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SPECTRAL ANALYSIS OF MORSE-SMALE GRADIENT FLOWS

NGUYEN VIET DANG AND GABRIEL RIVIÈRE

Abstract. On a smooth, compact and oriented manifold without boundary, we give a
complete description of the correlation function of a Morse-Smale gradient flow satisfying a
certain nonresonance assumption. This is done by analyzing precisely the spectrum of the
generator of such a flow acting on certain anisotropic spaces of currents. In particular, we
prove that this dynamical spectrum is given by linear combinations with integer coefficients
of the Lyapunov exponents at the critical points of the Morse function. Via this spectral
analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the
Morse complex as the image of the de Rham complex under the spectral projector on
the kernel of the generator of the flow. This allows us to recover classical results from
differential topology such as the Morse inequalities and Poincaré duality.

1. Introduction

Consider a smooth (C∞) flow (ϕt)t∈R acting on a smooth, compact, oriented manifold
M which has no boundary and which is of dimension n ≥ 1. A natural question to raise is
whether the limit

lim
t→+∞

ϕ−t∗(ψ)

exists for any smooth function ψ defined on M . This is of course very unlikely to happen
in general, and a natural setting where one may expect some convergence is the class of
dynamical systems with hyperbolic behaviour and for a nice enough reference measure. For
instance, if ϕt is a topologically transitive Anosov flow [1] and if we study the weak limit
with respect to a so-called Gibbs measure, it is known from the works of Bowen, Ruelle
and Sinai that such a limit exists and is equal to the average of ψ with respect to the Gibbs
measure1 [45, 9]. If one is able to show that this equilibrium state exists, a second natural
question to raise is: can one describe the fluctuations? For instance, what is the rate of
convergence to this state?

These problems are naturally related to the study of the operator generating the flow:

L : ψ ∈ C∞(M) 7→ −
d

dt

(
ϕ−t∗(ψ)

)
|t=0 ∈ C∞(M).

Note that, by duality, this operator acts on the space of distributions D′(M). In recent
years, many progresses have been made in the study of such operators acting on suitable
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1Recall that a well-known example is the Liouville measure for the geodesic flow on a negatively curved

manifold.
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Banach spaces of distributions when the flow ϕt enjoys the Anosov property. In [36],
Liverani defined Banach spaces of distributions with “anisotropic Hölder regularity” for
which he could make a precise spectral analysis of L in the case of contact Anosov flows,
and from which he could deduce that, for every t ≥ 0 and for every ψ1, ψ2 in C∞(M),

(1) Cψ1,ψ2(t) :=

∫

M

ϕ−t∗(ψ1)ψ2dvolg =

∫

M

ψ1dvolg

∫

M

ψ2dvolg +Oψ1,ψ2(e
−Λt),

where Λ > 0 is some fixed positive constant related to the spectral gap of L and where
volg is the Riemannian volume. His construction was inspired by similar results for dif-
feomorphisms [7] and by a proof of Dolgopyat which holds in the 2-dimensional case [15].
Introducing Banach spaces inside D′(M) contrasts with earlier approaches to these ques-
tions where symbolic coding of Anosov flows was used to describe the weak convergence
of ϕ−t∗(ψ). For more general Anosov flows, Butterley and Liverani also showed how this
direct approach allows to make a meromorphic extension for the Laplace transform of the
correlation function Cψ1,ψ2(t) to the entire half plane [11]. This extended earlier works of
Pollicott [40] and Ruelle [42] which were also based on the use of symbolic dynamics. Such
poles (and their corresponding eigenstates) describe in some sense the fine structure of
the long time dynamics and are often called Pollicott-Ruelle resonances. Pushing further
this direct approach [25], Giulietti, Liverani and Pollicott extended this spectral analysis
to anisotropic spaces of currents and they proved that, for any smooth Anosov flow, the
Ruelle zeta function has a meromorphic extension to C. In the case of Anosov geodesic
flows satisfying certain pinching assumptions, they also showed that (1) also holds for the
Bowen-Margulis measure (and not only with respect to the Riemannian volume). In par-
allel to this approach via spaces of anisotropic Hölder distributions, it was observed that
the spectral analysis of Anosov flows can in fact be understood as a semiclassical problem
which fits naturally in the theory of semiclassical resonances [31, 18]. Building on earlier
works for Anosov diffeomorphisms by Baladi-Tsujii [3, 4] and Faure-Roy-Sjöstrand [20]
involving microlocal tools, this kind of approach to Pollicott-Ruelle resonances was devel-
opped for Anosov flows by Tsujii [50, 51], Faure-Sjöstrand [21], Faure-Tsujii [23, 22] and
Dyatlov-Zworski [17]. We refer to the survey article of Gouëzel [27] for a recent account
on these progresses.

Regarding the important steps made in the Anosov case, it is natural to understand to
what extent these methods can be adapted to more general dynamical systems satisfying
weaker chaotic features. A natural extension to consider is the class of Axiom A systems [48,
9]. In the case of nonsingular Axiom A flows, this was analyzed by Dyatlov and Guillarmou
who showed that Pollicott-Ruelle resonances can be defined locally on a small neighborhood
of any basic set of a given Axiom A flow with no critical points – see also [42, 3, 4, 26] for
earlier results in the case of Axiom A diffeomorphisms. Here, we are aiming at analyzing
the simplest class of Axiom A flows, namely Morse-Smale gradient flows. Yet, compared
with the above references, our objective is to give a global description of the correlation
function and not only in a neighborhood of the basic sets (here the critical points). Recall
that gradient flows associated with a Morse function are also interesting because of their
deep connections with differential topology which first appeared in the pioneering works of
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Thom [49] and Smale [46, 47]. Our microlocal approach to the properties of gradient flows
will allow to give new (spectral) interpretations of some results of Laudenbach [34, 35]
and Harvey-Lawson [29, 30] and to recover some classical facts from differential topology
such as the finiteness of the Betti numbers, the Morse inequalities and Poincaré duality.
Recall that an alternative spectral approach to Morse theory (based on Hodge theory) was
introduced by Witten in [53]. For a more detailed exposition on these relations between
dynamical systems, topology and spectral theory, we refer to the classical survey article of
Bott [8].

2. Statement of the main results

2.1. Dynamical framework. We fix f to be a smooth (C∞) Morse function, meaning
that f has only finitely many critical points and that these points are non degenerate. We
denote by Crit(f) the set of critical points. For simplicity, we shall always assume that f
is excellent in the sense that, given a 6= b in Crit(f), one has f(a) 6= f(b). If we consider a
smooth Riemannian metric g on M , we can define a vector field Vf as follows

(2) ∀(x, v) ∈ TM, dxf(v) = 〈Vf(x), v〉g(x).

This vector field generates a complete flow on M [35, Ch. 6] that we denote by ϕtf . Given
any point a in Crit(f), we can define its stable (resp. unstable) manifold, i.e.

W s/u(a) :=

{
x ∈M : lim

t→+/−∞
ϕtf(x) = a

}
.

One can show that W s(a) (resp. W u(a)) is an embedded submanifold in M of dimension
0 ≤ r ≤ n (resp. n − r) where r is the index of the critical point [52]. Note also that
W u(a) ∩W s(a) = {a}. A remarkable property of these submanifolds is that they form a
partition of the manifold M [49], i.e.

M =
⋃

a∈Crit(f)

W s(a), and ∀a 6= b, W s(a) ∩W s(b) = ∅.

The above property also holds true for the unstable manifolds. This partition in stable
(and unstable) leaves will play a central role in our analysis. Among these Morse gradient
flows, Smale introduced a particular family of flows [46]. Namely, given any a and b in
Crit(f), he required thatW s(a) and W u(b) intersect transversally whenever they intersect.
This assumption also turns out to be a crucial ingredient to make our proofs work. We will
use the terminology Morse-Smale for any gradient flow enjoying the above properties.
Finally, for any point a in Crit(f), we define Lf (a) as the only matrix satisfying

(3) ∀ξ, η ∈ TaM, d2af(ξ, η) = ga(Lf (a)ξ, η).

