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Unknown-Input Observer Design for

Motorcycle Lateral Dynamics: TS Approach
Mohammed El-Habib Dabladji, Dalil Ichalal, Hichem Arioui,and Säıd Mammar

Abstract

In this paper, a nonlinear observer is designed in order to estimate the lateral dynamics of motorcycles.

A nonlinear model of motorcycle’s lateral dynamics is considered and is transformed in a Takagi-Sugeno

(TS) exact form. An unknown input (UI) nonlinear observer isthen designed in order to reconstruct the

state variables whatever the forward velocity variations.The observer convergence study is based on the

Lyapunov theory. The boundedness of the state estimation error is guaranteed thanks to the Input to State

Stability (ISS) property. The observer has been tested on a nonlinear multibody model.

Index Terms

Unknown input Observer, Two-Wheeled Vehicles, ISS, LMI.

1. INTRODUCTION

Riders are the most vulnerable drivers on road (20 times probability of fatal accidents). According to

the latest statistics from the French Agency for Road Safety, the mortality rate for riders of powered

single-track vehicles (PSTV) goes down more slowly than other types of vehicles (around1%), which

increases its share in total mortality, it is now approaching 24% (and 33% of injuries), for a part of

1.9% of road traffic [1]. This high rate mortality may be explained byseveral factors: first, motorcycles

are inherently unstable; there are less typical safety systems for motorcycles and those developed for

four-wheeled vehicles are not necessarily transferable for powered two-wheeled vehicles; finally, the

motorcycle economic market is less interesting. In this context, several research projects have been

initiated to address this need of preventive or active safety systems [2], [3].
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To propose solutions to this problem, it is important to knowthe relevant variables governing motorcycle

dynamics [4], [5]. This may be used later to know the maneuverability limits of these vehicles [6], [7]

and to propose either warning preventive [2], [8] or active safety systems [9]. For example, several driver

assistance systems like Anti-Lock and Combined Brake Systems(ABS/CBS) as well as Traction Control

Systems (TCS) aim at the stability of motorcycles in order to improve the safety. However, the stability

of motorcycles strongly depends on the roll angle. In this context, it is important to measure or estimate

accurately this dynamic state. In fact, in some cases (curvewarning), the limit velocity is depending on

the roll angles and the lateral forces [10].

Consequently, during a bend, roll angle and lateral forces are important for the stability of motorcycles.

These forces are necessary to guarantee the equilibrium of the vehicle when leaning and to stay into a turn

(and avoid overturning or skidding situations). If the requested lateral forces exceed the tire-road friction

(directly depend on the roll angles), the forces reach theirsaturation limit and the vehicle begins to skid

sideways. In this context, it is important to estimate the lateral forces to know the limit of maneuverability

of motorcycles and to avoid skidding.

However, the measurement by sensors of all states, inputs and parameters of the dynamics of motorcycle

is inconceivable. Indeed, there are several variables thatare difficult to measure for economic or technical

reasons (steering torque, roll angle, pneumatic forces, road adherence, etc.). Thus, it is necessary to

develop observers to estimate the states of motorcycle dynamics, to reconstruct rider’s actions and to

identify road features (slope, tilt, road adherence, etc.).

The state of the art of motorcycle observers is very limited. Indeed, the first observer estimating the

roll angle of a motorcycle dates back to 2004 [11]. Several studies have been proposed for estimating the

lateral dynamics; however, the steering dynamics has oftenbeen neglected: based on frequency separation

filtering [12], [13], Kalman filtering [14], [15], PMI observer [16] or TS observer [17]. These techniques

are developed under strict assumptions (neglect of the steering dynamics, neglect of tire-road contact,

etc.) and another limitation is their lack of robustness with respect to changes in the longitudinal velocity.

The estimate of the steering angle was treated in [18] where a Linear Parameter Varying (LPV) observer

has been proposed for the control of a semi-active steering system for different longitudinal velocities.

However, the observer has been designed assuming a zero rollangle and no guarantee of convergence is

given for variations in the roll angle.

The estimation of the longitudinal dynamics has been less treated. One can cite an interesting work

[19], where an observer based controller using the Kalman filter has been proposed for the traction

control.

To the best of our knowledge, the simultaneous estimation ofthe lateral dynamics, the lateral forces
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and the steering dynamics was treated for the first time in [20]using the high order sliding mode

techniques for a constant longitudinal velocity; However,it turned to be not robust to changes in the

longitudinal velocity. An observer-based controller using TS techniques has been proposed in [21] under

the assumption of knowledge of the steering torque, which isnot obvious to measure.

The estimation of the lateral dynamics and lateral forces (without the knowledge of the steering torque)

has not been previously treated for time-varying longitudinal speeds. To take into account the time

variations in the longitudinal speed and some nonlinearities due to the high roll angle values, a nonlinear

model of motorcycles is considered and expressed in a quasi-LPV one and then transformed into a

Takagi-Sugeno (TS) form by following the sector nonlinearity approach [22]. This modelling approach is

interesting because it may represent the behavior of the nonlinear system in a large domain of operating

comparing to linear models. In addition, the simple structure of the TS models offers the possibility

to extend some synthesis and analysis tools from the rich domain of linear systems to nonlinear ones:

Lyapunov stability, Linear Matrix Inequalities (LMIs), etc.A nonlinear observer based on TS techniques

was proposed in [23] to estimate the lateral and steering dynamics but without the validation on a

motorcycle simulator or with real data. In addition, no robustness study was provided.

Based on the ISS property, a TS observer with UI decoupling is proposed to reconstruct the lateral

dynamics of motorcycles for a wide range of longitudinal velocities. Using the ISS concept, the bound-

edness of the state estimation errors is proven. In addition, the result is formalized as an optimization

problem under LMI constraints aiming to minimize the error bound for more accurate estimations.

