N

N

Unknown-Input Observer Design for Motorcycle Lateral
Dynamics: TS Approach
Mohammed El-Habib Dabladji, Dalil Ichalal, Hichem Arioui, Said Mammar

» To cite this version:

Mohammed El-Habib Dabladji, Dalil Ichalal, Hichem Arioui, Said Mammar. Unknown-Input Observer
Design for Motorcycle Lateral Dynamics: TS Approach. Control Engineering Practice, 2016, 54,
pp.12-26. 10.1016/j.conengprac.2016.05.005 . hal-01317164

HAL Id: hal-01317164
https://hal.science/hal-01317164
Submitted on 18 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01317164
https://hal.archives-ouvertes.fr

Unknown-Input Observer Design for

Motorcycle Lateral Dynamics: TS Approach

Mohammed El-Habib Dabladiji, Dalil Ichalal, Hichem Arioand S& Mammar

Abstract

In this paper, a nonlinear observer is designed in ordertbmate the lateral dynamics of motorcycles.
A nonlinear model of motorcycle’s lateral dynamics is cdesed and is transformed in a Takagi-Sugeno
(TS) exact form. An unknown input (Ul) nonlinear observettisn designed in order to reconstruct the
state variables whatever the forward velocity variatiortse observer convergence study is based on the
Lyapunov theory. The boundedness of the state estimationisrguaranteed thanks to the Input to State

Stability (ISS) property. The observer has been tested oonéinear multibody model.

Index Terms

Unknown input Observer, Two-Wheeled Vehicles, ISS, LMI.

1. INTRODUCTION

Riders are the most vulnerable drivers on road (20 timesaitity of fatal accidents). According to
the latest statistics from the French Agency for Road Safbgy,nortality rate for riders of powered
single-track vehicles (PSTV) goes down more slowly than otipeg of vehicles (aroun@%), which
increases its share in total mortality, it is now approaghitd% (and 33% of injuries), for a part of
1.9% of road traffic [1]. This high rate mortality may be explained sBveral factors: first, motorcycles
are inherently unstable; there are less typical safetyesystfor motorcycles and those developed for
four-wheeled vehicles are not necessarily transferablep@wered two-wheeled vehicles; finally, the
motorcycle economic market is less interesting. In thistext several research projects have been

initiated to address this need of preventive or active gafgstems [2], [3].

The authors are with Informatique, Biologie &gtrative et Sygmes Complexes Laboratory, Evry Val d’Essonne University,
91020 Evry, France

E-mail: habib.dabladji@ibisc.univ-evry.fr

Fax: +33 1 69 47 06 03



To propose solutions to this problem, it is important to krtberrelevant variables governing motorcycle
dynamics [4], [5]. This may be used later to know the maneubikitya limits of these vehicles [6], [7]
and to propose either warning preventive [2], [8] or actiafety systems [9]. For example, several driver
assistance systems like Anti-Lock and Combined Brake SystaBS/CBS) as well as Traction Control
Systems (TCS) aim at the stability of motorcycles in order torowup the safety. However, the stability
of motorcycles strongly depends on the roll angle. In thistext, it is important to measure or estimate
accurately this dynamic state. In fact, in some cases (cwar@ing), the limit velocity is depending on
the roll angles and the lateral forces [10].

Consequently, during a bend, roll angle and lateral forcesmaportant for the stability of motorcycles.
These forces are necessary to guarantee the equilibriune @ktiicle when leaning and to stay into a turn
(and avoid overturning or skidding situations). If the resgied lateral forces exceed the tire-road friction
(directly depend on the roll angles), the forces reach thatinration limit and the vehicle begins to skid
sideways. In this context, it is important to estimate therk forces to know the limit of maneuverability
of motorcycles and to avoid skidding.

However, the measurement by sensors of all states, inpdisarameters of the dynamics of motorcycle
is inconceivable. Indeed, there are several variablesatteadifficult to measure for economic or technical
reasons (steering torque, roll angle, pneumatic forces mdherence, etc.). Thus, it is necessary to
develop observers to estimate the states of motorcyclendigsato reconstruct rider’'s actions and to
identify road features (slope, tilt, road adherence, etc.)

The state of the art of motorcycle observers is very limitedieked, the first observer estimating the
roll angle of a motorcycle dates back to 2004 [11]. Severalistihave been proposed for estimating the
lateral dynamics; however, the steering dynamics has bkem neglected: based on frequency separation
filtering [12], [13], Kalman filtering [14], [15], PMI observedp] or TS observer [17]. These techniques
are developed under strict assumptions (neglect of theisgedynamics, neglect of tire-road contact,
etc.) and another limitation is their lack of robustnesswiéspect to changes in the longitudinal velocity.

The estimate of the steering angle was treated in [18] wheraeakLiParameter Varying (LPV) observer
has been proposed for the control of a semi-active steeyisger® for different longitudinal velocities.
However, the observer has been designed assuming a zeemghdl and no guarantee of convergence is
given for variations in the roll angle.

The estimation of the longitudinal dynamics has been lesddde One can cite an interesting work
[19], where an observer based controller using the Kalmaer fiias been proposed for the traction
control.

To the best of our knowledge, the simultaneous estimatioth@flateral dynamics, the lateral forces



and the steering dynamics was treated for the first time in [Bhg the high order sliding mode
techniques for a constant longitudinal velocity; Howeveturned to be not robust to changes in the
longitudinal velocity. An observer-based controller gsifS techniques has been proposed in [21] under
the assumption of knowledge of the steering torque, whiatotsobvious to measure.