As a is a nondegenerate critical point, Lf (a) is symmetric with respect to ga and invertible.
Its eigenvalues are called the Lyapunov exponents at the point a and we write them as

χ1(a) ≤ . . . ≤ χr(a) < 0 < χr+1(a) ≤ . . . ≤ χn(a),

where r is the index of the critical point a. All along the article, we will often make the
assumption that (f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow. By
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smooth Morse pair, we roughly mean that there is a smooth linearizing chart for Vf near
any critical point. By the Sternberg-Chen Theorem [12], this is for instance satisfied when,
for every critical point a, the Lyapunov exponents (χj(a))1≤j≤n are rationally independent
– see paragraph 3.5 for more details.

Remark 2.1. Let us fix some conventions. We will denote by N∗ the set of positive integers
{1, 2, . . .} while N will be the set of nonnegative integers {0, 1, 2, . . .}. We will use α =
(α1, . . . , αn) for a multi-index in Nn. Given any critical point a of f , we denote by |χ(a)|
the vector (|χ1(a)|, . . . , |χn(a)|). For any 0 ≤ k ≤ n, Ωk(M) will be the space of smooth
differential forms of degree k and D′,k(M) will be the topological dual of Ωn−k(M), i.e. the
space of currents of degree k (or of dimension n− k). For an introduction to the theory of
currents, we refer to [41, 44].

2.2. Correlation function. The main concern of the article will be to perform a spectral
analysis of the operator LVf acting on appropriate spaces of currents. As an application of

our analysis, we will prove the following result on the asymptotic behaviour of ϕ−t∗
f (ψ):

Theorem 2.2. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) and for every α in Nn, there exists a continuous linear
operator,

π
(α)
a,k : Ωk(M) → D′,k(M),

such that for every Λ > 0, for every ψ1 in Ωk(M), for every ψ2 in Ωn−k(M), and for every
t ≥ 0,∫

M

ϕ−t∗
f (ψ1) ∧ ψ2 =

∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|<Λ

e−tα.|χ(a)|
∫

M

π
(α)
a,k (ψ1) ∧ ψ2 +Oψ1,ψ2(e

−Λt)

where α.|χ(a)| =
∑n

i=1 αi|χi(a)|. Moreover, for every a in Crit(f) and for every α in Nn,
one has2

• for every ψ1 in Ωk(M), the support of π
(α)
a,k (ψ1) is contained in W u(a),

• 0 ≤ rk(π
(α)
a,k ) ≤ 2n,

• rk(π
(0)
a,k) = δk,r where r is the index of a,

• rk(π
(α)
a,k ) =

n!
k!(n−k)!

for every α ∈ (N∗)n.

This Theorem gives us an asymptotic expansion at any order of the correlation function3

associated with a Morse-Smale gradient flow. As we shall see, we will also provide a more

or less explicit expression of the operator π
(α)
a,k near the critical point a. These operators of

course depend on the choice of the Riemannian metric used to define the gradient flow as
well as the Lyapunov exponents appearing in the above asymptotic expansion. Each term

2We will in fact give a (rather combinatorial) explicit expression of rk(π
(α)
a,k ) in the proof – see Remark 6.8.

3Here we make a small abuse of terminology as correlation functions are usually concerned with invariant
measures.



SPECTRAL ANALYSIS OF MORSE-SMALE GRADIENT FLOWS 5

appearing in the sum looks also very much like the expansion obtained by Faure and Tsujii
in the case of linear models acting on Rn [23, Ch. 3-4]. Here, one of the main difficulty will
be to understand how these local models can be glued together in order to obtain a result
valid on the whole manifold. We also mention that similar expansions appear via techniques
from complex analysis in the case of analytic expanding circle maps arising from finite
Blaschke products [5, 6]. Even if our flows are in some sense degenerate Axiom A flows, this
result is also closely related to the recent results of Dyatlov and Guillarmou on Pollicott-
Ruelle resonances for open systems [16]. Maybe the main difference with this reference
is that Theorem 2.2 holds globally on M and not only in a neighborhood of the critical
points4. If we consider the time 1 map of the flow, the induced diffeomorphism h = ϕ−1

f is
probably one of the simplest example of an Axiom A (but not Anosov) diffeomorphism [48],
even if it is a kind of “trivial” example as all the basic sets are reduced to fixed points.
Resonances of general Axiom A diffeomorphisms were studied by Ruelle in [43] via methods
of symbolic dynamics while the direct functional approach of these dynamical systems was
developped by Baladi–Tsujii [3, 4] and by Gouëzel–Liverani [26]. As for the case of Axiom
A flows treated in [16], these results focused on the dynamics near a convenient basic set,
i.e. we restrict ourselves to ψ1 and ψ2 supported in a neighborhood of a fixed critical point.
Here, due to the simple structure of the diffeomorphism, the asymptotic expansion of the
correlation function can be made without restrictions on ψ1 and ψ2.

We made a kind of (global) nonresonance assumption in the statement of Theorem 2.2.
This assumption ensures that the generator of the flow does not have any Jordan blocks. As
far as we know, the above Theorem gives the first example of such diffeomorphisms where
all the Jordan blocks in the spectrum are trivial. In [24], Frenkel, Losev and Nekrasov
were lead to similar problems in the context of quantum field theory. In particular, as a by
product of their analysis, they obtain the complete asymptotic for the correlation function
of the flow associated with the height function on the 2-sphere endowed with its canonical
metric. In that case, the Lyapunov exponents are all equal to ±1 (hence resonant) and they
prove that there are indeed infinitely many polynomial factors (hence non trivial Jordan
blocks) in the asymptotic expansion. In the general case (including the case of [24]), we still
obtain an asymptotic expansion for the correlation function which may involve polynomial
factors in t except for the peripheral eigenvalue λ = 0. We just mention here the leading
term of the asymptotics in the general case:

Theorem 2.3. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient flow
ϕtf . Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) of index k, there exist

• Ua in D′,k(M) whose support is equal to W u(a),

• Sa in D′,n−k(M) whose support is equal to W s(a),

such that, for every

0 < Λ < min {|χj(b)| : 1 ≤ j ≤ n, b ∈ Crit(f)} ,

4We also note that [16] made the assumption that the vector field does not vanish.
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for every (ψ1, ψ2) in Ωk(M)× Ωn−k(M), and for every t ≥ 0,
∫

M

ϕ−t∗
f (ψ1) ∧ ψ2 =

∑

a∈Crit(f): ind(a)=k

∫

M

ψ1 ∧ Sa

∫

M

Ua ∧ ψ2 +Oψ1,ψ2(e
−Λt).

Except for the remainder term, this result was first proved by Harvey and Lawson via
techniques from geometric measure theory and under slightly more restrictive assumptions
on the gradient flows [29, 30]. This Theorem follows from Propositions 5.7 and 6.9. To
our knowledge, the currents Ua and Sa appearing in the leading term of the asymptotic
expansion were first constructed by Laudenbach [34, 35] in the case of a “locally flat
metric adapted to the Morse coordinates” – see paragraph 3.5 for the definition. In the
following, we shall refer to them as Laudenbach’s currents. The difficulty is that the
submanifolds W u(a) and W s(a) are not a priori properly embedded and one has to justify
that the currents of integration are well defined. Precisely, one can integrate on W u(a) a
differential form ψ whose support is included in a compact part of W u(a) but integration
of a general form whose support may intersect the boundary needs to be justified. This
can solved by analyzing the mass of the currents near the boundary of the unstable (resp.
stable manifold) and this requires a careful description of the structure of the boundary
of W u(a) [34, 35]. Even if it is in a different manner, similar difficulties involving the
boundary will of course occur at some point in our analysis and we shall deal with this
problem via dynamical techniques following the works of Smale [46] – see for instance
Lemmas 3.7 and 3.9.

