π thresholds.10

[Figure 9 about here.]11

4.2. Can MODIS acquisition information be used to improve GAI estimation?12

The GAI upscaled from SPOT to MODIS resolution, TSsim, is considered13

to be at nadir and does not suffer from obscov local variations. However, the14

real MODIS data are rarely at nadir and have variable obscov. To exploit15

all MODIS observations it is necessary to analyse the effect of these two vari-16

ables on the quality of the GAI estimation. This is done by comparing the17

two ensemble of time series: TSsim and TSobs. In order to analyse all MODIS18

observations within TSobs, these are compared to ˆTSsim, the temporal inter-19

polation of TSsim using the CSDM (Eq. 7). The effect of VZA and obscov20

thresholds is then analysed. For increasing thresholds of obscov and decreasing21

thresholds of VZA, selections of fewer, but presumably more reliable estima-22

tions are made. For each selection of points, statistical indicators are calculated23

by considering that ˆTSsim is the reference time series (z in equations in ta-24

ble 2) and TSobs is the estimation (ẑ in equations in table 2). The result can25

be visualized in iso-contour plots to see the combined effect of thresholds on26

both VZA and obscov (see figure 10). These graphs reveal an interesting point:27

desirable points do not need to satisfy simultaneously the conditions for the28

two variables. In other words, if an observation has a favourable obscov, it can29

18
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have an unfavourable VZA (and vice versa) and still remain reliable. To illus-1

trate the potential improvement that can be achieved by taking into account2

obscov and VZA, the dataset Z, consisting of all individual GAI estimations3

in TSobs, is stratified into different groups for which the concurrent TSobs and4

ˆTSsim are compared. The groups are based on a single threshold for each5

variable, defined so that if taken by itself, at least 30% of the points remain.6

This yields a maximum acceptable VZA of 24◦ and a minumum acceptable ob-7

scov of 0.36. Figure 11 shows how both individual thresholds significantly filter8

out sub-optimal estimations, and how combining them by retaining the union9

of both constraints (z1 ⊂ Z : V ZA ≤ 24◦ ∪ obscov ≥ 0.36) rather than their in-10

tersection (z2 ⊂ Z : V ZA ≤ 24◦ ∩ obscov ≥ 0.36), the amount of usable points11

increases by 20% of the total amount Z.12

[Figure 10 about here.]13

[Figure 11 about here.]14

The thresholding on obscov and VZA is expected to improve the temporal15

consistency of MODIS estimates. To test this, the CSDM is fitted for all avail-16

able time series using all available points (i.e. without any restrictions on either17

VZA or obscov). This temporally-smoothed GAI estimation is used as a refer-18

ence, to which different sets of punctual GAI estimations are compared. The19

results in table 3 confirm that filtering8 MODIS estimations by either satisfying20

a obscov or a VZA criteria improves the temporal consistency as shown by the21

reduction of RRMSE. This is not merely an effect of sample number reduction22

as when a random sample set of equal size is used (the group labelled z3 in23

table reftab:TempCons), the statistical indicators remain comparable to when24

all points are used. Furthermore, the comparison between z1 (union) and z2 (in-25

tersection) shows that although the temporal consistency is slightly improved26

8The term filtering, i.e. removing unwanted observation, must not be confused with the

smoothing operation done with the CSDM in which the objective is removing the errors on

the observations.

19
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for z2, it comes at the expense of a serious reduction of observations per time1

series.2

[Table 3 about here.]3

The bias of all cases in table 3 is slightly negative. The reason is that the4

fitting of a CSDM will always bring values around the peak down. Subset z15

actually shows a more negative bias. This value can be reduced by fitting a6

CSDM on these values only. This indicates that by filtering out bad values, the7

overall GAI estimates are lower.8

4.3. How do MODIS GAI estimations compare to high spatial resolution GAI?9

The last question that must be addressed is how well do the MODIS GAI10

estimations in TSobs relate to the original (non-convolved) GAI maps, and11

whether they can characterize the regional GAI variability and its temporal12

dynamic. Hereafter, only the temporally smoothed profile based on V ZA ≤13

24◦ ∪ obscov ≥ 0.36 are used on the MODIS side. These are first compared14

to the punctual SPOT upscaled GAI estimations and the resulting statistical15

indicators are displayed in figure 12. As expected, the performance is related16

to the date of acquisition: GAI is harder to estimate when it reaches its peak17

value (i.e. on DoY 123). However, the bias between MODIS and SPOT fluc-18

tuates along the season revealing shortcomings of the GAI SPOT estimation19

with respect to the MODIS smoothed estimation. These might be explained20

by errors in SPOT radiometric pre-processing but also by an inadequacy of the21

retrieval algorithm to correctly take into account the differences in acquisition22