The estimation of the lateral dynamics and lateral forcethwit the knowledge of the steering torque)
has not been previously treated for time-varying longitatlispeeds. To take into account the time
variations in the longitudinal speed and some nonlinegritiue to the high roll angle values, a nonlinear
model of motorcycles is considered and expressed in a diAsi-one and then transformed into a
Takagi-Sugeno (TS) form by following the sector nonlinearipp@ach [22]. This modelling approach is
interesting because it may represent the behavior of théneam system in a large domain of operating
comparing to linear models. In addition, the simple streetaf the TS models offers the possibility
to extend some synthesis and analysis tools from the richadowf linear systems to nonlinear ones:
Lyapunov stability, Linear Matrix Inequalities (LMIs), etA. nonlinear observer based on TS techniques
was proposed in [23] to estimate the lateral and steeringqamyes but without the validation on a
motorcycle simulator or with real data. In addition, no retmess study was provided.

Based on the ISS property, a TS observer with Ul decoupling apgsed to reconstruct the lateral
dynamics of motorcycles for a wide range of longitudinaloegties. Using the ISS concept, the bound-
edness of the state estimation errors is proven. In additf@ result is formalized as an optimization
problem under LMI constraints aiming to minimize the erroubd for more accurate estimations.

The contributions of the paper are the following:

« The simultaneous estimation of the lateral dynamics andatezdl forces for time-varying longitu-

dinal velocities.

« The estimation is ensured without the knowledge of the stgenrque.

» Simulation results are given for different scenarios on tredl-known simulator of motorcycles

BikeSimbased on the nonlinear multibody model of Sharp [4].

This paper is organized as follows: section Il is dedicatethtomotorcycle modeling, in section lll,

details of the proposed observer are given with the proohefdonvergence of the motorcycle states.

Finally, section IV provides some comparison results andudisions on the proposed observer.

2. MOTORCYCLE LATERAL DYNAMICS

This section highlights the different steps followed to abthe TS model used by the observer. Firstly,
from the model proposed by Sharp in 1971 [24], a quasi-LPV madebtained and transformed into a
TS model.



2..1. Nonlinear model

The most important dynamics of motorcycle can be decompostd In-Plane and Out-Of-Plane
dynamics [5]. The aim of this paper is the estimation of the-OtiPlane dynamics which consist
on the lateral and steering ones.

In this paper, the Out-Of-Plane dynamics of the motorcycke rmpdeled as detailed in Sharp’'s 71
model [24]. The In-Plane dynamics are neglected and the ladigil velocity is supposed constant or
varying slowly (to neglect the coupling between the longjit@l and lateral dynamics). The vehicle is

considered as a set of two rigid frames joined at the steexiig with freedom, restrained by a linear

2
o

M,

steering damper (figure 1).

Fys Yy Eyr
Fig. 1. Geometrical representation of the Sharp’s motorcycle model

The main frame is subject to lateral motion, roll motion and/yaotion and the front frame is subject
to steering motion. Thus, the obtained model has 4 degreeseddm.

Considering the following assumptions:

Assumption 1:

« The aerodynamic forces are neglected.

« Movements due to the suspension are neglected.

« The rider is supposed rigidly attached to the main frame.

Under these assumptions, the motions of the motorcycle eatebcribed by the following equations

(with # and Z denote the first and second time-derivativexdf

« Lateral motion

M (i + vg) + Mykt) + (Myj + Myh) 6+ Myed = Fyp + F, )



« Yaw motion

Mk (by + wvx) + agéﬁ. + agll} + a6 — a4vxd) — ZRfi sin (e)vxé =1 Fyr — . Fy, (2)

« Roll motion

(Mj + Myh) by + bad + agth + byd + bsvg) + %y cos (€)vgd = bysin(p) — bysin(d)  (3)
f

« Steering motion
Myety +b1¢+ a1y +c10 — % cos (€)vy¢ + c3v,) + K§ = —bzsin(¢) — casin(d) —nFyr+7 (4)
!

where the parameters defined in the above equations arerstmitanes given in [24] and are listed
in table 1.

The lateral front and rear forcds,; and I, are considered in their linear form with relaxation. Note
that including the relaxation of the tire forces is impottéor the stability of the Sharp’s model. Of
course, the relaxation is important to take into accountthbble mode at high speeds [24]. The lateral

forces are modeled by the following set of equations:

%Fyf = —Fy; — Criay + Cyray

. (5)
%Fyr = _Fyr - Crlar + CTQ’YT
where S
af = <7”y+lﬁ’7"5) — dcos(e)
B (6)
(6% (Uy ’Uirw)
and
vy = ¢+ dsin(e)
(7)

V= ¢
Considering the lateral forces in their linear form is ndattretive because the addressed scenarios are

limited to urban situations where the camber and slip anglewins in the linear domain of the lateral

forces [25].

2..2. Quasi-LPV and TS models

In this subsection, the nonlinear model given in the sulime@.1 will be transformed into a quasi-
Linear Parameter Varying (quasi-LPV) structure and after takagi-Sugeno (TS) model. The definitions
of quasi-LPV and TS models can be found in [22], [26].