After properly defining the spectral framework of our problem, we will recover the ex-
istence of these currents as a consequence of our spectral analysis. They correspond to
the kernel of the operator LVf acting on appropriate anisotropic spaces of currents. The
advantage of this approach is that it allows to treat more general families of gradient flows
and that it sheds a new (spectral) light on these natural dynamical objects. A difficulty
may be that it relies on microlocal techniques which are maybe not as well-known as the
geometric measure theory used by Harvey and Lawson in [29, 30] to give an interpretation
of these currents as a limit of the correlation function under the assumption of finite vol-
ume – see also [37] for generalizations of this result. In any case, Theorem 2.2 generalizes
this type of result in the sense that it does not only give the existence of the limit but
also a rate of convergence to this equilibrium state and the full asymptotic expansion as
t→ +∞.

2.3. Topological interpretation of the leading term. One of the main application of
this dynamical approach to Morse theory is that the partition of the manifold into unstable
components has beautiful topological implications [49, 46, 30, 35]. In section 7, we will
explain how to recover some classical results from differential topology (e.g. finiteness of
Betti numbers, Poincaré duality, Morse inequalities) via our spectral approach and via some
analogies with Hodge-de Rham theory. For that purpose, we can set, for every 0 ≤ k ≤ n,

Ck(f) := span {Ua : ind(a) = k} .
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In analogy with Hodge-de Rham theory where one uses the formula ∆ = d ◦ d∗ + d∗ ◦ d,
we can write the Cartan formula

LVf = d ◦ iVf + iVf ◦ d,

where d is the coboundary operator and iVf is the contraction by the vector field Vf . We
will verify that (C∗(f), d) induces a cohomological complex while (C∗(f), iVf ) induces a
homological complex. The first complex is known as the Morse complex (also sometimes
called the Thom-Smale-Witten complex) and we will call the second one the Morse-

Koszul complex. Using our analysis of Morse-Smale gradient flows, we will give a purely
spectral proof of the following results:

Theorem 2.4. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient flow
ϕtf . Then, the following holds.

(1) The maps

P
(k) : ψ ∈ Ωk(M) 7→

∑

a∈Crit(f): ind(a)=k

(∫

M

Sa ∧ ψ

)
Ua ∈ Ck(f)

induce a quasi–isomorphism between the cohomology of the de Rham complex (Ω∗(M), d)
and the cohomology of the Morse complex (C∗(f), d).

(2) The homology in degree k of the Morse-Koszul complex (C∗(f), iVf ) is equal to

Ck(f).

The first part of the Theorem is due to Laudenbach in the case of a “locally flat metric
adapted to the Morse coordinates” [34, 35]. It recovers the classical fact that the de Rham
complex (Ω∗(M), d) is quasi-isomorphic to the Morse complex. From this, it is classical
to deduce the finiteness of the Betti numbers and the so-called Morse inequalities – see
section 7 for more details. The second part seems new.

2.4. About the proof: spectral analysis of LVf . One of the main difficulty one en-
counters when trying to describe this spectrum is to find good Banach spaces containing
Ω∗(M) and where LVf has nice spectral properties such as discrete spectrum. Here, we
will in fact closely follow the construction of Faure-Sjöstrand in [21] (see also [17, 22] in
the case of currents) and explain how to adapt it to our dynamical framework. One of
the main issue we have to deal with is the asymptotic behaviour of the Hamiltonian lift of
ϕtf . In particular, we have to verify that the attractor and the repeller of the normalized
Hamiltonian flow are compact subsets – see Lemmas 3.7 and 3.9. This is one of the first
place where we will strongly use our extra assumptions on the flow, namely the Smale
transversality and the (smooth) linearizing property near every critical point.

After setting properly this dynamical framework and its asymptotic properties, we can
closely follow the construction from [21] which requires minor (but necessary) modifications
that will be described in section 4 – see also appendices A and B. Given any Λ > 0
and any 0 ≤ k ≤ n, this procedure allows us to construct an anisotropic Sobolev space
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HmΛ
k (M) ⊂ D′,k(M) such that

−L(k)
Vf

: HmΛ
k (M) → HmΛ

k (M),

and such that the operator has only discrete spectrum with finite multiplicity in the half
plane {Re(z) > −Λ}. According to [21, Th. 1.5], these values are independent of the
choice of our anisotropic space. These complex numbers are called the Pollicott-Ruelle

resonances of−L(k)
Vf

[40, 42], and they correspond to the poles of the meromorphic extension

of (−L(k)
Vf

− z)−1 : Ωk(M) → D′,k(M) to the complex plane. We denote these poles by

Rk(f, g).
In the case where (f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow,

we will obtain several results on their structure that we will now describe:

(1) Any element in Rk(f, g) is contained in (−∞, 0] and is a linear combination with
integer coefficients of the Lyapunov exponents at a fixed critical point a (Proposi-
tion 5.1).

(2) If all the Lyapunov exponents are rationally independent, we can determine the
multiplicity of every element in Rk(f, g) and the local expression of the eigenmodes
near the associated critical point (Propositions 6.6 and 6.9).

(3) The algebraic multiplicity of an eigenvalue is always equal to its geometric multi-
plicity (Proposition 6.3).

(4) In particular, we can determine Weyl asymptotics in terms of the Lyapunov expo-
nents (Proposition 6.10) and we give a spectral version of the classical Lefschetz
trace formula (Proposition 6.11).

The combination of all these results allows to prove Theorem 2.2 and Theorem 2.3– see
Section 6. The proofs of these different spectral results will heavily rely on the construction
of the spaces HmΛ

k (M) that implies that our eigenmodes have a certain prescribed Sobolev
regularity.

2.5. Organization of the article. In section 3, we gather some crucial dynamical prelim-
inaries and introduce some notations that will be used all along the article. In section 4, we
make use of our dynamical assumptions in order to construct anisotropic spaces of currents
which are adapted to our problem. As our construction is very close to the one in [21],
we mostly focus on the differences, namely the construction of the escape function whose
detailed proof is postponed to appendix A. In section 5, we make use of the regularity
properties of the eigenmodes to prescribe the values of the Pollicott-Ruelle eigenvalues.
Section 6 gives a complete description of the spectrum (multiplicities of the eigenvalues,
local structure of the eigenmodes). We explain in section 7 how to deduce some classical
results of differential topology from the results obtained in the previous sections. In appen-
dix A, we give the complete proof of the construction of the escape function. Appendix B
is devoted to a brief reminder of [21] concerning the proof of Proposition 4.2. Finally,
appendix C collects some facts on asymptotic expansions that we use at several stages of
our work.
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3. Morse-Smale gradient flows

In this section, we briefly collect some facts on the dynamical properties of Morse-Smale
gradient flows. The main new results of this section are Lemmas 3.7 and 3.9 which are
related to earlier works of Smale [46]. These two lemmas are the crucial ingredients to
develop the machinery of anisotropic Sobolev spaces of Faure and Sjöstrand [21]. We also
fix some conventions that we will use all along the article. For the well-known results, we
follow the lines of [35, 52] and we refer to these references for a more detailed exposition.
Recall that, in all the article, M denotes a smooth (C∞), oriented, compact manifold
without boundary.

3.1. Gradient flows. Let f :M → R be a smooth function onM . If we fix a Riemannian
metric g on M (compatible with our orientation), then we can define the corresponding
gradient vector field as follows:

∀x ∈M, 〈gradf(x), .〉g(x) := df(x).

In local coordinates, this can we written as

Vf(x) := gradf(x) =

n∑

i,j=1

gij(x)∂xjf∂xj ,

where (gij(x))1≤i,j≤n is the induced Riemannian metric on T ∗
xM . Under our geometric as-

sumptions (compactness of the manifold), one knows that the gradient vector field induces
a complete flow that we denote by

ϕtf :M →M.