geometry in the SPOT time series9. This bias effect penalizes the performance23

indicated by the RMSE, and even more so for the relative RMSE (e.g. DoY24

= 76). However, the dispersion of the estimation characterized by CV remains25

relatively stable all along the season suggesting that the overall performance of26

the MODIS GAI is stable.27

9Note that this kind of errors are also expected from the MODIS side but these are

smoothed out in this case by the CSDM.

20
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[Figure 12 about here.]1

Pixel purity affects the performance as well. Figure 13 shows how the RMSE,2

its constitutive parts (B and S) and the coefficient of variation (CV ) vary3

for increasing pixel purity thresholds. As purity increases, the bias generally4

becomes more positive while the dispersion decreases. The reduction of S is5

easily understandable given the reduction of surface heterogeneity that pixel6

purity assures. The change in B results from the fact that SPOT convoluted7

estimations have the footprint of an ideal at-nadir simulation without gridding8

artefacts while the footprint of the MODIS estimations is affected by obscov and9

VZA, and is therefore potentially more contaminated with non-wheat GAI when10

π is low. For the same reasons as mentioned in section 4.1, more contamination11

(i.e. less purity) will result in lower GAI during the main growing season when12

wheat GAI is higher than the GAI of neighbouring surfaces.13

[Figure 13 about here.]14

The main objective of using MODIS is to provide crop specific GAI informa-15

tion at a regional level, i.e. the 40 × 40 km study area. To do so, the ensemble16

TSobs over the study area will be compared to the distribution of all points in17

the fine spatial resolution GAI map falling within the winter wheat mask. As18

it has been mentioned above, there is bias between MODIS and SPOT GAI19

estimations which is variable according the time of acquisition of the SPOT im-20

agery. Since the objective here is to assess the performance of the GAI obtained21

from MODIS, and not from SPOT, the bias for each SPOT GAI map compared22

to the concurrent MODIS estimation is removed from the entire map prior to23

estimating the regional range of GAI. Figure 14 summarizes the comparison at24

regional level by showing the boxplots of the SPOT GAI distributions overlayed25

over the ensemble of MODIS time series above 85% of crop specific purity be-26

fore and after the bias correction. A visual assessment of the spatial correlation27

between the MODIS punctual GAI estimations and the corrected SPOT GAI28

maps is presented in figure 15. It reveals that the MODIS estimations not only29

21
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grasp the inter-field variability reasonably well, but they can also characterize1

more subtle intra-field spatial differences over the larger fields.2

[Figure 14 about here.]3

[Figure 15 about here.]4

To further evaluate how representative the MODIS estimations are with re-5

spect to the regional behaviour of all fields, the bias correction between SPOT6

and MODIS is done based on pixels selected with various increasing π thresh-7

olds. Table 4 resumes the RMSE for the estimation of different percentiles of8

the regional GAI with different levels of purity. The RMSE between both es-9

timations of the median values is better for 85% purity than 95% suggesting10

that an overly harsh purity threshold might not be desirable to characterize the11

general GAI dynamic.12

[Table 4 about here.]13

5. Discussion14

The results demonstrate that, by controlling pixel-target adequacy, it is pos-15

sible to characterize both the spatial range and temporal dynamics of crop16

specific GAI at a regional scale with coarse spatial resolution imagery. The dif-17

ference in performance between MODIS and fine spatial resolution to estimate18

the median GAI over the 40 × 40 km study region can be reduced to an RMSE19

of 0.053 m2/m2 by filtering in the spatial and temporal dimensions using ap-20

propriate thresholds on pixel purity, obscov and VZA. These results confirm the21

robustness of the retrieval algorithm after training it over learning databases22

with the same radiative transfer parametrisation but applying it to different23

instruments. Furthermore, the MODIS GAI estimations are generally coherent24

with fine spatial resolution GAI maps at both inter-field and intra-field levels.25