Now, from equations (1-7), the motorcycle lateral dynamiglt be modeled by the following state
space model:

Ei(t) = A(vg,sind¢), singd))x(t) + Br(t) (8)



TABLE |

MOTORCYCLE DYNAMICS VARIABLES

Motorcycle lateral dynamics parameters

Vg, Uy longitudinal and lateral velocities
b, Y, § roll, yaw and steering angles
FEy¢ , Fyr front and rear lateral forces

T steering torque

My, M, , M mass of the front frame, the rear frame and the whole motorcycle

j» h, k, e, lg, I, linear dimensions (see Sharp’s model [24])

Ty, Gry polar moment of inertia of front and rear wheels
Ry, R, radius of front and rear wheels

€ caster angle

K damper coefficient of the steering mechanism

n mechanical trail

Iiz, Irg front and rear frame inertias aboit axis

Ig., I front and rear frame inertias aboft axis

Craz rear frame product of inertia w.r.X and Z axis

g acceleration due to gravity

Zy front vertical force

Ct1, Cr1 front and rear tire cornering stiffness

Cya, Cra front and rear tire camber stiffness

Of, Or coefficients of relaxation of the front and rear pneumatic forces
ay, ar front and rear slip angles

Y, Yr front and rear camber angles

expressions ofi;, b; andc;

a1 = Myek + Iy, cos(¢), az = Myjk — Cryo + (I, — I12)sin(e) cos(e), ag = Myk? + I, + I, sin®(e) + If, cos®(¢)
ay = — (%’ + Z}’%i’) b1 = Myej + If,sin(e), ba = M52 + Mph? + Iy + I, cos?(€) + 5, sin®(e)
by = 77Zf — Mfeg, by = (ij—l—Mrh)g, bs = ij + M,h + % + %, c1 = Ifz +Mfe2

ca = —(nZ; — Myeg)sin(e), cs = Mye + 2 sin(e)

Ry
where:x(t) = [6(¢), 8(¢), v, (£), $(£), (), 6(8), Fys (1), Fyr (D]
1 0 0 0 0 0 0 O 0
0 1 0 0 0O 0 O 0
0 0O M e34 e35 ez 0 O 0
E— 0O O e34 eqq e45 e 0 O B= 0
0O 0O e35 e es5 esg 0 O 0
0O O e36 e46 es56 egg 0 O 1
0 0 O 0 0 0 1 0 0
L0 0 O 0 0 0 0 1] L 0 ]




0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 as34.Vg 0 0 1 1
0 0 0 A44.V7  Q45.V7  QA46.-Vz aqr a48
and A(vs, sind¢),sindé)) = | asi.sindd) ase.sindd) 0 ass.ve 0 as6. vz 0 0
a61.SiN®) ae2.SiN(d) 0  aga.vx a65.Vz a66 ag7 0
ar1.vg ar2.vg ars ara 0 are ar7. Vg 0
agy.vz 0 ass asg4 0 0 0 ass.-Vx

The parameters;; and 'ez-j can easily be deduced from equations (1-7). @&ihds the cardinal sine
function and is defined by:
1 if =0
sin@) -z £0

xT

sing(z) = 9)

In the previous state-space model, the longitudinal vejdsiconsidered as a linear varying parameter,
because it is written in a linear form in the state maiixThe nonlinearity corresponding to the steering
anglesin(d) is approximated by} because of the low values of the steering angle (less 5fanThe
nonlinearities considered here are $ificand v,,.

Since E' is non-singular and under the assumption of low values okteering angle, the model given
by equation (8) can be written in a quasi-LPV form as follows:

i(t) = A(p)e(t) + Br() (10)

where:p = (v, sind¢))T, A(p) = E~* A(v,,sind¢),1) , B=E~'B
From the well-known sector nonlinearity approach [22], thasj-LPV model can be written in an exact
TS representation with 4 sub-models (because, there areyihggparameters). Indeed, the scheduling

variables, also called premise variables in TS systems, are:
21 = Vg , 22 = SIiNQ o) (11)

The longitudinal velocity is considered time-varying fram;,, to v,,., and the roll angle is considered

having a maximal valu@,,.... Indeed, the bounds of the premise variables are:
Umin < 21 < Umaz Sinc(¢maz) <2 <1 (12)

From the well-known sector nonlinearity approach, a TS moslahtained as follows:

4
#(t) =Y pi(p) Aia(t) + Br(t) (13)
i=1

Where:Ai = A(pz)v andpl - (Umina 1)T, p2 = (U7na:c> ]-)Ty pP3 = (vmin»¢max)T and P4 = (Umaxa¢maz)-



The variablegu;(p) are called the weighing functions and they must satisfy ttleving convex sum

property:

0 < pi(vg,Sin < 1
= i (Vg .0(¢)) (14)
Ei:l Ni(U:m smc(¢>)) =1
The variablesu;(p) are computed as follows:
hyo= gmsEn L ke = gt 1)
h _ Z2_5inc(¢1naz) h _ 1—22
2L = T=sinc(dman) 22 T T=sinc(dman)
1 = hit.her , p2 = hio.hoy (16)
3 = hithoe , pg = hiz.hao

In most cases, the roll and yaw rates are considered meésuhanks to gyroscopic sensors. The
longitudinal velocity is also measurable. The steering @mgid its time-derivative can be obtained with
optical sensors. Moreover, conventional accelerometkns as to measure the lateral acceleration which
corresponds to the sum of lateral forces divided by the mégheovehicle and the rider as follows:
May = Fyf + Fy,.

Indeed, the measurements’ vector is given by the followiggation:

. . . T
y®) = [3t), 00), O), 8() , ay]

T
_ [5@), UONGOIRIOR W}

= Cux(t) 17)
(010000 0 0]
0001000 0
with: C={0 00010 0 0
000001 0 0
000000 & &

Remark 1:The observer will be designed on the use of the Sharp’s 71 maedetding to some simpli-
fications, like neglecting the suspension and assuming @rly lew accelerations. If these simplifications
are not satisfied, the model will have more nonlinearities amditional states. This case may make the
optimization problem under LMI constraints more difficult twhse. The observer will be designed based
on ISS construction and its robustness towards many of theskeling imperfections will be studied in
section 3.3.

Remark 2:In comparison to [21], in the present manuscript the relaratf the tire forces is included.