The contributions of the paper are the following:

• The simultaneous estimation of the lateral dynamics and the lateral forces for time-varying longitu-

dinal velocities.

• The estimation is ensured without the knowledge of the steering torque.

• Simulation results are given for different scenarios on the well-known simulator of motorcycles

BikeSimbased on the nonlinear multibody model of Sharp [4].

This paper is organized as follows: section II is dedicated tothe motorcycle modeling, in section III,

details of the proposed observer are given with the proof of the convergence of the motorcycle states.

Finally, section IV provides some comparison results and discussions on the proposed observer.

2. MOTORCYCLE LATERAL DYNAMICS

This section highlights the different steps followed to obtain the TS model used by the observer. Firstly,

from the model proposed by Sharp in 1971 [24], a quasi-LPV model is obtained and transformed into a

TS model.
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2..1. Nonlinear model

The most important dynamics of motorcycle can be decomposed into In-Plane and Out-Of-Plane

dynamics [5]. The aim of this paper is the estimation of the Out-Of-Plane dynamics which consist

on the lateral and steering ones.

In this paper, the Out-Of-Plane dynamics of the motorcycle are modeled as detailed in Sharp’s 71

model [24]. The In-Plane dynamics are neglected and the longitudinal velocity is supposed constant or

varying slowly (to neglect the coupling between the longitudinal and lateral dynamics). The vehicle is

considered as a set of two rigid frames joined at the steeringaxis with freedom, restrained by a linear

steering damper (figure 1).

Mr

Mf

vx

vyFyf Fyr

δ, τ

φ

ψ

Fig. 1. Geometrical representation of the Sharp’s motorcycle model

The main frame is subject to lateral motion, roll motion and yaw motion and the front frame is subject

to steering motion. Thus, the obtained model has 4 degrees of freedom.

Considering the following assumptions:

Assumption 1:

• The aerodynamic forces are neglected.

• Movements due to the suspension are neglected.

• The rider is supposed rigidly attached to the main frame.

Under these assumptions, the motions of the motorcycle can be described by the following equations

(with ẋ and ẍ denote the first and second time-derivative ofx):

• Lateral motion

M(v̇y + ψ̇vx) +Mfkψ̈ + (Mf j +Mrh) φ̈+Mfeδ̈ = Fyf + Fyr (1)
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• Yaw motion

Mfk
(

v̇y + ψ̇vx

)

+ a2φ̈+ a3ψ̈ + a1δ̈ − a4vxφ̇−
ify
Rf

sin (ǫ)vxδ̇ = lfFyf − lrFyr (2)

• Roll motion

(Mf j +Mrh) v̇y + b2φ̈+ a2ψ̈ + b1δ̈ + b5vxψ̇ +
ify
Rf

cos (ǫ)vxδ̇ = b4 sin(φ)− b3 sin(δ) (3)

• Steering motion

Mfev̇y+ b1φ̈+a1ψ̈+ c1δ̈−
ify
Rf

cos (ǫ)vxφ̇+ c3vxψ̇+Kδ̇ = −b3 sin(φ)− c2 sin(δ)− ηFyf + τ (4)

where the parameters defined in the above equations are similar to ones given in [24] and are listed

in table I.

The lateral front and rear forcesFyf andFyr are considered in their linear form with relaxation. Note

that including the relaxation of the tire forces is important for the stability of the Sharp’s model. Of

course, the relaxation is important to take into account thewobble mode at high speeds [24]. The lateral

forces are modeled by the following set of equations:






σf

vx
Ḟyf = −Fyf − Cf1αf + Cf2γf

σr

vx
Ḟyr = −Fyr − Cr1αr + Cr2γr

(5)

where 





αf =
(
vy+lf ψ̇−ηδ̇

vx

)

− δ cos(ε)

αr =
(
vy−lrψ̇
vx

) (6)

and 





γf = φ+ δ sin(ε)

γr = φ
(7)

Considering the lateral forces in their linear form is not restrictive because the addressed scenarios are

limited to urban situations where the camber and slip anglesremains in the linear domain of the lateral

forces [25].

2..2. Quasi-LPV and TS models

In this subsection, the nonlinear model given in the subsection 2.1 will be transformed into a quasi-

Linear Parameter Varying (quasi-LPV) structure and after to a Takagi-Sugeno (TS) model. The definitions

of quasi-LPV and TS models can be found in [22], [26].

Now, from equations (1-7), the motorcycle lateral dynamicswill be modeled by the following state

space model:

Eẋ(t) = A(vx, sinc(φ), sinc(δ))x(t) + Bτ(t) (8)
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TABLE I

MOTORCYCLE DYNAMICS VARIABLES

Motorcycle lateral dynamics parameters

vx, vy longitudinal and lateral velocities

φ, ψ, δ roll, yaw and steering angles

Fyf , Fyr front and rear lateral forces

τ steering torque

Mf , Mr , M mass of the front frame, the rear frame and the whole motorcycle

j, h, k, e, lf , lr linear dimensions (see Sharp’s model [24])

ify, iry polar moment of inertia of front and rear wheels

Rf , Rr radius of front and rear wheels

ǫ caster angle

K damper coefficient of the steering mechanism

η mechanical trail

Ifx, Irx front and rear frame inertias aboutX axis

Ifz, Irz front and rear frame inertias aboutZ axis

Crxz rear frame product of inertia w.r.t.X andZ axis

g acceleration due to gravity

Zf front vertical force

Cf1, Cr1 front and rear tire cornering stiffness

Cf2, Cr2 front and rear tire camber stiffness

σf , σr coefficients of relaxation of the front and rear pneumatic forces

αf , αr front and rear slip angles

γf , γr front and rear camber angles

expressions ofai, bi andci

a1 =Mfek + Ifz cos(ǫ), a2 =Mf jk − Crxz + (Ifz − Ifx) sin(ǫ) cos(ǫ), a3 =Mfk
2 + Irz + Ifx sin

2(ǫ) + Ifz cos
2(ǫ)

a4 = −

(

ify

Rf
+

iry

Rr

)

, b1 =Mfej + Ifz sin(ǫ), b2 =Mf j
2 +Mrh

2 + Irx + Ifx cos
2(ǫ) + Ifz sin

2(ǫ)

b3 = ηZf −Mfeg, b4 = (Mf j +Mrh)g, b5 =Mf j +Mrh+
ify

Rf
+

iry

Rr
, c1 = Ifz +Mfe

2

c2 = −(ηZf −Mfeg) sin(ǫ), c3 =Mfe+
ify

Rf
sin(ǫ)

where:x(t) = [φ(t), δ(t), vy(t), ψ̇(t), φ̇(t), δ̇(t), Fyf (t), Fyr(t)]
T .