The proposed approach can be generalized to other medium spatial resolu-26

tion instruments. Demonstrating the methodology on MODIS was a choice to27

22



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press. DOI : 10.1016/j.rse.2011.05.026 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

reach a large spectrum of potential users since MODIS data are widely used1

due to its easy availability and free access for the Earth observation commu-2

nity. However, MODIS was also chosen to demonstrate the applicability of the3

methods to data acquired with a complex acquisition geometry (whiskbroom4

configuration, wide scan angle, triangular PSF). It must be recognized that the5

target-support adequacy problems addressed in this paper are largely due to6

the artefacts brought by the gridding of MODIS observations in a raster grid7

(Tan et al., 2006; Kristof & Pataki, 2009). VZA and obscov are used as prox-8

ies of the adequacy between observation support and target. An alternative to9

avoid this problem has been proposed by (Kristof & Pataki, 2009) in which they10

re-process the raw MODIS data and instead of assigning the reflectance value11

to a raster grid cell, they assign it to vectors describing the observation foot-12

prints. Although this approach is bound to provide reflectance of higher quality,13

it is much more complex and computationally expensive, hindering its opera-14

tional use. Our approach has the advantage of being applicable to standard15

“off-the-shelf” pre-processed MODIS products which are widely used in the sci-16

entific community. The approach proposed here could also be applied to MERIS17

since it has been shown that pushbroom instruments also have gridding arti-18

facts which should be taken into account when looking at multi-temporal pixel19

entities (Gomez-Chova et al., 2011). Concerning the relevance of deploying such20

effort to control the spatial response of instruments which are nearing the end21

of their expected lifetime, it can be argued that both MODIS and MERIS will22

retain a significant importance as a long term record. Furthermore, the oper-23

ational successor of MODIS instruments, the VIIRS instrument which will be24

onboard of the NPOESS satellite, will have a similar whiskbroom configuration25

and slightly coarser spatial resolution (Miller et al., 2006).26

This experiment reveals that there is a bias between MODIS and SPOT GAI27

estimations that varies along the season, potentially indicating errors in the GAI28

derivation that may come from less accurate radiometric measurements of SPOT29

radiances as well as from the atmospheric correction or from the neural network30

biophysical algorithm. In this study, it was chosen to correct this bias based31

23
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on the temporal consistency of the GAI dynamic estimated by the instrument1

providing the highest observation repetitivity: MODIS. This is a fine illustra-2

tion of instrument complementarity whereby the high temporal resolution of3

Terra/MODIS assures the general trajectory and the high spatial resolution of4

SPOT/HRV(IR) could be used to estimate the local spatial heterogeneity of5

GAI. Such benefits of joint exploitation of data should be considered in design-6

ing future Earth observation missions. In this regards, much can be expected7

from the combination of the global coverage at 20 m every 5 days using Sentinel-8

2 platforms with the daily global coverage at 300 m of Sentinel-3. Before that, a9

better opportunity to combine high temporal repetitivity with high spatial reso-10

lution will come with the programmed PROBA-V satellite whose cameras allow11

the adquistion of data with 100 m spatial resolution approximately every 5 days12

and daily data at 300 m. Before these future missions become operational, GAI13

could be derived from wide swath imagery with high spatial resolution such as14

AWiFS or DMC using a similar neural network approach, and such GAI estima-15

tion could be used to asses the sub-pixel spatial heterogeneity of coarse spatial16

resolution GAI over large geographic coverages. A pre-requisite is to have an17

information on the spectral response of these instruments which unfortunately18

is not always simple to obtain.19

Before extending the approach described here to other agricultural sites, it20

is necessary to consider some technical issues. For instance, the selection of21

thresholds for pixel purity, VZA and obscov limits the number of available GAI22

estimations and ultimately impacts the accuracy of the overall result. It has23

been shown that a judicious thresholds on VZA and obscov improves the tem-24

poral consistency of the estimations (section 4.2) while spatial filtering based25

on pixel purity is necessary to avoid affecting the regional GAI characterization26

(section 4.1). However, the threshold values proposed here should not neces-27

sarily be transposed to other study sites. The value of VZA and obscov as28

proxies of target-observation adequacy will vary with landscape fragmentation29

and crop rotation. Instead threshold choices should be reasoned with respect to30

data availability (which is dependent on cloud coverage). In this respect, it has31