The relaxation allows to take into account some charadiegiassociated with high speeds like the wobble



mode [24]. In addition, from a theoretical point of view, ifet relaxation of the tire forces is included,
the nonlinearityvim in the quasi-LPV model vanishes and a model with 2 nonlineariwill obtained
instead of 3 in [21]. Consequently, the TS model will h#2é = 4) sub-models instead @23 = 8) and
the optimization problem under LMI constraints will be lesmservative.

Remark 3:The accelerometers and gyroscopes mounted on motorbikesureethe accelerations and
the angular rates of the body-fixed frame of the vehicle. Cquestly, the real accelerations and angular
rates will be affected by the roll angle. If the effect of tlal langle in the measure of the acceleration
and the angular rates is considered, the vector of measyfgs= C(p)z(t)) will be nonlinear (coupled
with other states). Consequently, the output matti) must be considered in a quasi-LPV form and it
will be more difficult to satisfy the equality (41) in what folws. This issue has not been addressed in
the proposed work and authors may refer to [27] for the olagienv of such systems.

If the pitch angle is neglected, the accelerations givenhieyaiccelerometer in the Y and Z axis in the

body-fixed with respect to the real accelerations can be appated by:
Qypf = GyCOSQ — gsing
azpp = —aysing — gcose (18)

In what follows, when body-fixed sensors are considered,dterdl acceleration is approximated by:

Gy = sign(aybf)\/’af/bf + azbf — g2 (19)

3. OBSERVER DESIGN

In the design of the proposed observer, the ISS property i@ asd defined as:

Definition 1:[28] Given a system:

&(t) = f(x(t), w(t)) (20)

The system (20) verifies the ISS if there exist& A function S, : R™ x R — R and ak function

Bx : R — R such that for each inpub(¢) satisfying||w(t)|,, < oo and each initial conditions(0),

oo

the trajectory of (20) associated 1¢0) andw(t) satisfies

lz@l2 < Bree (12O, 8) + Bx (Jw(t) ) (21)

ClassKL and K functions are as defined in [29].
The proposed paper deals with the Unknown Input (Ul) obseri@r quasi-LPV systems written in
a TS form. In this context, the ISS property will be formulatexdaa optimization problem under LMI

conditions. The following lemma is used in the proof of theealsr convergence study.
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Lemma 1:Consider the continuous-time TS system:

B(t) = i milo)(Asw(t) + Bru(t) 2
= A(p)z(t) + B(p)u(t)
The system (22) verifies the following ISS property with the mial ISS gainys:
25 < @1 [[2(0) ]l €% + 2. u(®)ll (23)

if there exist positive scalara and v and a symmetric positive definite matrg@ with minimal and

maximal Eigenvalueg; and x» such that the following optimization problem under LMI catmlis is

satisfied fori = 1,...,7:
min 24
Jain (24)
S.t.
xiI <@ (25)

ATQ +QAi+aP QB;
BfQ —I

with @1:,/%, QDQZ,/QLXI andX1I§Q§X21

LMI conditions (25, 26) are sufficient to satisfy the ISS propeand the minimization ofy in (24)

<0 (26)

allows the minimization of the ISS gaips.
The procedure to solve this optimization problem begins bpdsing ¢ and x; and solving the

optimization problem (24) under the LMI conditions (25, 26)no solution is found, one has to decrease
a Oor xi.

Proof: By considering the following Lyapunov function:
V(t) = z(t)" Qu(t) (27)
V(t) is a Lyapunov function means th&t(¢) can be bounded as follows:
X llz(®)ll3 < V(1) < xa e (@)l (28)

wherey; and x» are the minimal and maximal Eigenvalues of the majixHence, the inequality

(25) must be checked to impose a minimal eigenvalue to the>mat
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From the state system (22), by differentiating the Lyapurx) fv.r.t. time, one obtains:

V) = z(t)" (QA(p) + Alp)" Q) x(t) + 2x(t)" QB (p)uf(t)

QA(p) + A(p)T"Q +aQ QB

T
h [ l‘(t) ] _ ax(t)TQm(t) +7u(t)Tu(t)
B*Q —~I

(29)

If the inequality (26) is satisfied for all < i < r, then the time-derivative of the Lyapunov function

will be bounded as follows:
V(i) < —azx®)TQx(t) +yut)Tu(t)

= —aV(t) + yu(t) u(t)

(30)
By integrating the last inequality w.r.t. frohto ¢, it follows:
V() < V(0)e ™+~ /0 malt=) [u(s)|3 ds
< VO™ + L u) (31)
Now, thanks to the inequality (28), one obtains:
lz(t)ll; < % lz(0)[15 =" + aixl ()12 (32)

The last inequality is equivalent to:

X2 —at g
t < == ||=(0 2 4 [ —— ||u(t 33
lz(E)]l2 ) 12(0)]|5 e Ve [Ju(®)]l oo (33)
This inequality proofs the ISS property of the system (22).

Sincea and y; are imposed before solving the LMI problem, the minimizatany will ensure the
minimal bound of the ISS gain between the perturbation inguf and the state vectar(t).
Note that the ISS property is stronger than other stabilippprties likeLs stability or the ISpS [30].
[ |

3..1. Observer structure

The objective of this section is to design an Ul observer ireottd reconstruct the lateral dynamics
of the motorcycle. The nonlinear observer has a quasi-LPV tstiieias well as the motorcycle lateral
dynamics model. The main two difficulties in the design of theeser are the lack of knowledge of

rider’s torque and the fact that the scheduling variablespartially unmeasurable.
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In this context, the following nonrestrictive assumpti@rs considered:

Assumption 2in what follows, it is supposed that:

« the state vector(t) and the input steering torquét) are considered bounded (stabilized motorcycle

case),

e rank(CB) = rank(B),

« the pair(A(p),C) is observable for alp € ([Vmin, Vmaz] X [~ Omaz, Pmaz]) C RZ.