If it does not create any particular confusion, we will sometimes use the convention x(t) =
ϕtf(x0) for a fixed x0 in M . Note that, for any integral curve t 7→ x(t) of the gradient
vector field, one has

(4) ∀t1, t2 ∈ R, f(x(t2))− f(x(t1)) =

∫ t2

t1

‖gradf(x(t))‖2g(x(t))dt.

In other words, f can only increase along the flow lines. Suppose now that f is a Morse

function. We denote by Critf its critical points. For the sake of simplicity, we will also
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assume our Morse function f to be excellent which means that all critical values are
distinct. Recall that such functions are dense in the topological space C∞(M,R). The
Morse Lemma tells us

Lemma 3.1 (Morse Lemma). Let f be a Morse function on a Riemannian manifold (M, g).
Then, near any critical point a, there is a system of coordinates (zi)i such that the point a
is given by z = 0, and such that

f(z) = f(a)−
z21
2

− . . .−
z2r
2

+
z2r+1

2
+ . . .+

z2n
2
,

for some 0 ≤ r ≤ n. The integer r is called the index of the critical point a. We will
either denote it by r(a) or ind(a).

An important property of the dynamical system ϕtf : M → M is that, for any given x0
in M , there exist two points x− and x+ in Critf such that

(5) lim
t→±∞

ϕtf(x0) = x±.

3.2. Stable and unstable manifolds. Let a be a critical point of f . The stable (resp.
unstable) manifold W s(a) (resp. W u(a)) is defined as the set of points x in M satisfying
ϕtf(x) → a as t→ +∞ (resp. t→ −∞). From [52, Th. 2.7], one knows that W s(a) (resp.
W u(a)) is a smooth submanifold of dimension r(a) (resp. n− r(a)) where 0 ≤ r(a) ≤ n is
the index of the critical point a. Note that, for more general vector fields with an hyperbolic
point, the stable (resp. unstable) manifold is a priori only injectively immersed in M . The
fact that we consider a gradient flow allows to show that it is also embedded [52, Th. 2.7],
even if it is not a priori properly embedded.

We will say that the gradient flow ϕtf satisfies the Morse-Smale assumption if for
every pair of critical points (a, b), the submanifolds W s(a) and W u(b) are transversal.
Note that, in the case where a = b, the intersection of the tangent spaces is in fact reduced
to {0}. This transversality assumption ensures the following important property:

Lemma 3.2. Let ϕtf be a Morse-Smale gradient flow. If a 6= b and if W s(a) ∩W u(b) is
non empty, then

r(b) < r(a).

Let us now fix some conventions. Given any x0 inM , there exists a unique pair of critical
points (x−, x+) such that x0 belongs to W u(x−) ∩W s(x+). We define

Eu(x0) := Tx0W
u(x−) and E

s(x0) := Tx0W
s(x+).

Note that, whenever x0 is not a critical point of f , the intersection of these two subspaces
is not reduced to 0 as they both contains the direction of the flow. From our transversality
assumption, one has Tx0M = Eu(x0) + Es(x0). We refer to paragraph 3.3 for a more
detailed description of these subspaces at the critical points of f . We can also introduce
the dual spaces E∗

u(x0) and E
∗
s (x0) which are defined as the annihilators of these unstable
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and stable spaces, i.e. E∗
u/s(x0)(E

u/s(x0)) = 0. From the Morse-Smale transversality
assumption, one can verify that, for any x0 in M ,

(6) E∗
u(x0) ∩ E

∗
s (x0) = {0}.

3.3. Lyapunov exponents. Given every point x in M , we define Lf (x) as the unique
matrix satisfying

∀ξ, η ∈ TxM, 〈Lf(x)ξ, η〉g(x) = d2xf(ξ, η).

Let a be an element in Crit(f). The matrix Lf(a) corresponds to the linearization of Vf
at the point a. It can be shown [52, Lemma 2.5] that

∀t ∈ R, dϕtf(a) = exp(tLf (a)).

Moreover, from the definition and from the Morse assumption, one can verify that Lf (a)
is an invertible matrix which is symmetric with respect to the Riemannian metric g. In
particular, it is diagonalizable and we denote by (χj(a))j=1,...,n its eigenvalues. These
nonzero real numbers are called the Lyapunov exponents of the system. They depend
both on f and on the metric g. We will always suppose that χi(a) < 0 for 1 ≤ i ≤ r
and χi(a) > 0 for r + 1 ≤ i ≤ n. Moreover, there exists a basis of eigenvectors which
is orthonormal with respect to the metric g. According to [52, Th. 2.7], the stable (resp.
unstable) space is in fact equal to the direct sum of eigenspaces corresponding to the
negative (resp. positive) eigenvalues of Lf(a).

3.4. Lift to the cotangent space. We will now explain how one can lift this gradient
flow to the cotangent space T ∗M . We associate to the vector field Vf an Hamiltonian
function Hf which can be written as follows:

∀(x, ξ) ∈ T ∗M, Hf(x, ξ) := ξ (Vf(x)) .

This Hamiltonian function also induces an Hamiltonian flow that we denote by Φtf : T ∗M →
T ∗M . We note that, by construction,

Φtf (x, ξ) :=
(
ϕtf(x),

(
dϕtf(x)

T
)−1

ξ
)
,

and that this flow induces a diffeomorphism between T ∗M − {0} and T ∗M − {0}. When
it does not lead to any confusion, we will also write Φtf(x, ξ) = (x(t), ξ(t)). We note that
this flow induces a smooth flow on the unit cotangent bundle S∗M , i.e.

∀t ∈ R, ∀(x, ξ) ∈ S∗M, Φ̃tf (x, ξ) =


ϕtf (x),

(
dϕtf(x)

T
)−1

ξ∥∥∥
(
dϕtf(x)

T
)−1

ξ
∥∥∥


 .

We denote by X̃Hf
the induced smooth vector field on S∗M .
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3.5. Adapted coordinates. We will say in the following that (f, g) is a smooth Morse

pair if, given any critical point a of f , one can find an open neighborhood Va of a and a
system of smooth (meaning C∞) local coordinate charts (zj)j=1,...,n = (x, y) such that, in
this coordinate chart, the vector field Vf reads

(7) Vf :=
n∑

j=1

χj(a)zj∂zj = −
r∑

j=1

|χj(a)|xj∂xj +
n∑

j=r+1

|χj(a)|yj∂yj .

The key point for us is that this change of coordinates is smooth which will allow us to take
as many derivatives as we want in the following sections where we aim at using microlocal
techniques. Requiring that there exists a smooth change of coordinates for which the
gradient vector field can be linearized may a priori look as a strong assumption. We will
briefly discuss below two situations where this assumption is satisfied, the second one being
in some sense rather general.

When this assumption is satisfied, we shall say that we have an adapted system

of coordinates. We note that the function f may not have a nice expression in these
coordinates, meaning that f may a priori not have a Morse-type expression. In such a
coordinate chart, the gradient flow reads

ϕtf(z) = (etχ1(a)z1, . . . , e
tχn(a)zn)

= (e−|χ1(a)|tx1, . . . , e
−|χr(a)|txr, e

|χr+1(a)|tyr+1, . . . , e
|χn(a)|tyn).

Let us fix some conventions that we will use in the following. For every critical point a, we
denote the change of coordinates by

κa : w ∈ Va ⊂M → (x, y) ∈ Wa = (−δa, δa)
n ⊂ R

n,

where δa > 0 is some small enough parameter.

Remark 3.3. Let (U, κ) = (ui) be local coordinates on M . Whenever the chart is of
class C1, one can lift in a canonical way these coordinates into coordinates (ui, vj) on the
cotangent space T ∗M by using (K, T ∗U), where K(x, ξ) = (κ(x), (dκ(x)T )−1ξ). When we
make a change of coordinates (ũi, ṽj), one can verify that ṽ is the image of v under a linear
transformation (depending only on the coordinate charts (ui) and (ũi)).