24
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been shown that using both VZA and obscov in a non-exclusive way enables1

to conserve more GAI estimations than combined exclusive thresholds without2

compromising the accuracy. Perhaps further improvements could be achieved3

by assigning non-binary weights depending on favourable VZA and obscov val-4

ues instead of thresholding. However, the problem is then to choose the values5

for these weights. Concerning the choice of pixel purity thresholds, the analy-6

sis in section 4.1 provides insight into how it has to be reasoned according to7

time window of interest. The values obtained for maximum tolerable thresh-8

olds are to be considered in relative terms, as their absolute values will vary9

according to the choice of the statistical test used, its parametrization and the10

sub-sampling protocol that is employed. The temporal variation of this pixel11

purity threshold may be explained based on the variability of temporal GAI tra-12

jectories within the crop-specific mask, explaining the necessity of higher purity13

thresholds around the mid-season when winter wheat fields are less synchronised14

between each other. Later in the season, winter wheat fields are all back to low15

GAI, but surrounding summer crops have higher GAI which will contaminate16

GAI estimations unless high pixel purity values are selected. Since it would17

not be practical to change the threshold along the season, it seems appropriate18

to choose one assuring a good performance over most of the time window of19

interest, i.e. the window which would be more suitable for assimilating GAI20

into crop growth models. An upper limit for purity threshold could also be nec-21

essary if sampling within the larger fields biases the regional GAI estimation.22

In some landscapes such bias has been shown not to be present (e.g. Guissard23

et al., 2004). Over the study site, the analysis in section 4.1 does not detect that24

higher purity thresholds such as 95% provide biased estimations of the regional25

GAI. However, the results in table 4 do indicate that an overly harsh purity26

threshold is less appropriate to correctly characterize the regional distribution.27

The crop mask at fine spatial resolution is necessary to assure regional crop28

specific GAI estimation with MODIS. Constructing this mask will require fine29

spatial resolution imagery, which is precisely one of the drawbacks of the other30

methods to deal with heterogeneous surfaces: downscaling (Zurita-Milla et al.,31

25



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press. DOI : 10.1016/j.rse.2011.05.026 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

2009) and correcting the scaling bias (Garrigues et al., 2006a, 2008). However, to1

build a crop mask, imagery acquired at any time during the growing season will2

be useful whereas for the other approaches, the imagery should preferably fall3

when it GAI estimations are more critical, i.e. during the fast growing phase4

which often coincides with smaller acquisition success due to increased cloud5

cover. Another issue concerning the crop mask is that, throughout this study,6

it has been implicitly assumed that for the target crop intra-field and inter-field7

heterogeneity is much smaller than the heterogeneity between the target crop8

and other land cover types. In some agricultural landscapes, the differences9

might not be so important because there is much GAI variability within a same10

field, or because the crop is confounded with neighbouring vegetation. In such a11

case, the notion of crop specific pixel purity might have to be revisited, perhaps12

using a fuzzy mask instead of a crisp binary mask to characterize the landscape.13

The methodology presented here also calls for a relatively detailed model of14

the spatial response of MODIS in order to calculate pixel purity. Is is necessary15

to take the PSF into account or could a simple aggregation of the crop mask to16

a 250 m square pixel could be enough? This latter option is equivalent to mod-17

elling only the detector PSF with a square-wave function. Studies have shown18

that this simplified approach has an impact on land cover characterization that19

can be controlled by using a finer estimation of the instrument’s spatial response20

(Townshend et al., 2000; Huang et al., 2002). When seeking the coarsest ac-21

ceptable spatial resolution requirements for agricultural monitoring, Duveiller &22

Defourny (2010) found that these are systematically over-estimated when using23

a square PSF instead of a model composed of both optical and detector compo-24

nents of the instrument’s spatial response. Of course, the impact of modelling25

correctly the PSF on pixel purity is particularly important when the size of the26

observed objects are close to the size of the observation footprint.27

A final point of discussion needs to address the smoothing of GAI with the28

CSDM. It must be acknowledged that relating GAI growth and senescence ex-29

clusively to thermal time is a simplification since this dynamic can be strongly30

influenced by other factors such as nitrogen deficiency and pest attacks. How-31

26
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ever, it is very difficult to have enough a priori information on these other1

factors to take them into account over a large geographic extent using a more2

sophisticated crop growth model for instance. Taking a time frame based on3

temperature, one of the main drivers of plant physiological processes, is already4

a significant improvement compared to just measuring time in days which are5

much less relevant for the crops.6

6. Conclusion7

By taking winter wheat as an example, this paper demonstrates that crop8

specific GAI estimations retrieved from coarse spatial resolution imagery such9

as MODIS are adequate to characterize crop dynamics at a regional scale. To10

achieve this, it is necessary to control the degree at which the observation foot-11