The first assumption holds in open-loop for a some longitudusddcities [24] and the motorcycle
is also assumed to be under rider control. The second and itdeagtsumptions can easily be checked
numerically.

Let us consider the following nonlinear observer [31]:

) = N(p)=(t) + L(p)y(t)
i) = a(t)— Hy)

(34)

The vectorp = (v, g?))T may be different fromp because the roll anglé is not measured and the
longitudinal velocityv, may be affected by noises and perturbatiofsis the measured longitudinal
velocity obtained by a suitable sensor apds the roll angle obtained from the observer. The matrices
N(p) e R™", L(p) € R"™™, H € R"*™ of the observer are to be determined in such a way to have
the minimal bound of the estimation errors.and n, are the dimensions of the state vector and the
output vector.

N(p) and L(p) have the same quasi-LPV form as the matfi§p) and may be written in a TS form

as follows: . .
N(p) =Y mi(p)Ni , L(p) =Y mi(p)Li (35)
=1 =1

In what follows, it will be assumed that the weighing funasq.; (9., ) always satisfy the conditions
given in (14). This assumption holds if the longitudinal \&@tg given by the sensor is considered between
the bounds,,,;,, andv,,.. given for the TS system. Moreover, thé:c(.) function can always be bounded.

One can note that the proposed observer has been chosers feimplicity. Others structures of
Ul observers with adaptation of the Ul estimation have bempgsed. However, for non-constant Ul,
conventional TS-PI (Proportional Integrator) type observeesrt efficient, because the Ul must be
constant [32]. Another structure of Ul observer has beempgsed in [23] with a PD adaptation law
of the Ul. The proposed observer leads to easier LMIs consdr&insolve compared to [23] because
there are fewer variables to be determined in the optinumgtroblem. Also, in [23], there was an LME

condition BP = FT'C) combined with the LMI constraints. In the proposed work, IhéE conditions
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are solved in a first step independently from the optimizagiozblem under LMI constraints. Moreover,
the estimation error obeys to the ISS property, which is gieorthan ISpS property obtained in [23].

According to equations (17, 34), the state estimation ég@iven by:

e=rx—2t=I+HC)x—=z (36)
P

From equations (10, 34, 36), the state estimation error otwetlse following differential equation:

ét) = PA(p)a(t) + PBr(t) - N(p)=(t) — L(p)C(t)
— N(p)e(t) + (PA(p) — N(H)P — L(3)C)ae(t) + PBr(t) + P((1) (37)
with ¢(t) = (A(p) — A())x ()

3..2. Observer design and convergence study

Under the conditions:

PB = 0 (38)
PA(p) — N()P — L(p)C = 0 (39)

the estimation error dynamics will be reduced to:
é(t) = N(p)e(t) + PC(t) (40)

Thanks to lemma 1, ISS performances can be obtained for thensy@0). To obtain the observer
gains that satisfy the LME conditions (38, 39) and minimize 8BS gain between the perturbation vector
¢(t) and the estimation error’s vecteft) for the system (40), the following steps in the design apghoa
are followed.

First, the equality (38) leads to:
(I+HC)B=0 < HCB=-B
& H=-B(CB)* (41)
where: (CB)*™ = [((JB)T(C’B)]*1 (CB)T is the left pseudo-inverse of the matiig' B).

After computing the matrixd, the matrixP is computed and replaced in the equality (39) which leads

to:

PA(p) = NI +HC) = L(p)C =0 & PA(p)=N(p) = (N(p)H + L)C =0
N—— ———

r(p) K(p)
& N(p)=T(p) - K(p)C (42)
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Then, the state estimation error's dynamics become:
é(t) = (D(p) — K(p)C)e(t) + PC(t) (43)

From assumption 2, the tergit) is assumed bounded and will be seen in what follows as a pettan
whose effect will be minimized.
Then, thanks to lemma 1 and to the boundednesgf if there exists a positive definite matr,

matriceskK; and positive scalars, y; and~ such that for alll < < r:

T - KC)'Q+ QT — KiC)+aQ QP

<0 (44)
PTQ —I
and
Q> xal (45)
then, the system (43) is stable and verifies the ISS property:
le()ls < @1 lle@)lle™ + @2 [ICH) o (46)

with 4 :1/%, P = ,/OCLX1 and 11 < Q < xof

By consideringM; = QK;, the LMI condition (44) will be equivalent to the following:

I'7’Q +Qr, — CTMI — M;C +aQ QP “0 47)
PTQ —~T
In order to minimize the ISS gain from the perturbation tef(m) to the vector of estimation errors
e(t), the matricesk; and Q must be computed in order to minimize the ISS gain:= aixl Since
a andy; are imposed before solving the optimization problem, theimization of v is equivalent to
the minimization ofy.

The Ul observer design procedure is summarized in the fatigveteps:

1) verify the observability condition of the couplel(p),C) and the rank conditiorank(CB) =

rank(B)).
2) compute the matriceH and P as follows:
H = -B(CB)*
(48)
P = I+HC

3) for some positive scalars and y;, solve the optimization problem under LMI conditions given

by:

min 49
Q7M'i Y FY ( )
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S.t.

Q>xal (50)
rr r, —CcT'mMr — M;C P
Qre ; To@ QP (51)
PTQ —~1

4) if the optimization problem does not accept a numericltsm, decreaser or x; and repeat the
optimization problem under LMI constraints; else, go to tlestrstep.