E =





































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 M e34 e35 e36 0 0

0 0 e34 e44 e45 e46 0 0

0 0 e35 e45 e55 e56 0 0

0 0 e36 e46 e56 e66 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





































, B =





































0

0

0

0

0

1

0

0




































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andA(vx, sinc(φ), sinc(δ)) =











































0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 a34.vx 0 0 1 1

0 0 0 a44.vx a45.vx a46.vx a47 a48

a51.sinc(φ) a52.sinc(δ) 0 a54.vx 0 a56.vx 0 0

a61.sinc(φ) a62.sinc(δ) 0 a64.vx a65.vx a66 a67 0

a71.vx a72.vx a73 a74 0 a76 a77.vx 0

a81.vx 0 a83 a84 0 0 0 a88.vx











































The parametersaij and eij can easily be deduced from equations (1-7). sinc(x) is the cardinal sine

function and is defined by:

sinc(x) =







1 if x = 0

sin(x)
x

if x 6= 0
(9)

In the previous state-space model, the longitudinal velocity is considered as a linear varying parameter,

because it is written in a linear form in the state matrixA. The nonlinearity corresponding to the steering

angle sin(δ) is approximated byδ because of the low values of the steering angle (less than5◦). The

nonlinearities considered here are sinc(φ) andvx.

SinceE is non-singular and under the assumption of low values of thesteering angle, the model given

by equation (8) can be written in a quasi-LPV form as follows:

ẋ(t) = A(ρ)x(t) +Bτ(t) (10)

where:ρ = (vx, sinc(φ))T , A(ρ) = E−1A(vx, sinc(φ), 1) , B = E−1B

From the well-known sector nonlinearity approach [22], the quasi-LPV model can be written in an exact

TS representation with 4 sub-models (because, there are 2 varying parameters). Indeed, the scheduling

variables, also called premise variables in TS systems, are:

z1 = vx , z2 = sinc(φ) (11)

The longitudinal velocity is considered time-varying fromvmin to vmax and the roll angle is considered

having a maximal valueφmax. Indeed, the bounds of the premise variables are:

vmin ≤ z1 ≤ vmax , sinc(φmax) ≤ z2 ≤ 1 (12)

From the well-known sector nonlinearity approach, a TS model is obtained as follows:

ẋ(t) =

4∑

i=1

µi(ρ)Aix(t) +Bτ(t) (13)

where:Ai = A(ρi), andρ1 = (vmin, 1)
T , ρ2 = (vmax, 1)

T , ρ3 = (vmin, φmax)
T andρ4 = (vmax, φmax).
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The variablesµi(ρ) are called the weighing functions and they must satisfy the following convex sum

property: 





0 ≤ µi(vx, sinc(φ)) ≤ 1
∑4

i=1 µi(vx, sinc(φ)) = 1
(14)

The variablesµi(ρ) are computed as follows:






h11 = vmax−z1
vmax−vmin

, h12 = z1−vmin

vmax−vmin

h21 = z2−sinc(φmax)
1−sinc(φmax)

, h22 = 1−z2
1−sinc(φmax)

(15)







µ1 = h11.h21 , µ2 = h12.h21

µ3 = h11.h22 , µ4 = h12.h22
(16)

In most cases, the roll and yaw rates are considered measurable thanks to gyroscopic sensors. The

longitudinal velocity is also measurable. The steering angle and its time-derivative can be obtained with

optical sensors. Moreover, conventional accelerometers allow us to measure the lateral acceleration which

corresponds to the sum of lateral forces divided by the mass of the vehicle and the rider as follows:

May = Fyf + Fyr.

Indeed, the measurements’ vector is given by the following equation:

y(t) =
[

δ(t) , ψ̇(t) , φ̇(t) , δ̇(t) , ay

]T

=

[

δ(t) , ψ̇(t) , φ̇(t) , δ̇(t) ,
(Fyf + Fyr)

M

]T

= Cx(t) (17)

with: C =














0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1
M

1
M














Remark 1:The observer will be designed on the use of the Sharp’s 71 model according to some simpli-

fications, like neglecting the suspension and assuming only very low accelerations. If these simplifications

are not satisfied, the model will have more nonlinearities andadditional states. This case may make the

optimization problem under LMI constraints more difficult to solve. The observer will be designed based

on ISS construction and its robustness towards many of these modeling imperfections will be studied in

section 3.3.

Remark 2:In comparison to [21], in the present manuscript the relaxation of the tire forces is included.

The relaxation allows to take into account some characteristics associated with high speeds like the wobble
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mode [24]. In addition, from a theoretical point of view, if the relaxation of the tire forces is included,

the nonlinearity 1
vx

in the quasi-LPV model vanishes and a model with 2 nonlinearities will obtained

instead of 3 in [21]. Consequently, the TS model will have(22 = 4) sub-models instead of(23 = 8) and

the optimization problem under LMI constraints will be less conservative.