prints of the coarse pixels fall within the crop-specific mask delineating the tar-12

get. This control is done by filtering out less reliable GAI estimations in both13

the spatial and temporal dimensions using thresholds on pixel purity, obscov14

and VZA which were determined for this study.15

The experiment has also demonstrated the possibility to retrieve coherent16

GAI estimates from different data with different scales using the same technique17

involving radiative transfer modelling and neural networks. Some shortcomings18

of the retrieval do exist, as revealed by the variable bias between high and19

coarse spatial resolution estimates at the different studied dates. However, these20

deviations can be corrected in a fine example of instrument complementarity21

whereby the high temporal resolution assures the general GAI trajectory and the22

high spatial resolution can be used to estimate the local spatial heterogeneity.23

The concern of assuring pixel-target adequacy, widely addressed in this pa-24

per, is not limited to GAI nor agricultural monitoring. The proposed approach25

could indeed be used for any other application in which the output can be based26

on a subset of pixel samples within the scene. Although technological improve-27

ments are bound to provide finer spatial resolution data with more frequent28

revisit times, pixel-target adequacy will remain important for various remote29

27
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sensing application because once the technology arrives, users will naturally be1

inclined to look closer, more frequently and with more detail.2
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Figure 1: Effects contributing to the MODIS spatial response in the level 2 products: (left) the
along scan image motion causes the squared detector point spread function (PSF) to become
triangular when integrated during the time necessary to record one measurement; (centre)
there is not a complete overlap between the observation footprint and the grid; and (right)
the size of the observation support increases with the view zenith angle in the along scan
direction.
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Figure 2: Estimated probability density functions of observation coverage (obscov) over the
entire MODIS tile where the study site is located (tile H19V04) for each MODIS orbit. The
sequence of the orbit numbers corresponds to the 16 consecutive days in the revisit cycle. On
each subplot, the function of the given orbit (dark continuous line) can be compared to the
mean observation coverage probability density function (light grey dashed line) covering the
entire 16-day revisit cycle.
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Figure 3: Example of the spatial variation of observation coverage (obscov) for a 200 × 200
pixel area. The value of obscov is displayed according to the grey scale
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Figure 4: Flowchart to produce comparable GAI products from SPOT and MODIS imagery.
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Figure 5: Schematic representation of the construction of the MODIS net point spread function
based on the convolution of the optical with the scan PSF.
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Figure 6: Spatial response (net point spread function) model of MODIS. Distances are calcu-
lated in meters from the centre of the observation footprint
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realized by the MODIS calibration support team (http://mcst.gsfc.nasa.gov/).
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Figure 8: Effect of increasing pixel purity selection thresholds (π) on the difference (δ) between
median GAI from the original GAI maps and the convolved GAI maps for different dates
(represented in increasingly lighter shades of grey).

44



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press. DOI : 10.1016/j.rse.2011.05.026 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

60 80 100 120 140 160 180
40

50

60

70

80

90

100

Day of Year

P
ix

el
 p

ur
ity

 th
re

sh
ol

d 
(π

) 
[%

]

 

 
δ = 0.05
δ = 0.10
δ = −0.05
δ = −0.10

60 80 100 120 140 160 180

−0.1

−0.05

0

0.05

0.1

0.15

Day of Year

δ 
[m

²/
m

²]

 

 
π = 75%
π = 85%
π = 95%
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number of curves in figure 8 which cross the different δ thresholds.
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Figure 10: Combined effect of thresholds of a maximum VZA and a minimum obscov on
(a) the percentage of estimations, (b) the relative RMSE and (c) the coefficient of variation
between at nadir simulated MODIS time series and observed MODIS time series.
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Figure 11: Comparison of the GAI values obtained from MODIS real values and temporally
smoothed simulations of at nadir GAI based on SPOT high spatial resolution GAI maps.
The contour plots of the 2-D distribution for all available points (top left) and for subsets
according to VZA and obscov thresholds indicated above the figures.
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Figure 12: Statistical indicators comparing the performance of temporally smoothed MODIS
GAI estimations against corresponding upscaled punctual SPOT GAI estimations. All MODIS
points had a crop specific pixel purity (π) above 75%. The bias indicates the difference of
MODIS estimations minus SPOT estimations.
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Figure 14: Boxplots of the SPOT GAI distributions overlayed over the ensemble of MODIS
time series above 85% of crop specific purity. On top, the SPOT GAI distributions can be
seen with their respective bias and on the bottom graph, the biased has been corrected. The
solid line depicts the median value of MODIS time series, while the dashed lines represent the
inter-quartile range (to be compared with the boxes).