5) the gains of the observéY () and L(p) are computed as follows:

M(p) = iy mi(p)Mi
I'(p) = Yo ()T
K(p) = Q'M(p) (52)
N(p) = T(p)-K(p)C
L(p) = K(p) - N@HH

This ends the steps of the observer’s design.

3..3. Observer robustness study

In the previous subsection, motorcycle’s parameters haee bonsidered well known and the observer
was designed on the use of the Sharp’s 71 model according te sanplifications. What about the
robustness of the observer if the model parameters are aotlgkxnown or if the modeling simplifications

are not satisfied? In this case, the model of the motorcycdésdl dynamics may be written as follow:
i(t) = (A(p) + AA(p))x(t) + (B + AB)u(t) (53)

Now, let us consider the following observer:

{ i) = N@=0) + L) i~
z(t) = z— Hy(t)
The estimation error is always the same:
e=x—2=U+HC)z—=z (55)
T/
Then, the estimation error's dynamics becomes:
é(t) = N(p)e(t) + (PA(p) — N(p)P — L(p)C)x(t) + PBu(t) + P((t) (56)

with ¢1() = (A(p) — A(p))(t) + AA(p)(t) + ABu(t) = ¢(t) + AA(p)e(t) + ABu(t)
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The estimation errors’ dynamic (56) is similar to that obégirin the previous subsection in equation
(37). The difference lies in the perturbation vecte(t) which includes the uncertainties on the matrix
A(p) and B. Then, the same previous study is performed in this case andStB performances are
always fulfilled.

In the nominal case where the parameters are consideredyekaown, the estimation error was

bounded as follows:

le(®)lly < w1 le(0)lye™% + @2 IC(t) ]l (57)

By analogy, in the uncertain case, the estimation error béllbounded as follows:

p1lle0)lle™% + @2 Gl

_at
2

le()]l

IN

IN

1)l e™> + w2 (€)oo + [AA(P)x () + ABu(t)]| ) (58)

Whent — oo, the estimation error will be bounded by the quantity||¢(¢) in the nominal case,

||oo’

and by the quantityps (|[¢(¢)[, + [|AA(p)x(t) + ABu(t)| ), in the uncertain case. Consequently, the

accuracy of the observer will be better in the nominal casabee the bounds of convergence are smaller.

4. RESULTS OF SIMULATION

The gains of the Ul observer are computed from the equatidhs $2) applied to the TS model given
in subsection II-B, where the numerical values of the masi€, A and B are given in the annex. In the
optimization problem, the longitudinal velocity is considd varying from:,,;, = 30km/h t0 vye, =
120km/h and the maximal roll angleb, .. = 7/5 rad. The parameters used in the optimization problem
are chosen as followst = 1, x; = 1075, The optimization problem under LMI and LME conditions is
solved using Yalmip toolbox under Matlab. The obtained IS$ gaiaboutp, = aixl = 0.2229. The
simulations are carried out on the well-known motorcyckmulator: BikeSimbased on the nonlinear
multibody Sharp’s 2004 model [4].

For safety purposes and ADAS design, it is more interestingstimate the lateral forces and the roll
angle rather than the steering dynamics. These states asrlemed as the main pertinent lateral variables
and only their estimations will be displayed in this paper.

Firstly, simulations are given for a double lane change mesreand for different longitudinal velocities
profiles. After, a scenario 0of0s on 3km with a variable longitudinal velocity and lateral motiors i
considered.

For a double lane change maneuver with a velocitypf= 100km/h, the results are depicted in

figure 2. For the same maneuver with a velocityuef= 50km/h, results of simulation are given in
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figure 3. For a double lane change maneuver under braking,ethdts are depicted in figure 4. The

steering angle and its estimation for the three scenari@slepicted in the figure 5.
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Fig. 2. Double lane change &00km/h. In blue: nonlinear multibody model and in red: estimation results.

15 ; ; 300 300
Al
1ol 200 200
~ 100} . 100}
P4 P4
5 + = =
— 8 8
€ g o S o0
2 0 o [}
© < §
s o -100f o —100¢
_5 - g g
“= -200} = -200}
-10r -300} -300}
1
-15 - . -400 - . -400 - :
0 5 10 15 0 5 10 15 0 5 10 15
time (s) time (s) time (s)

Fig. 3. Double lane change &0km/h. In blue: nonlinear multibody model and in red: estimation results.

Note that in the three scenarios, the roll angle and thedhferces are well estimated. Of course,

there are some differences at the peak of the roll angle antbtbes. This can be explained by modeling

errors due to linearization. The model used for the obsergsigd does not take into account large roll
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Fig. 4. Double lane change with braking from = 100km/h t0 v, = 50km/h. Top: in blue nonlinear multibody model and
in red estimation results. Bottom: longitudinal velocity profile
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angles. However, it still gives acceptable results in thetsmtions. Moreover, even for a braking scenario
where the Sharp’s 71 model is not valid (the model does notitgkeaccount the longitudinal dynamics
or velocity variation), the simulation results remain guteble.

Remark 4The Sharp’s 71 model is a pure lateral motion model valid fded#nt constant longitudinal
velocities. Indeed, the Sharp’s 71 model do not take into @aicthe longitudinal dynamics (velocity
variation). Of course, when accelerating or braking, otlgnamics associated with the longitudinal
motions appear such as the load transfer between the tvey tire motions of the suspension and the
saturation of the lateral forces [4], [5].

In this context, the model used for the observer design isvalid for acceleration or braking. Under
this limitation, good performances of the observer aré gté¢served.

Now, to assess the performances of the observer, the naadadirore, is computed for the estimation

of the different variables. The normalized error for a vaeabis given by [33]:

_ loo(Hzmes - ZestH)
N max|| zmes |

(59)

where z,,.s is the measurement af and z.,; is its estimate provided by the observer.
The table Il presents the maximum, the mean and the variaribe eformalized errors for the different

scenarios.