Remark 3:The accelerometers and gyroscopes mounted on motorbikes measure the accelerations and

the angular rates of the body-fixed frame of the vehicle. Consequently, the real accelerations and angular

rates will be affected by the roll angle. If the effect of the roll angle in the measure of the acceleration

and the angular rates is considered, the vector of measures(y(t) = C(ρ)x(t)) will be nonlinear (coupled

with other states). Consequently, the output matrixC(ρ) must be considered in a quasi-LPV form and it

will be more difficult to satisfy the equality (41) in what follows. This issue has not been addressed in

the proposed work and authors may refer to [27] for the observation of such systems.

If the pitch angle is neglected, the accelerations given by the accelerometer in the Y and Z axis in the

body-fixed with respect to the real accelerations can be approximated by:

aybf = ay cosφ− g sinφ

azbf = −ay sinφ− g cosφ (18)

In what follows, when body-fixed sensors are considered, the lateral acceleration is approximated by:

ay = sign(aybf )

√
∣
∣
∣a2ybf + a2zbf − g2

∣
∣
∣ (19)

3. OBSERVER DESIGN

In the design of the proposed observer, the ISS property is used and defined as:

Definition 1: [28] Given a system:

ẋ(t) = f(x(t), w(t)) (20)

The system (20) verifies the ISS if there exists aKL function βKL : Rn × R −→ R and aK function

βK : R −→ R such that for each inputw(t) satisfying‖w(t)‖
∞
< ∞ and each initial conditionsx(0),

the trajectory of (20) associated tox(0) andw(t) satisfies

‖x(t)‖2 ≤ βKL (‖x(0)‖ , t) + βK (‖w(t)‖
∞
) (21)

ClassKL andK functions are as defined in [29].

The proposed paper deals with the Unknown Input (UI) observers for quasi-LPV systems written in

a TS form. In this context, the ISS property will be formulated as an optimization problem under LMI

conditions. The following lemma is used in the proof of the observer convergence study.
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Lemma 1:Consider the continuous-time TS system:






ẋ(t) =
∑r

i=1 µi(ρ)(Aix(t) +Biu(t))

= A(ρ)x(t) +B(ρ)u(t)
(22)

The system (22) verifies the following ISS property with the minimal ISS gainϕ2:

‖x(t)‖2 ≤ ϕ1. ‖x(0)‖2 e
−

αt

2 + ϕ2. ‖u(t)‖∞ (23)

if there exist positive scalarsα and γ and a symmetric positive definite matrixQ with minimal and

maximal Eigenvaluesχ1 andχ2 such that the following optimization problem under LMI conditions is

satisfied fori = 1, . . . , r:

min
Q,Mi,γ

γ (24)

s.t.

χ1I ≤ Q (25)




ATi Q+QAi + αP QBi

BT
i Q −γI



 < 0 (26)

with ϕ1 =
√

χ2

χ1

, ϕ2 =
√

γ
αχ1

andχ1I ≤ Q ≤ χ2I

LMI conditions (25, 26) are sufficient to satisfy the ISS property, and the minimization ofγ in (24)

allows the minimization of the ISS gainϕ2.

The procedure to solve this optimization problem begins by imposing α and χ1 and solving the

optimization problem (24) under the LMI conditions (25, 26).If, no solution is found, one has to decrease

α or χ1.

Proof: By considering the following Lyapunov function:

V (t) = x(t)TQx(t) (27)

V (t) is a Lyapunov function means thatV (t) can be bounded as follows:

χ1. ‖x(t)‖
2
2 ≤ V (t) ≤ χ2. ‖x(t)‖

2
2 (28)

whereχ1 andχ2 are the minimal and maximal Eigenvalues of the matrixQ. Hence, the inequality

(25) must be checked to impose a minimal eigenvalue to the matrix Q.
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From the state system (22), by differentiating the Lyapunov (27) w.r.t. time, one obtains:

V̇ (t) = x(t)T
(
QA(ρ) +A(ρ)TQ

)
x(t) + 2x(t)TQB(ρ)u(t)

=




x(t)

u(t)





T 


QA(ρ) +A(ρ)TQ+ αQ QB

BTQ −γI





T 


x(t)

u(t)



− αx(t)TQx(t) + γu(t)Tu(t)

(29)

If the inequality (26) is satisfied for all1 ≤ i ≤ r, then the time-derivative of the Lyapunov function

will be bounded as follows:

V̇ (t) < −αx(t)TQx(t) + γu(t)Tu(t)

= −αV (t) + γu(t)Tu(t)

(30)

By integrating the last inequality w.r.t. from0 to t, it follows:

V (t) < V (0)e−αt + γ

∫ t

0
e−α(t−s) ‖u(s)‖22 ds

≤ V (0)e−αt +
γ

α
‖u(t)‖2

∞
(31)

Now, thanks to the inequality (28), one obtains:

‖x(t)‖22 <
χ2

χ1
‖x(0)‖22 e

−αt +
γ

αχ1
‖u(t)‖2

∞
(32)

The last inequality is equivalent to:

‖x(t)‖2 <

√
χ2

χ1
‖x(0)‖2 e

−
αt

2 +

√
γ

αχ1
‖u(t)‖

∞
(33)

This inequality proofs the ISS property of the system (22).

Sinceα andχ1 are imposed before solving the LMI problem, the minimizationof γ will ensure the

minimal bound of the ISS gain between the perturbation inputu(t) and the state vectorx(t).

Note that the ISS property is stronger than other stability properties likeL2 stability or the ISpS [30].

3..1. Observer structure

The objective of this section is to design an UI observer in order to reconstruct the lateral dynamics

of the motorcycle. The nonlinear observer has a quasi-LPV structure as well as the motorcycle lateral

dynamics model. The main two difficulties in the design of the observer are the lack of knowledge of

rider’s torque and the fact that the scheduling variables are partially unmeasurable.
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In this context, the following nonrestrictive assumptionsare considered:

Assumption 2:In what follows, it is supposed that:

• the state vectorx(t) and the input steering torqueτ(t) are considered bounded (stabilized motorcycle

case),

• rank(CB) = rank(B),

• the pair(A(ρ), C) is observable for allρ ∈ ([vmin, vmax]× [−φmax, φmax]) ⊂ R
2.