We can also write the expression of the Hamiltonian flow in the corresponding adapted
coordinate chart near a critical point a. In such a chart, one can write

Hf(z, ζ) =

n∑

j=1

χj(a)zjζj = −
r∑

j=1

|χj(a)|xjξj +
n∑

j=r+1

|χj(a)|yjηj.

In particular, the map Φtf can be written in this local coordinate chart as

Φtf (z, ζ) = (eχ1(a)tz1, . . . e
χn(a)tzn; e

−χ1(a)tζ1, . . . e
−χn(a)tζn).
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3.5.1. Locally flat metrics. The vector field Vf is a priori not linear in the chart of the
Morse Lemma. In fact, there might be no Morse chart in which gij(0) is diagonal and the
vector field linear. We will call the metric g locally flat with respect to f if, for any
critical point of f , there exists a smooth Morse chart (zi) in which the vector field Vf has
the linear form

Vf (z) =
n∑

j=1

χj(a)zj∂zj .

Such flows are also sometimes refered as tame flows. This type of locally flat metrics
appears for instance in [29, 35]. It is shown in [29] that, given any Morse function, one can
find an adapted metric g such that the Morse-Smale transversality assumption is satisfied.
Moreover, they proved that this property is more or less generic among such metrics.

3.5.2. Sternberg-Chen Theorem. We would like to justify that asking for a smooth change
of coordinates which linarizes the gradient flow is in some sense generic. For that purpose,
we just recall Sternberg-Chen’s Theorem on the linearization of vector fields near hyperbolic
critical points [12] (see also [38, Th. 9, p.50]):

Theorem 3.4 (Sternberg-Chen). Let X(x) =
∑

j aj(x)∂xj be a smooth vector field defined

in a neighborhood of 0 in Rn. Suppose that X(x) = 0. Denote by (χj) the eigenvalues of
L := (∂xkaj(0))k,j. Suppose that the eigenvalues satisfy the non resonant assumption,

∀ k1, . . . , kn ∈ Z s.t k1, . . . kn ≥ 2, ∀ 1 ≤ i ≤ n, χi 6=
n∑

j=1

kjχj .

Then, there exists a smooth diffeomorphism h which is defined in a neighborhood of 0 such
that

X ◦ h(x) = dh ◦ (Lx.∂x).

The classical Grobman-Hartman Theorem [28] ensures the existence of a conjugating
homeomorphism. The crucial point of the Sternberg-Chen Theorem is that the conjugating
map is smooth provided some non resonance assumption is made. Applying this Theorem
locally near the critical points of f allows to show the existence of a smooth and adapted
system of coordinates. Note that this non-resonant assumption on the eigenvalues is for
instance satisfied if, for every a in Crit(f), the Lyapunov exponents (χj(a))j=1,...,n are
rationally independent. In section 6, we will in fact make the assumption that all the
Lyapunov exponents are rationally independent.

3.6. Attractor and repeller of the Hamiltonian flow. We now introduce the following
subsets of T ∗M :

Γ+ =
⋃

x∈M

E∗
s (x), Γ− =

⋃

x∈M

E∗
u(x), and Γ =M × {0}.

We have then
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Lemma 3.5. Suppose that (f, g) is a smooth Morse pair which generates a Morse-Smale
gradient flow ϕtf . One has, for every (x, ξ) in T ∗M with ξ 6= 0,

(x, ξ) ∈ Γ± =⇒ lim
t→±∞

‖ξ(t)‖x(t) = 0,

and
(x, ξ) /∈ Γ± =⇒ lim

t→±∞
‖ξ(t)‖x(t) = +∞,

where (x(t), ξ(t)) = Φtf (x, ξ).

This Lemma tells us that the trapped set of the Hamiltonian flow is reduced to the zero
section of T ∗M . The proof of this Lemma will crucially use the fact that we made the
Morse-Smale assumption and that we have a smooth (at least C1) change of coordinates
which linearizes the vector field.

Proof. We only consider the case where t → +∞ (the other case can be obtained by
replacing f by −f). Let (x, ξ) be an element in T ∗M with ξ 6= 0. There exists a critical
point x+ of f such that limt→+∞ ϕtf(x) = x+. In particular, for t > 0 large enough, ϕtf (x)
belongs to the adapted chart around x+ which was defined in paragraph 3.5. Up to a
translation of time, one can write that, in this system of adapted coordinates and for every
t ≥ 0

Φtf (x, ξ) = (e−|χ1|tx1, . . . , e
−|χr|txr, 0, . . . , 0, e

|χ1|tξ1, . . . , e
|χr|tξr, e

−|χr+1|tηr+1, . . . , e
−|χn|tηn).

Hence, as all the norms can be made uniformly equivalent to the Euclidean norm in a small
neighborhood of x+, one can find two positive constants 0 < C1 < C2 such that

C1

(
r∑

j=1

e2|χj |tξ2j +

n∑

j=r+1

e−2|χj |tη2j

)
≤ ‖ξ(t)‖2x(t) ≤ C2

(
r∑

j=1

e2|χj |tξ2j +

n∑

j=r+1

e−2|χj |tη2j

)
.

The fact that (x, ξ) belongs to Γ+ is exactly equivalent to the fact that ξ1 = . . . = ξr = 0
from which one can easily conclude the expected property. �

Introduce now the two following disjoint subsets of S∗M :

Σu := S∗M ∩ Γ+, and Σs := S∗M ∩ Γ−.

Then, one has:

Lemma 3.6. Suppose that (f, g) is a smooth Morse pair which generates a Morse-Smale
gradient flow ϕtf . One has

(8) ∀(x, ξ) ∈ S∗M − Σs, lim
t→−∞

dS∗M

(
Φ̃tf (x, ξ),Σu

)
= 0,

and

(9) ∀(x, ξ) ∈ S∗M − Σu, lim
t→+∞

dS∗M

(
Φ̃tf(x, ξ),Σs

)
= 0.

This lemma tells us that Σu and Σs are in a certain weak sense repeller and attractor of
the flow Φ̃tf . A stronger version of this fact will be given in Lemma 3.9.
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Proof. We proceed as in the proof of Lemma 3.5, and we just treat the case where t→ +∞.
Let (x, ξ) be an element in S∗M − Σu. In other words, (x, ξ) does not belong Γ+. Using
the notations of the proof of Lemma 3.5, it means that

Φtf (x, ξ) = (e−|χ1|tx1, . . . , e
−|χr|txr, 0, . . . , 0, e

|χ1|tξ1, . . . , e
|χr|tξr, e

−|χr+1|tηr+1, . . . , e
−|χn|tηn),

with ξj 6= 0 for some 1 ≤ j ≤ r. By letting t → +∞, we find that that any accumu-

lation point of Φ̃tf(x, ξ) is of the form (0, . . . , 0, ξ̃1, . . . , ξ̃r, 0, . . . , 0). Equivalently, every
accumulation point belongs to Σs. �

3.7. Compactness. In order to make the machinery of anisotropic Sobolev space work, it
will first be important for us that Σu and Σs are compact subsets of S∗M . This assumption
is verified for gradient flow satisfying the Morse-Smale assumption:

Lemma 3.7. Suppose that (f, g) is a smooth Morse pair which induces a gradient flow
with the Morse-Smale property. Then, the subsets Σu and Σs are compact in S∗M .

This property combined with Lemma 3.9 will be crucial in our construction of anisotropic
Sobolev spaces. In particular, they are necessary to prove Lemma 2.1 from [21] which is
at the heart of this construction. We note that the proof of Lemma 3.7 requires both the
Morse-Smale assumption and the existence of a (at least C1) linearizing chart for the flow.