50



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press. DOI : 10.1016/j.rse.2011.05.026 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

GAI = 0 GAI = 3 GAI = 6

Figure 15: Spatial comparison between high spatial resolution GAI maps from SPOT (in the
background) with MODIS GAI estimations (dots) for 3 different 7.2 × 7.2 km zones at the
following days of year (from top to bottom): 76, 102, 123 and 144. The size of the dots relates
to the pixel purity of the MODIS estimations, with larger dots being purer than smaller ones
(only estimations above 75% pixel purity are shown). The images in the background are the
respective Red channel of the original SPOT imagery used to derive the GAI maps.
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Table 1: Details of the SPOT imagery used in this study to retrieve GAI. All images were
acquired in 2001.

Date DoY Platform/Instrument VZA SZA RAA

08–Mar 67 SPOT4/HRVIR2 19◦ 52.9◦ -51.7◦

13–Mar 72 SPOT4/HRVIR1 13◦ 50.7◦ -52.5◦

17–Mar 76 SPOT4/HRVIR2 19◦ 47.6◦ -239.7◦

04–Apr 94 SPOT2/HRV1 8◦ 41.6◦ -52.7◦

12–Apr 102 SPOT4/HRVIR1 20◦ 37.3◦ -239.4◦

19–Apr 109 SPOT4/HRVIR1 29◦ 37.3◦ -45.2◦

02–May 122 SPOT1/HRV1 20◦ 32.3◦ -46.9◦

03–May 123 SPOT4/HRVIR2 15◦ 30.3◦ -236.5◦

09–May 129 SPOT4/HRVIR2 8◦ 29.8◦ -48.6◦

17–May 137 SPOT1/HRV1 2◦ 27.5◦ -49.8◦

24–May 144 SPOT4/HRVIR2 9◦ 25.7◦ -231.3◦

06–Jun 157 SPOT1/HRV1 20◦ 23.2◦ -234.3◦

13–Jun 164 SPOT4/HRVIR2 30◦ 22.3◦ -236.5◦
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Table 2: Statistics indicators and their definitions
Statistic Formula

Mean Absolute Error MAE = 1
N

∑N

i=1 |ẑi − zi|

Root Mean Square Error RMSE =
√

1
N

∑n

i=1 (ẑi − zi)
2

Bias B = 1
N

∑N

i=1 ẑi − zi

Standard Deviation S =
√

1
N

∑N

i=1(ẑi − zi −B)2

Relative Root Mean Square Er-
ror

RRMSE = 100× RMSE
z̄

Coefficient of variation CV = 100× S
z̄

N : number of observations; ẑ: satellite estimations

z: ground measurements

z̄: mean value of the ground measurements
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Table 3: Effect that filtering out some GAI estimations, from the entire available dataset Z,
has on temporal consistency of the GAI time series. Temporal consistency is evaluated by
comparing the selected values to the CSDM results. The different cases analysed here are:
the union of obscov and VZA constraints (z1 ⊂ Z : V ZA ≤ 24◦ ∪ obscov ≥ 0.36), their
intersection (z2 ⊂ Z : V ZA ≤ 24◦ ∩ obscov ≥ 0.36) and a set of randomly selected individual
GAI estimations (z3) with the same sample size as z1.

Case RMSE RRMSE B S n̄
Z 0.514 30.9% −0.013 0.521 30.3
z1 0.433 23.6% −0.084 0.420 13.2
z2 0.413 22.4% −0.055 0.397 7.1
z3 0.504 30.6% −0.014 0.510 13.2
z1† 0.355 19.2% −0.020 0.361 13.2
† CSDM fitted on z1 instead of on all Z points
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Table 4: RMSE between the estimation of the percentiles of the high spatial resolution GAI
distributions with the ensemble of coarse spatial resolution GAI time series when increasingly
harsh levels of pixel purity are selected to threshold the latter. In bold is the lowest RMSE
for estimating a given percentile.

Percentiles Pixel purity threshold

75% 80% 85% 90% 95%
2.5% 0.234 0.241 0.253 0.278 0.282
25% 0.161 0.137 0.109 0.087 0.079

50% 0.077 0.059 0.053 0.064 0.083
75% 0.140 0.139 0.144 0.144 0.149
97.5% 0.365 0.362 0.364 0.366 0.369
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