The first assumption holds in open-loop for a some longitudinalvelocities [24] and the motorcycle

is also assumed to be under rider control. The second and the third assumptions can easily be checked

numerically.

Let us consider the following nonlinear observer [31]:






ż(t) = N(ρ̂)z(t) + L(ρ̂)y(t)

x̂(t) = z(t)−Hy(t)
(34)

The vectorρ̂ = (v̂x, φ̂)
T may be different fromρ because the roll angleφ is not measured and the

longitudinal velocityvx may be affected by noises and perturbations.v̂x is the measured longitudinal

velocity obtained by a suitable sensor andφ̂ is the roll angle obtained from the observer. The matrices

N(ρ̂) ∈ R
n×n, L(ρ̂) ∈ R

n×ny , H ∈ R
n×ny of the observer are to be determined in such a way to have

the minimal bound of the estimation errors.n and ny are the dimensions of the state vector and the

output vector.

N(ρ̂) andL(ρ̂) have the same quasi-LPV form as the matrixA(ρ) and may be written in a TS form

as follows:

N(ρ̂) =

r∑

i=1

µi(ρ̂)Ni , L(ρ̂) =

r∑

i=1

µi(ρ̂)Li (35)

In what follows, it will be assumed that the weighing functionsµi(v̂x, x̂) always satisfy the conditions

given in (14). This assumption holds if the longitudinal velocity given by the sensor is considered between

the boundsvmin andvmax given for the TS system. Moreover, thesinc(.) function can always be bounded.

One can note that the proposed observer has been chosen for its simplicity. Others structures of

UI observers with adaptation of the UI estimation have been proposed. However, for non-constant UI,

conventional TS-PI (Proportional Integrator) type observers are not efficient, because the UI must be

constant [32]. Another structure of UI observer has been proposed in [23] with a PD adaptation law

of the UI. The proposed observer leads to easier LMIs constraints to solve compared to [23] because

there are fewer variables to be determined in the optimization problem. Also, in [23], there was an LME

condition (BP = F TC) combined with the LMI constraints. In the proposed work, theLME conditions
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are solved in a first step independently from the optimizationproblem under LMI constraints. Moreover,

the estimation error obeys to the ISS property, which is stronger than ISpS property obtained in [23].

According to equations (17, 34), the state estimation erroris given by:

e = x− x̂ = (I +HC)
︸ ︷︷ ︸

P

x− z (36)

From equations (10, 34, 36), the state estimation error obeysto the following differential equation:

ė(t) = PA(ρ)x(t) + PBτ(t)−N(ρ̂)z(t)− L(ρ̂)Cx(t)

= N(ρ̂)e(t) + (PA(ρ̂)−N(ρ̂)P − L(ρ̂)C)x(t) + PBτ(t) + Pζ(t) (37)

with ζ(t) = (A(ρ)−A(ρ̂))x(t)

3..2. Observer design and convergence study

Under the conditions:

PB = 0 (38)

PA(ρ̂)−N(ρ̂)P − L(ρ̂)C = 0 (39)

the estimation error dynamics will be reduced to:

ė(t) = N(ρ̂)e(t) + Pζ(t) (40)

Thanks to lemma 1, ISS performances can be obtained for the system (40). To obtain the observer

gains that satisfy the LME conditions (38, 39) and minimize the ISS gain between the perturbation vector

ζ(t) and the estimation error’s vectore(t) for the system (40), the following steps in the design approach

are followed.

First, the equality (38) leads to:

(I +HC)B = 0 ⇔ HCB = −B

⇔ H = −B(CB)+ (41)

where:(CB)+ =
[
(CB)T (CB)

]−1
(CB)T is the left pseudo-inverse of the matrix(CB).

After computing the matrixH, the matrixP is computed and replaced in the equality (39) which leads

to:

PA(ρ̂)−N(ρ̂)(I +HC)− L(ρ̂)C = 0 ⇔ PA(ρ̂)
︸ ︷︷ ︸

Γ(ρ̂)

−N(ρ̂)− (N(ρ̂)H + L
︸ ︷︷ ︸

K(ρ̂)

)C = 0

⇔ N(ρ̂) = Γ(ρ̂)−K(ρ̂)C (42)



14

Then, the state estimation error’s dynamics become:

ė(t) = (Γ(ρ̂)−K(ρ̂)C)e(t) + Pζ(t) (43)

From assumption 2, the termζ(t) is assumed bounded and will be seen in what follows as a perturbation

whose effect will be minimized.

Then, thanks to lemma 1 and to the boundedness ofζ(t), if there exists a positive definite matrixQ,

matricesKi and positive scalarsα, χ1 andγ such that for all1 ≤ i ≤ r:



(Γi −KiC)

TQ+Q(Γi −KiC) + αQ QP

P TQ −γI



 < 0 (44)

and

Q ≥ χ1I (45)

then, the system (43) is stable and verifies the ISS property:

‖e(t)‖2 ≤ ϕ1 ‖e(0)‖2 e
−

αt

2 + ϕ2 ‖ζ(t)‖∞ (46)

with ϕ1 =
√

χ2

χ1

, ϕ2 =
√

γ
αχ1

andχ1I ≤ Q ≤ χ2I

By consideringMi = QKi, the LMI condition (44) will be equivalent to the following:



ΓTi Q+QΓi − CTMT

i −MiC + αQ QP

P TQ −γI



 < 0 (47)

In order to minimize the ISS gain from the perturbation termζ(t) to the vector of estimation errors

e(t), the matricesKi andQ must be computed in order to minimize the ISS gain:ϕ2 =
√

γ
αχ1

. Since

α andχ1 are imposed before solving the optimization problem, the minimization ofϕ2 is equivalent to

the minimization ofγ.