Remark 3.8. Even if this Lemma sounds natural, the proof is a little bit subtle and it is
related to the so-called Whitney regularity condition [39, Ch. 7] – see also the appendix
of [35] for related results in the case of locally flat metrics. Here, we are aiming at weaker
results than in these references and we shall give a proof of our Lemma which is based
on purely “dynamical arguments”. Our argument is in fact very close to the proof of the
compactness of the space of connecting orbits of Weber in [52, Th. 3.8] – see also [46]
for earlier related results of Smale. In this reference, it was proved that the space of
connecting orbits between two critical points a and b is “compact up to broken orbits”. It
means that, for a fixed sequence (xm)m≥1 in W

u(a)∩W s(b), there exists (up to extraction)
a sequence of critical points a = bl, bl−1, . . . , b1 = b and a finite sequence of points z(p) in
W u(bp+1) ∩W s(bp) such that

∀ǫ1 > 0, ∃m0, ∀m ≥ m0, d
(
O(xm),∪1≤p≤l−1O(z(p))

)
< ǫ1,

where O(x) denotes the orbit of x under the flow ϕtf . The key “dynamical argument”
in the proof of Weber was to use the Grobman-Hartman linearization Theorem around
the critical points of f . Here, we want to prove something slightly stronger in the sense
that we will have to keep track of the behaviour of the cotangent vectors in the phase
space S∗M and not only of the points in the position space M . For that purpose, we will
crucially make use of the fact that we have a smooth (at least C1) chart where the vector
field can be linearized. In some sense, our compactness statement on S∗M requires the
Sternberg-Chen’s Theorem while Weber’s compactness statement on M only required the
Grobman-Hartman’s Theorem.

Proof. We only treat the case of Σs as the case of Σu can be obtained by replacing f by −f .
In order to prove compactness, we will just prove that Σs is closed (as S∗M is compact).
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Before starting the proof, we note that, for a given critical point b of f , the conormal to
the unstable manifold W u(b) can be written in local coordinates as

(10)
{
(z, ζ) = (0, y, ξ, 0) : y ∈ R

n−r(b), ξ ∈ R
r(b) − {0}

}
.

We will now show that Σs is closed via a contradiction argument. We fix (zm, ζm) a sequence
in Σs which converges to (z∞, ζ∞) ∈ S∗M and we assume that the limit (z∞, ζ∞) does not
belong to Σs. We know that there exists b1 in Crit(f) such that z∞ belongs to W u(b1).
Without loss of generality, by extracting a subsequence, we can suppose that there exists
a single point a in Crit(f) such that zm belongs to W u(a) for every m ≥ 1.

Let us first suppose that a = b1. In that case, for T > 0 large enough, Φ̃−T (z∞, ζ∞) will

belong to the linearizing chart near a. Hence, for m ≥ 1 large enough, Φ̃−T (zm, ζm) also
belongs to this linearizing chart by continuity of Φ̃−T . Up to applying the flow in backward
time, we thus know from (10) that (zm, ζm) and (z∞, ζ∞) are of the form

(zm, ζm) = (0, ym, ξm, 0) and (z∞, ζ∞) = (0, y∞, ξ∞, η∞),

in the local coordinates near a. As we supposed that the limit point does not belong to
Σs, we note that η∞ 6= 0 and it gives us the expected contradiction as (zm, ζm) → (z∞, ζ∞)
as m tends to +∞.

Suppose now that a 6= b1 and let us explain how we can get a contradiction too. Note
that this implies r(b1) > 0 as S∗Vb1 ∩ Σs = ∅ when r(b1) = 0. For that purpose, we will

verify that we can construct a new sequence ((z
(1)
m , ζ

(1)
m ))m≥1 in Σs such that the following

holds :

• for every m ≥ 1, z
(1)
m belongs to W u(a),

• (z
(1)
m , ζ

(1)
m ) → (z

(1)
∞ , ζ

(1)
∞ ) as m→ +∞,

• z
(1)
∞ ∈ W s(b1)− {b1} and (z

(1)
∞ , ζ

(1)
∞ ) /∈ Σs.

Then, we know that z
(1)
∞ ∈ W u(b2) for some critical point b2 verifying r(b2) < r(b1) – see

Lemma 3.2. If b2 = a, we are in the first situation for the sequence (z
(1)
m , ζ

(1)
m )m∈N and

we get the expected contradiction. If not, we can reproduce the same construction. This

yields a new sequence (z
(2)
m , ζ

(2)
m ) ∈ Σs converging to some point (z

(2)
∞ , ζ

(2)
∞ ) /∈ Σs and such

that z
(2)
m belongs to W u(a) for every m ≥ 1. Again, we can ensure that z

(2)
∞ ∈ W u(b3)

with r(b3) < r(b2). In the end, this gives a sequence of critical points b1, b2, . . . , bl with
r(bp+1) < r(bp) for every i ≥ 1. As r(bp) ≥ 0 for every p ≥ 1, there will necessarily be some
l ≥ 1 such that bl = a and in that case, we already saw how to get the contradiction.

Hence, all that remains to be proved is the existence of a new sequence ((z
(1)
m , ζ

(1)
m ))m≥1

with the above requirements when a 6= b1. As above, we can suppose without loss of
generality that both (zm, ζm) and (z∞, ζ∞) belong to the linearizing chart near b1. In the
local system of coordinates near b1, these two points read

(zm, ζm) = (xm, ym, ξm, ηm) and (z∞, ζ∞) = (0, y∞, ξ∞, η∞),

with ‖xm‖ → 0 as m → +∞ as (zm, ζm) converges to (z∞, ζ∞). As the limit point does
not belong to Σs, we also know that η∞ 6= 0. Hence, there exists some δ1 > 0 such that,



SPECTRAL ANALYSIS OF MORSE-SMALE GRADIENT FLOWS 17

for m large enough, ‖ηm‖ ≥ δ1. Let us now apply the backward flow to (zm, ζm), i.e.

Φ−T (zm, ζm) := (zm(−T ), ζm(−T )),

where

zm(−T ) = (e|χ1|Txm,1, . . . , e
|χr|Txm,r, e

−|χr+1|Tym,r+1, . . . , e
−|χn|Tym,n) = (xm(−T ), ym(−T )),

and

ζm(−T ) = (e−|χ1|T ξm,1, . . . , e
−|χr|T ξm,r, e

|χr+1|Tηm,r+1, . . . , e
|χn|Tηm,n) = (ξm(−T ), ηm(−T )).

Note that this expression is only valid when zm(−T ) belongs to the linearizing chart near
b1. For every m large enough, we now pick Tm large enough to ensure that there exists
1 ≤ j ≤ r such that 0 < δ2 < |e|χj |Tmxm,j | < 2δ2 for some fixed δ2 > 0 smaller than the
size of the linearizing chart. Note that, as ‖xm‖ → 0, Tm ∼ | log ‖xm‖| tends to +∞ as
m→ +∞. We now set

(z(1)m , ζ (1)m ) := Φ̃−Tm(zm, ζm) =

(
zm(−Tm),

ζm(−Tm)

‖ζm(−Tm)‖

)
∈ Σs,

and we will verify that, up to extraction, it has the expected properties. First of all, up to

extraction, we can suppose that the sequence converges to a limit point (z
(1)
∞ , ζ

(1)
∞ ) belonging

to S∗M which is our second requirement. By construction, the points z
(1)
m = ϕ−Tm(zm)

belong to W u(a) which is our first requirement. It remains to check the last properties.
From the expression of zm(−Tm) in local coordinates and as Tm → +∞, we can verify

that z
(1)
∞ is of the form (x∞, 0) with ‖x(1)∞ ‖ & δ2. Hence, z

(1)
∞ ∈ W s(b1)− {b1} as expected.