TABLE I
NORMALIZED ERROR FOR A DOUBLE LANE CHANGE AND DIFFERENT VELOCTIES. (A) v, = 100km/h, (B) v, = 50km/h,

(C) BRAKING FROM 100km /h TO 60km/h

roll angle front lateral force rear lateral force
W B0 ® (B) ©  »®w | B | ©
maxe.) (%)) | 5.42 | 852 | 594 | 12.87 | 11.23 | 2.43 | 857 | 9.20 | 4.17
mean¢;) (%)) | 1.49 | 2.24 | 1.90 | 3.06 | 2.42 | 0.50 | 1.91 | 1.98 | 1.04
std(e=) (%)) 1.52 | 2.60 | 1.76 | 3.58 | 298 | 0.51 | 2.23 | 2.50 | 1.03

In all the scenarios, the means of the normalized error ferdhi angle and the lateral forces are less
than4%. So, it can be said that the estimation of the roll angle aretdaforces are good even under
soft acceleration.

Next, the robustness of the observer to the uncertaintitrgeifongitudinal velocity is tested. A scenario
of a constant longitudinal velocity afoOkm /h in a double lane change is considered. But, the observer
will be excited with a different constant longitudinal velty (v, = 90km/h). In this case, the results are

given in figure 6. Despite modeling and longitudinal velocitycertainties, the estimation error dynamics



20

still have ISS performances and the observer ensures a gtiothtsn of the roll angle and the lateral

forces.

30 T 400 T 400
2001 2001
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-400} -400}

front tire lateral force (N)
rear tire lateral force (N)

-600 -600

-800 - -800 -
0 5 10 0 5 10

time (s) time (s) time (s)

Fig. 6. Double lane change #0km /h. In blue: nonlinear multibody model, in red: estimation results with the falsgitiotinal
velocity v, = 90km/h.

The robustness of the observer to the parameters uncertaiatnow tested. To this end, the mass of
the vehicle and the rider are increased46y:.g equivalent to an increase af% and the caster angle is
decreased by0%. The results of simulation are given in figure 7. From simulatiesults, one can state
that the performances of the observer are preserved evéme ipréesence of parametric uncertainties.

The robustness of the observer is also tested with respenttrtainties in the road friction coefficient.
To this end, two cases for the double lane change maneuvu@0atn/h are considered and compared.
In the first case, the road friction coefficient varies suddémyn 3 = 1 (dry asphalt) td).7 (moderately
wet road); and in the second case, it varies frém= 0.7 to 0.4 (very wet road). The results of roll
angle estimation are given in figures 8 and 9 and the maximuermtan and the variance of normalized
estimation errors are given for the roll angle and the latienees in table IIl.

Remind that the observer was designed using Sharp’s 1971l wbeee the tire coefficient€’s; and
C,; were computed for a nominal case with= 0.85. From figure 8, the effect of the sudden variation
of the road friction coefficient is more notable for the secaade from¢ = 3.6s. Indeed, in the first
case, the road friction coefficient varies frghm= 1 to 8 = 0.7 which are close to the coefficient used for
the observer designs(= 0.85). However, the road friction coefficient in the second caseuigh more

different from the nominal road friction coefficient. From figgr8 and 9 and table Ill, one can see that



21

30 T 400 T 600

200t 400

200

-200 1
-2001

roll angle (°)

-400}

front tire lateral force (N)
rear tire lateral force (N)

—400

—-600 _600}

-800 - -800 -
0 5 10 5 10
time (s) time (s) time (s)

o

Fig. 7. Double lane change &00km/h. In blue: nonlinear multibody model with vehicle’s mass increased®¢ and caster
angle decreased by%, in red: estimation results

the observer gives the better estimation for the case whete0.85 where the maximal values of the
normalized errors are the lowest. However, even with ianatof the road adherence, the means and

the variances of these errors are always lowers #i@arwhich confirms the robustness of the observer

to road friction variations.

TABLE 11l
NORMALIZED ERROR FOR A DOUBLE LANE CHANGE AND DIFFERENT ROAD MHERENCE PROFILES (A) 8 = 0.85, (B) 8

VARIES FROM1 70 0.7, (C) B VARIES FROMO0.7 TO 0.4

roll angle front lateral force rear lateral force
(A) | (B) (©) (A) (B) (©) A | B) | ©
max() (%)) 542 | 7.88 | 12.14 | 12.87 | 14.94 | 16.54 | 8.57 | 8.66 | 8.95
mean¢.) (%)) | 1.49 | 1.51 | 1.59 | 3.06 | 3.79 | 3.81 | 1.91 | 2.54 | 3.81
std(e.) (%)) 1.52 | 1.55 | 1.72 | 3.58 | 4.15 | 3.25 | 223 | 2.71 | 3.49

For the double lane change, the final scenario consideredhisanigh deceleration of the motorbike
(—0.5¢g) which is accompanied with a strong deformation of the sosjp®. The rider decelerates from
100km/h to 10km/h in 6s. The results of simulation of this case are given in the figureldGhis
case, the assumptions considered for modeling are largelsted. There is a high transfer of mass
between the two wheels and a strong coupling between thétleolimgal and lateral forces. Consequently,

the lateral forces are not well estimated, but the ISS peiioges are still guaranteed and the estimation
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Fig. 8. Double lane change @&00km/h with change in road friction coefficient. In blue: nonlinear multibody modekl in

red: estimation results. Above: first case. Below: second case.
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of the roll angle is right.
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Fig. 10. Double lane change with a high deceleration. In blue: nonlinedtibdy model, and in red: estimation results.