The UI observer design procedure is summarized in the following steps:

1) verify the observability condition of the couple(A(ρ), C) and the rank condition(rank(CB) =

rank(B)).

2) compute the matricesH andP as follows:






H = −B(CB)+

P = I +HC
(48)

3) for some positive scalarsα andχ1, solve the optimization problem under LMI conditions given

by:

min
Q,Mi,γ

γ (49)
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s.t.

Q ≥ χ1I (50)



ΓTi Q+QΓi − CTMT

i −MiC + αQ QP

P TQ −γI



 < 0 (51)

with Γi = PAi

4) if the optimization problem does not accept a numerical solution, decreaseα or χ1 and repeat the

optimization problem under LMI constraints; else, go to the next step.

5) the gains of the observerN(ρ̂) andL(ρ̂) are computed as follows:

M(ρ̂) =
∑r

i=1 µi(ρ̂)Mi

Γ(ρ̂) =
∑r

i=1 µi(ρ̂)Γi

K(ρ̂) = Q−1M(ρ̂)

N(ρ̂) = Γ(ρ̂)−K(ρ̂)C

L(ρ̂) = K(ρ̂)−N(ρ̂)H

(52)

This ends the steps of the observer’s design.

3..3. Observer robustness study

In the previous subsection, motorcycle’s parameters have been considered well known and the observer

was designed on the use of the Sharp’s 71 model according to some simplifications. What about the

robustness of the observer if the model parameters are not exactly known or if the modeling simplifications

are not satisfied? In this case, the model of the motorcycle’s lateral dynamics may be written as follow:

ẋ(t) = (A(ρ) + ∆A(ρ))x(t) + (B +∆B)u(t) (53)

Now, let us consider the following observer:






ż(t) = N(ρ̂)z(t) + L(ρ̂)y(t)

x̂(t) = z −Hy(t)
(54)

The estimation error is always the same:

e = x− x̂ = (I +HC)
︸ ︷︷ ︸

P

x− z (55)

Then, the estimation error’s dynamics becomes:

ė(t) = N(ρ̂)e(t) + (PA(ρ̂)−N(ρ̂)P − L(ρ̂)C)x(t) + PBu(t) + Pζ1(t) (56)

with ζ1(t) = (A(ρ)−A(ρ̂))x(t) + ∆A(ρ)x(t) + ∆Bu(t) = ζ(t) + ∆A(ρ)x(t) + ∆Bu(t)
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The estimation errors’ dynamic (56) is similar to that obtained in the previous subsection in equation

(37). The difference lies in the perturbation vectorζ1(t) which includes the uncertainties on the matrix

A(ρ) andB. Then, the same previous study is performed in this case and the ISS performances are

always fulfilled.

In the nominal case where the parameters are considered exactly known, the estimation error was

bounded as follows:

‖e(t)‖2 ≤ ϕ1 ‖e(0)‖2 e
−

αt

2 + ϕ2 ‖ζ(t)‖∞ (57)

By analogy, in the uncertain case, the estimation error willbe bounded as follows:

‖e(t)‖2 ≤ ϕ1 ‖e(0)‖2 e
−

αt

2 + ϕ2 ‖ζ1(t)‖∞

≤ ϕ1 ‖e(0)‖2 e
−

αt

2 + ϕ2 (‖ζ(t)‖∞ + ‖∆A(ρ)x(t) + ∆Bu(t)‖
∞
) (58)

When t→ ∞, the estimation error will be bounded by the quantityϕ2 ‖ζ(t)‖∞, in the nominal case,

and by the quantityϕ2 (‖ζ(t)‖∞ + ‖∆A(ρ)x(t) + ∆Bu(t)‖
∞
), in the uncertain case. Consequently, the

accuracy of the observer will be better in the nominal case because the bounds of convergence are smaller.

4. RESULTS OF SIMULATION

The gains of the UI observer are computed from the equations (48 - 52) applied to the TS model given

in subsection II-B, where the numerical values of the matricesE, A andB are given in the annex. In the

optimization problem, the longitudinal velocity is considered varying from:vmin = 30km/h to vmax =

120km/h and the maximal roll angle:φmax = π/5 rad. The parameters used in the optimization problem

are chosen as follows:α = 1, χ1 = 10−6. The optimization problem under LMI and LME conditions is

solved using Yalmip toolbox under Matlab. The obtained ISS gain is aboutϕ2 =
√

γ
αχ1

= 0.2229. The

simulations are carried out on the well-known motorcycle’ssimulator:BikeSimbased on the nonlinear

multibody Sharp’s 2004 model [4].

For safety purposes and ADAS design, it is more interesting to estimate the lateral forces and the roll

angle rather than the steering dynamics. These states are considered as the main pertinent lateral variables

and only their estimations will be displayed in this paper.

Firstly, simulations are given for a double lane change maneuver and for different longitudinal velocities

profiles. After, a scenario of70s on 3km with a variable longitudinal velocity and lateral motions is

considered.

For a double lane change maneuver with a velocity ofvx = 100km/h, the results are depicted in

figure 2. For the same maneuver with a velocity ofvx = 50km/h, results of simulation are given in
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figure 3. For a double lane change maneuver under braking, the results are depicted in figure 4. The

steering angle and its estimation for the three scenarios are depicted in the figure 5.
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Fig. 2. Double lane change at100km/h. In blue: nonlinear multibody model and in red: estimation results.
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Fig. 3. Double lane change at50km/h. In blue: nonlinear multibody model and in red: estimation results.