It remains to consider the cotangent component. As ‖ηm‖ ≥ δ1 and as Tm → +∞, we
know that ‖ηm(−Tm)‖ → +∞ and that ‖ξm(−Tm)‖ → 0 as m tends to +∞. This implies

that ζ
(1)
∞ is of the form (0, η

(1)
∞ ) 6= 0. Hence, from (10), (z

(1)
∞ , ζ

(1)
∞ ) belongs to the conormal

of W s(b1) which is a subset of Σu. From the transversality assumption, it cannot belong
to Σs which was our last requirement on the limit point. This concludes the proof of the
Lemma.

�

3.8. Invariant neighborhoods. We conclude this dynamical section with the following
Lemma which states that Σu and Σs are repeller and attractor in a slightly stronger sense
than in Lemma 3.6.

Lemma 3.9. Let (f, g) be a smooth Morse pair that induces a Morse-Smale gradient flow.
Let ǫ > 0. Then, there exists an open neighborhood V s of Σs which is of size ≤ ǫ and such
that

∀t ≥ 0, Φ̃tf (V
s) ⊂ V s.

The same property holds true for Σu in backward times.

One more time, the proof makes use of the existence of a (at least C1) linearizing chart
for the flow. We also make use of the fact that the critical values of f are distinct.
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Proof. Again, we only treat the case of Σs (the case of Σu can be obtained by replacing
f by −f). Recall that we assumed our Morse function f to be excellent, meaning that
all its critical values are distinct. Thus, we can define the following total order relation
between critical points. We say that a < b if f(a) < f(b). This relation allows to order
the critical points as a1 < a2 < · · · < aK .

The proof of this lemma requires one more time a delicate analysis of the flow. We
construct the neighborhood in a progressive manner. First, we build a small neighborhood
of the projection of Σs on M which is equal to ∪1≤j≤K:r(aj)6=0W

u(aj). Then, we adjust the
construction to be able to lift this open set into a small open neighborhood of Σs inside
S∗M . In order to construct the neighborhood in M , we fix, for every 1 ≤ j ≤ K for which
aj has positive Morse index (i.e. r(aj) > 0), the following open neighborhood of aj inside
M :

R(aj , ǫj, ǫ
′
j) := {(x, y) : ∀j, |xj| < ǫ′j , |yj| < ǫj},

where ǫj, ǫ
′
j > 0 are small enough parameters to ensure that this defines an ǫ neighborhood

of aj. We will now adjust the values of these parameters to construct a neighborhood of
the projection of Σs which is invariant by ϕtf for every t ≥ 0. For that purpose, we proceed
by induction starting from the largest values of f .

First, we observe that every point whose trajectory enters R(aj , ǫj, ǫ
′
j) will either stay in

this open set for every t ≥ 0, or escape this open set (in a maybe arbitrarly large time) by
crossing the following subset of M :

F (aj, ǫj , ǫ
′
j) := {(x, y) : ∀j, |xj | < ǫ′j , ∃j, |yj| = ǫj}

which is one of the face of the boundary of R(aj , ǫj, ǫ
′
j). We will inductively construct

from the maximum of f a system of open neighborhoods R(aj , ǫj , ǫ
′
j)j , r(aj) > 0 such that

for every face F (aj , ǫj, ǫ
′
j) of R(aj , ǫj , ǫ

′
j), there exists a finite time Tj > 0, such that for

every x ∈ F (aj , ǫj, ǫ
′
j), the trajectory t 7→ ϕtf(x) meets ∪j<iR(ai, ǫi, ǫ′i) for some t ∈ (0, Tj).

For j = K, one can verify that the neighborhood is invariant by the flow in positive time
provided that we pick ǫK = ǫ′K > 0 small enough to ensure that we are in the neighborhood
of adapted coordinates defined in paragraph 3.5. Suppose now that we have fixed the values
of ǫi and ǫ

′
i for every i > j with r(ai) 6= 0 and that r(aj) 6= 0. We will explain how to fix the

value of ǫj and ǫ
′
j . We claim that the forward trajectory of every point inside F (aj , ǫj, ǫ

′
j)

will reach ⋃

i>j:r(ai)6=0

R(ai, ǫi, ǫ
′
i)

in a finite time 0 < t < Tj where Tj depends only on ǫi, ǫ
′
i with i > j satisfying r(ai) 6= 0

and on ǫj . In particular, this time can be made uniform in ǫ′j . Assume by contradiction
that, for every m > 0 and for every T > 0, there exists xm,T in F (aj, ǫj , 1/m) such that the
orbit t ∈ [0, T ] 7→ ϕtf(xm,T ) does not meet the subset

⋃
i>j:r(ai)6=0R(ai, ǫi, ǫ

′
i). We fix T > 0,

and, by compactness, one can extract a subsequence such that xm,T → x∞,T as m → +∞
where x∞,T belongs to W u(aj) is at distance > O(ǫj) of aj . We now extract another
subsequence (as T → +∞) and we obtain a point x∞ 6= aj in W u(aj) that would not
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reach
⋃
i>j:r(ai)6=0R(ai, ǫi, ǫ

′
i) in finite time. This contradicts the fact that limt→+∞ ϕtf(x∞)

is equal to ai for some i > j satisfying r(ai) 6= 0.
Recall now that the distance between two trajectories can grow at most exponentially

under the flow [54, Lemma 11.11]. Hence, if we choose ǫ′j > 0 small enough, we can
ensure that, the forward trajectory of every point inside F (aj, ǫj , ǫ

′
j) will remain ǫ close to

W u(aj) up the finite time t ≤ Tj where it will enter one of the neighborhood R(ai, ǫi, ǫ
′
i)

with i > j and r(ai) > 0. This construction defines a family of open neighborhood of the
critical points aj of index > 0 whose forward trajectory under the flow will remain within a
distance ǫ > 0 of ∪1≤j≤K:r(aj)6=0W

u(aj) which is exactly the projection of Σs on M . Then,
we set

N :=
⋃

t≥0

⋃

1≤j≤K:r(aj)6=0

ϕtf (R(aj, ǫj , ǫ
′
j)).

By construction, this set is invariant by ϕtf . Moreover, it defines a neighborhood of
∪1≤j≤K:r(aj)6=0W

u(aj) which is of size ≤ ǫ.
It now remains to verify that we can lift this neighborhood into a neighborhood of size ǫ of

Σs. For that purpose, we rely on the fact that, our smooth system of coordinate chart allows
to linearize also the Hamiltonian flow Φtf . Hence, we fix another positive parameter ǫ′′j > 0

and we consider above each neighborhood R(aj , ǫj, ǫ
′
j) an open neighborhood R̃(aj, ǫj , ǫ

′
j , ǫ

′′
j )

in S∗M made of unit covectors which are within a distance < ǫ′′j of ξ1 = . . . = ξr = 0. For
every fixed choice of ǫj > 0 and ǫ′′j > 0, we can use the compactness of Σs to fix ǫ′j > 0 small
enough to ensure that this defines indeed a neighborhood of size < ǫ of Σs∩S∗R(aj , ǫj, ǫ

′
j).

Using the fact that the distance between two trajectories can grow at most exponentially
under the flow Φ̃tf , we can argue by induction as in the case of M . More precisely, at each
step of the induction, we can fix ǫ′′j > 0 small enough in a way that depends only on the

values of ǫj and of ǫ
(∗)
i with i > j and r(ai) > 0 and such that

Ñ :=
⋃

t≥0

⋃

1≤j≤K:r(aj)6=0

Φ̃tf (R̃(aj, ǫj , ǫ
′
j , ǫ

′′
j ))

defines a forward invariant open neighborhood of Σs of size < ǫ. �

4. Spectral properties of the transfer operator acting on currents

This section is organized as follows. First, we state the existence of a nice escape function
enjoying the dynamical features of [21, 17]. This allows us to define some Sobolev spaces
of anisotropic currents following these references. Finally, we recall the spectral properties

of −L(k)
Vf

acting on these spaces. The main difference with the above references is the

construction of the escape function which requires modifications compared with the setting
from [21, Lemma 2.1] where the authors made use of the Anosov property. Lemmas 3.7
and 3.9 will in fact ensure that the construction of Faure and Sjöstrand can be extended to
our framework. From this point on, we will always assume that (f, g) is a smooth Morse

pair generating a Morse-Smale gradient flow.