The final test is carried out in a traffic scenario where the lenijgital velocity varies betwees0km /h
and 90km/h. To assess the observer in the presence of measurement itaseassumed that the
measurement signals are affected by centered and rand@®snweith magnitude o§% of the maximal
value of the measured variables. Moreover, to take intowttahe effect of the roll angle on the measure
of accelerations and angular rates, realistic sensoragitfie acceleration and the angular rates in the
body-fixed frame of the vehicle are considered. In additionstudy the influence of unevenness of the
road on the observer accuracy, the elevation and the baKitite road are considered variables. Their
graphs are given in figure 11. The results of simulation arengindigures 12 and 13. From these figures,
good results may be seen for roll angle and lateral forcésagons for a realistic scenario with different
velocities and unevenness of the road.

One of the questions that should be asked about these résu#tee the tires nonlinearities excited
in this scenario? To answer this question, figure 14 shows thenalized lateral forces as function of
rear side-slip angle and front and rear camber angles (fleetedf front side-slip angle is not shown
because it is negligible in this scenario). From figure 14, igble that this scenario does not excite
the tire’'s nonlinearities. But at the same time, these nealiities have not been taken into account

in the observer design. One of the perspectives for futureksvis to propose an observer that takes
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Fig. 13. A traffic scenario o8km. In blue: nonlinear multibody lateral forces, in red: estimation of the laferaes

into account these nonlinearities. In this new case, a gLR¥gi model (equation (10)) with more than 2
varying parameters (equation (11)) should be obtained.tBate should be no certainty on the feasibility
of the LMI problem.

Remark 5:Since the estimation of the lateral forces has never beeressieti and tested on a real
platform or on a multibody simulator for different longitndl velocities, only roll angle estimation
performances are discussed and compared with some oth&s.wknr this end, the root mean squared
error (RMSE) is used to compare the roll angle estimation pedioces of the proposed work with the

results obtained in [34]. The results are summarized in thie t&/.

TABLE IV

RMSERESULTS FOR THE ESTIMATION OF THE ROLL ANGLE

method RMSE
Vision system 2.24
IMU - Kalman filter 2.01
Mean vision/IMU 1.20

Proposed observer with ideal sensors| 1.28

Proposed observer with realistic sensors1.85




26

05 ; 05 ; 0.5
! - :
04t / , 0.41 . F 041 f'
03l : 0.3} i 0.3f
8 ] g 02} Sio1 w02t A
= + o ot o ry
E T O0lf #p 1w 01y i
@ 01r § A Q <
o < 0 ;. ks o} [
IS 0 I 3 ]
o 4] 0]
= S _oaf © o1t E
S 3 A 3 ¥
ﬁ‘) -0.1 N g N
© T — < -02}
S g -0.2 g -0.2
S -0.2 S S
g0 2 -03 2 -03}
-0.3 -0.4 -0.4
-0.4¢} R -05 2 X i —05}
-0.5 : : :
50 0 50 -1 0 1 -50 0 50

Front camber angle (°)  Rear side-slip angle (°)  Rear camber angle (°)

Fig. 14. (Left) Front lateral force vs. front camber angle. (MedilRear lateral force vs. rear side-slip angle. (Medium) Rear
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From the RMSE results, it is seen that the performances of tbhpoged observer are nearly the
same to the combined vision/Inertial Measurement Unit ()Mtethod proposed in [34] if the lateral
acceleration and the angular rates are exactly known. Inc#tse of realistic sensors with no prior
treatment, the estimation of the roll angle remains bettan the two first methods. The main advantage
of the proposed Ul observer is the no-need of a vision syseguired in [34]. Moreover, in addition to

the roll angle, the proposed observer allows also the gotich&son of the lateral forces.

5. CONCLUSION

The present paper deals with the estimation of the laterahmiyocs of motorcycles not for specific
longitudinal velocities but for a wide range of forward veles. Firstly, the quasi-LPV model is
simplified to a TS model. Then, a Takagi-Sugeno Unknown Inputineai observer is proposed to
estimate the motorcycle lateral dynamics. The proof of cagemce is guaranteed for a wide range of
longitudinal velocities.

Simulations are carried out on a nonlinear multibody model #re results are good for several
scenarios and even when the longitudinal velocity or theonegtle’s parameters are not well known.

The proposed observer gives an interesting economic solbigzause it allows the estimation of the
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roll angle with only an Inertial Measurement Unit and an ogitiencoder. Another technical solution
proposed in this paper is the estimation of the lateral fonghich are very hard to measure.

In future works, it is interesting to include additional dable sensors like vision sensors to improve
the obtained results. Another perspective is to take inbo@at the geometry of the road which has been

considered flat in this paper.
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APPENDIX

TABLE V

NUMERICAL VALUES OF SHARP'S MOTORCYCLE MODEL

Numerical values

M =274.4 , e34 =61.97 , es5 = —157.5 , ez6 = 1.458 , e4qa = 71.8 , ea5 = —29.3 , es6 = 1.391 , e55 = 122.1
ese = —1.496 , egs = 0.543 , aza = —274.4 , aga = —61.96 , as5 = —3.87 , ase = 0.679 , aa7 = 0.95

asgs = —0.42 , as1 = 1545 , as2 = —89.8 , asa = 161.4 , ase = 1.567 , ag1 = —89.8

as2 = 36.53 , asa = —2.136 , ags = —1.525 , ags = —12.67 , ag7 = —0.0489 , ar1 = —5282

ar2 = 104503 , ars = —112042 , ars = —106440 , are = 5481 , a7r = —5 , ag1 = —2592 , agz = —88283
ags = 37078 , agg = —H
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