Note that in the three scenarios, the roll angle and the lateral forces are well estimated. Of course,

there are some differences at the peak of the roll angle and the forces. This can be explained by modeling

errors due to linearization. The model used for the observer design does not take into account large roll
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Fig. 4. Double lane change with braking fromvx = 100km/h to vx = 50km/h. Top: in blue nonlinear multibody model and

in red estimation results. Bottom: longitudinal velocity profile
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Fig. 5. Steering angle and its estimation for: (left)1st scenario at100km/h, (center)2nd scenario at50km/h and (right)3rd

scenario with braking. In blue: steer angle and in red: its estimation
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angles. However, it still gives acceptable results in thesesituations. Moreover, even for a braking scenario

where the Sharp’s 71 model is not valid (the model does not takeinto account the longitudinal dynamics

or velocity variation), the simulation results remain acceptable.

Remark 4:The Sharp’s 71 model is a pure lateral motion model valid for different constant longitudinal

velocities. Indeed, the Sharp’s 71 model do not take into account the longitudinal dynamics (velocity

variation). Of course, when accelerating or braking, otherdynamics associated with the longitudinal

motions appear such as the load transfer between the two tires, the motions of the suspension and the

saturation of the lateral forces [4], [5].

In this context, the model used for the observer design is notvalid for acceleration or braking. Under

this limitation, good performances of the observer are still preserved.

Now, to assess the performances of the observer, the normalized errorǫz is computed for the estimation

of the different variables. The normalized error for a variable z is given by [33]:

ǫz =
100(‖zmes − zest‖)

max‖zmes‖
(59)

wherezmes is the measurement ofz andzest is its estimate provided by the observer.

The table II presents the maximum, the mean and the variance ofthe normalized errors for the different

scenarios.

TABLE II

NORMALIZED ERROR FOR A DOUBLE LANE CHANGE AND DIFFERENT VELOCITIES. (A) vx = 100km/h, (B) vx = 50km/h,

(C) BRAKING FROM 100km/h TO 60km/h

roll angle front lateral force rear lateral force

(A) (B) (C) (A) (B) (C) (A) (B) (C)

max(ǫz) (%)) 5.42 8.52 5.94 12.87 11.23 2.43 8.57 9.20 4.17

mean(ǫz) (%)) 1.49 2.24 1.90 3.06 2.42 0.50 1.91 1.98 1.04

std(ǫz) (%)) 1.52 2.60 1.76 3.58 2.98 0.51 2.23 2.50 1.03

In all the scenarios, the means of the normalized error for the roll angle and the lateral forces are less

than4%. So, it can be said that the estimation of the roll angle and lateral forces are good even under

soft acceleration.

Next, the robustness of the observer to the uncertainties inthe longitudinal velocity is tested. A scenario

of a constant longitudinal velocity of100km/h in a double lane change is considered. But, the observer

will be excited with a different constant longitudinal velocity (vx = 90km/h). In this case, the results are

given in figure 6. Despite modeling and longitudinal velocityuncertainties, the estimation error dynamics
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still have ISS performances and the observer ensures a good estimation of the roll angle and the lateral

forces.
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Fig. 6. Double lane change at100km/h. In blue: nonlinear multibody model, in red: estimation results with the false longitudinal

velocity vx = 90km/h.

The robustness of the observer to the parameters uncertainties is now tested. To this end, the mass of

the vehicle and the rider are increased by46kg equivalent to an increase of17% and the caster angle is

decreased by10%. The results of simulation are given in figure 7. From simulationresults, one can state

that the performances of the observer are preserved even in the presence of parametric uncertainties.

The robustness of the observer is also tested with respect to uncertainties in the road friction coefficient.

To this end, two cases for the double lane change maneuver at100km/h are considered and compared.

In the first case, the road friction coefficient varies suddenlyfrom β = 1 (dry asphalt) to0.7 (moderately

wet road); and in the second case, it varies fromβ = 0.7 to 0.4 (very wet road). The results of roll

angle estimation are given in figures 8 and 9 and the maximum, the mean and the variance of normalized

estimation errors are given for the roll angle and the lateral forces in table III.

Remind that the observer was designed using Sharp’s 1971 model where the tire coefficientsCfi and

Cri were computed for a nominal case withβ = 0.85. From figure 8, the effect of the sudden variation

of the road friction coefficient is more notable for the secondcase fromt = 3.6s. Indeed, in the first

case, the road friction coefficient varies fromβ = 1 to β = 0.7 which are close to the coefficient used for

the observer design (β = 0.85). However, the road friction coefficient in the second case ismuch more

different from the nominal road friction coefficient. From figures 8 and 9 and table III, one can see that
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Fig. 7. Double lane change at100km/h. In blue: nonlinear multibody model with vehicle’s mass increased by17% and caster

angle decreased by10%, in red: estimation results

the observer gives the better estimation for the case whereβ = 0.85 where the maximal values of the

normalized errors are the lowest. However, even with variations of the road adherence, the means and

the variances of these errors are always lowers than4% which confirms the robustness of the observer

to road friction variations.

TABLE III

NORMALIZED ERROR FOR A DOUBLE LANE CHANGE AND DIFFERENT ROAD ADHERENCE PROFILES. (A) β = 0.85, (B) β

VARIES FROM1 TO 0.7, (C) β VARIES FROM0.7 TO 0.4

roll angle front lateral force rear lateral force

(A) (B) (C) (A) (B) (C) (A) (B) (C)

max(ǫz) (%)) 5.42 7.88 12.14 12.87 14.94 16.54 8.57 8.66 8.95

mean(ǫz) (%)) 1.49 1.51 1.59 3.06 3.79 3.81 1.91 2.54 3.81

std(ǫz) (%)) 1.52 1.55 1.72 3.58 4.15 3.25 2.23 2.71 3.49

For the double lane change, the final scenario considered is with a high deceleration of the motorbike

(−0.5g) which is accompanied with a strong deformation of the suspension. The rider decelerates from

100km/h to 10km/h in 6s. The results of simulation of this case are given in the figure 10. In this

case, the assumptions considered for modeling are largely violated. There is a high transfer of mass

between the two wheels and a strong coupling between the longitudinal and lateral forces. Consequently,

the lateral forces are not well estimated, but the ISS performances are still guaranteed and the estimation
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Fig. 8. Double lane change at100km/h with change in road friction coefficient. In blue: nonlinear multibody model;and in

red: estimation results. Above: first case. Below: second case.
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Fig. 9. Double lane change at100km/h with change in road friction coefficient. In blue: nonlinear multibody model;and in

red: estimation results. Above: first case. Below: second case.
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of the roll angle is right.
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Fig. 10. Double lane change with a high deceleration. In blue: nonlinear multibody model, and in red: estimation results.

The final test is carried out in a traffic scenario where the longitudinal velocity varies between30km/h

and 90km/h. To assess the observer in the presence of measurement noise, it is assumed that the

measurement signals are affected by centered and random noises with magnitude of5% of the maximal

value of the measured variables. Moreover, to take into account the effect of the roll angle on the measure

of accelerations and angular rates, realistic sensors giving the acceleration and the angular rates in the

body-fixed frame of the vehicle are considered. In addition, to study the influence of unevenness of the

road on the observer accuracy, the elevation and the bankingof the road are considered variables. Their

graphs are given in figure 11. The results of simulation are given in figures 12 and 13. From these figures,

good results may be seen for roll angle and lateral forces estimations for a realistic scenario with different

velocities and unevenness of the road.

One of the questions that should be asked about these resultsis: are the tires nonlinearities excited

in this scenario? To answer this question, figure 14 shows the normalized lateral forces as function of

rear side-slip angle and front and rear camber angles (the effect of front side-slip angle is not shown

because it is negligible in this scenario). From figure 14, it isvisible that this scenario does not excite

the tire’s nonlinearities. But at the same time, these nonlinearities have not been taken into account

in the observer design. One of the perspectives for future works is to propose an observer that takes
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Fig. 11. A traffic scenario of3km. Left: centerline elevation. Right: centerline trajectory
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Fig. 12. A traffic scenario of3km. In blue: nonlinear multibody roll angle, in red: estimation of the roll angle
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Fig. 13. A traffic scenario of3km. In blue: nonlinear multibody lateral forces, in red: estimation of the lateral forces

into account these nonlinearities. In this new case, a quasi-LPV model (equation (10)) with more than 2

varying parameters (equation (11)) should be obtained. But, there should be no certainty on the feasibility

of the LMI problem.

Remark 5:Since the estimation of the lateral forces has never been addressed and tested on a real

platform or on a multibody simulator for different longitudinal velocities, only roll angle estimation

performances are discussed and compared with some other works. To this end, the root mean squared

error (RMSE) is used to compare the roll angle estimation performances of the proposed work with the

results obtained in [34]. The results are summarized in the table IV.

TABLE IV

RMSE RESULTS FOR THE ESTIMATION OF THE ROLL ANGLE.

method RMSE

Vision system 2.24

IMU - Kalman filter 2.01

Mean vision/IMU 1.20

Proposed observer with ideal sensors 1.28

Proposed observer with realistic sensors1.85
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Fig. 14. (Left) Front lateral force vs. front camber angle. (Medium) Rear lateral force vs. rear side-slip angle. (Medium) Rear

lateral force vs. rear camber angle.

From the RMSE results, it is seen that the performances of the proposed observer are nearly the

same to the combined vision/Inertial Measurement Unit (IMU) method proposed in [34] if the lateral

acceleration and the angular rates are exactly known. In thecase of realistic sensors with no prior

treatment, the estimation of the roll angle remains better than the two first methods. The main advantage

of the proposed UI observer is the no-need of a vision system required in [34]. Moreover, in addition to

the roll angle, the proposed observer allows also the good estimation of the lateral forces.

5. CONCLUSION

The present paper deals with the estimation of the lateral dynamics of motorcycles not for specific

longitudinal velocities but for a wide range of forward velocities. Firstly, the quasi-LPV model is

simplified to a TS model. Then, a Takagi-Sugeno Unknown Input nonlinear observer is proposed to

estimate the motorcycle lateral dynamics. The proof of convergence is guaranteed for a wide range of

longitudinal velocities.

Simulations are carried out on a nonlinear multibody model and the results are good for several

scenarios and even when the longitudinal velocity or the motorcycle’s parameters are not well known.

The proposed observer gives an interesting economic solution because it allows the estimation of the
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roll angle with only an Inertial Measurement Unit and an optical encoder. Another technical solution

proposed in this paper is the estimation of the lateral forces which are very hard to measure.

In future works, it is interesting to include additional available sensors like vision sensors to improve

the obtained results. Another perspective is to take into account the geometry of the road which has been

considered flat in this paper.
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APPENDIX

TABLE V

NUMERICAL VALUES OF SHARP’ S MOTORCYCLE MODEL

Numerical values

M = 274.4 , e34 = 61.97 , e35 = −157.5 , e36 = 1.458 , e44 = 71.8 , e45 = −29.3 , e46 = 1.391 , e55 = 122.1

e56 = −1.496 , e66 = 0.543 , a34 = −274.4 , a44 = −61.96 , a45 = −3.87 , a46 = 0.679 , a47 = 0.95

a48 = −0.42 , a51 = 1545 , a52 = −89.8 , a54 = 161.4 , a56 = 1.567 , a61 = −89.8

a62 = 36.53 , a64 = −2.136 , a65 = −1.525 , a66 = −12.67 , a67 = −0.0489 , a71 = −5282

a72 = 104503 , a73 = −112042 , a74 = −106440 , a76 = 5481 , a77 = −5 , a81 = −2592 , a83 = −88283

a84 = 37078 , a88 = −5
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