4.1. Construction of anisotropic Sobolev spaces.
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4.1.1. Escape function. The key ingredient in the construction of [21] is the following
Lemma which will allow us to define appropriate Sobolev spaces where the operator LVf
has nice spectral properties.

Lemma 4.1 (Escape function). Let N0, N1 > 4‖f‖C0 be two elements in R. Then, there
exist c0 > 0 (depending on (M, g) but not on N0 and N1) and a smooth function m(x, ξ)
in C∞(T ∗M) with bounded derivatives and which

• takes values in [−2N0, 2N1],
• is 0 homogeneous for ‖ξ‖x ≥ 1,
• is ≤ −N0

2
on a conic neighborhood of Γ− (for ‖ξ‖x ≥ 1),

• is ≥ N1

2
on a conic neighborhood of Γ+ (for ‖ξ‖x ≥ 1),

• is ≥ N1

4
− 2N0 outside a conic neighborhood of Γ− (for ‖ξ‖x ≥ 1),

and such that there exists R0 > 0 for which the escape function

Gm(x, ξ) := m(x, ξ) log(1 + ‖ξ‖2x)

verifies, for every (x, ξ) in T ∗M with ‖ξ‖x ≥ R0,

XHf
.(Gm)(x, ξ) ≤ −CN := −c0 min{N0, N1}.

Now that we have settled the dynamical framework precisely in section 3, the construc-
tion of the function Gm closely follows the one from [21]. For the sake of exposition, we
postpone the detailed proof of this result to appendix A, and we just mention the key in-
gredients: (1) f is strictly decreasing along the flow, (2) there exists a C1 chart of adapted
coordinates (see paragraph 3.5), (3) the attractor and repeller of the Hamiltonian flow
(Lemmas 3.7 and 3.9) are compact. Lemma 4.1 is in fact the only step in the construction
of the anisotropic Sobolev space where one uses the dynamical properties of the flow under
consideration.

4.1.2. Anisotropic Sobolev spaces. Let us now define the corresponding anisotropic Sobolev
spaces. We fix N0, N1 > 4‖f‖C0 large and we set

(11) Am(x, ξ) := expGm(x, ξ),

where Gm(x, ξ) is given by Lemma 4.1. Following paragraph 1.1.2 in [21], one can define
the following anisotropic Sobolev space

Hm(M) := Op(Am)
−1(L2(M)),

where Op(Am) is an essentially selfadjoint pseudodifferential operator5 with principal sym-
bol Am.

We now briefly collect some facts concerning these spaces and we refer to [20, Sect. 3.2]
for more properties of these spaces. The space Hm(M) is endowed with a Hilbert structure
induced by the Hilbert structure on L2(M). The space

H−m(M) = Op(Am)L
2(M)

5Note that this requires to deal with symbols of variable orders whose symbolic calculus was described
in Appendix A of [20]. This can be done as the symbol m(x, ξ) belongs to the standard class of symbols
S0(T ∗M).
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is the topological dual of Hm(M). The anisotropic Sobolev space Hm(M) is a reflexive
space. Finally, one has

C∞(M) ⊂ Hm(M) ⊂ D′(M),

where the injections are continuous.

4.1.3. Anisotropic Sobolev spaces of currents. Let 0 ≤ k ≤ n. We consider the vector

bundle Λk(T ∗M) of exterior k forms. We define A
(k)
m (x, ξ) := Am(x, ξ)Id belonging to

Hom(Λk(T ∗M)). We fix the inner product 〈, 〉(k)g∗ on Λk(T ∗M) which is induced by the
metric g on M .

This allows to define the Hilbert space L2(M,Λk(T ∗M)) and to introduce an anisotropic
Sobolev space of currents by setting

Hm
k (M) = Op(A(k)

m )−1L2(M,Λk(T ∗M)),

where Op(A
(k)
m ) is a pseudodifferential operator with principal symbol A

(k)
m . We refer to [17,

App. C.1] for a brief reminder of pseudodifferential operators with values in vector bundles.
In particular, adapting the proof of [20, Cor. 4] to the vector bundle valued framework, one

can verify that A
(k)
m is an elliptic symbol, and thus Op(A

(k)
m ) can be chosen to be invertible

on Ωk(M). Mimicking the proofs of [20], we can deduce some properties of these spaces
of currents. First of all, they are endowed with a Hilbert structure inherited from the
L2-structure on M . The space

Hm
k (M)′ = Op(A(k)

m )L2(M,Λk(T ∗M))

is the topological dual of Hm
k (M) which is in fact reflexive. We also note that the space

Hm
k (M) can be identified with Hm(M)⊗C∞(M) Ω

k(M). Finally, one has

Ωk(M) ⊂ Hm
k (M) ⊂ D′,k(M),

where the injections are continuous.

4.2. Identifying the dual. Recall that the Hodge star operator is the unique isomorphism
⋆k : Λ

k(T ∗M) → Λn−k(T ∗M) such that, for every ψ1 in Ωk(M) and ψ2 in Ωn−k(M),
∫

M

ψ1 ∧ ψ2 =

∫

M

〈ψ1, ⋆
−1
k ψ2〉

(k)
g∗(x)ωg(x),

where 〈., .〉(k)g∗(x) is the induced Riemannian metric on Λk(T ∗M). In particular, ⋆k induces

an isomorphism from Hm
k (M)′ to H−m

n−k(M), whose Hilbert structure is given by the scalar
product

(ψ1, ψ2) ∈ H−m
n−k(M)2 7→ 〈⋆−1

k ψ1, ⋆
−1
k ψ2〉Hm

k (M)′ .

Thus, the topological dual of Hm
k (M) can be identified with H−m

n−k(M), where, for every ψ1

in Ωk(M) and ψ2 in Ωn−k(M), one has the following duality relation:

〈ψ1, ψ2〉Hm
k ×H−m

n−k
=

∫

M

ψ1∧ψ2 = 〈Op(A(k)
m )ψ1,Op(A(k)

m )−1⋆−1
k ψ2〉L2 = 〈ψ1, ⋆

−1
k ψ2〉Hm

k ×(Hm
k )′ .
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4.3. Discrete spectrum. The main result on the spectral properties of −L(k)
Vf

acting on

these anisotropic spaces is the following Proposition:

Proposition 4.2 (Discrete spectrum). The operator −L(k)
Vf

defines a maximal closed un-

bounded operator on Hm
k (M),

−L(k)
Vf

: Hm
k (M) → Hm

k (M),

with domain given by D(−L(k)
Vf
) := {u ∈ Hm

k (M) : −L(k)
Vf
u ∈ Hm

k (M)}. It coincides with

the closure of −L(k)
Vf

: Ωk(M) → Ωk(M) in the graph norm for operators. Moreover, there

exists a constant C0 in R (that depends on the choice of the order function m(x, ξ)) such

that −L(k)
Vf

has empty spectrum for Re(z) > C0. Finally, the operator

−L(k)
Vf

: Hm
k (M) → Hm

k (M),

has a discrete spectrum with finite multiplicity in the domain

Re(z) > −CN + C,

where C > 0 depends only the choice of the metric (and the local coordinate charts) and
CN > 0 is the constant from Lemma 4.1.

Up to some adaptations to deal with the case of currents, we can in fact follow the
proof of [21] which only requires the existence of an escape function as in Lemma 4.1 – see
appendix B for a brief account on the proof of Faure and Sjöstrand.

We now list some properties of this spectrum. As in [21, Th. 1.5], we can show that

the eigenvalues (counted with their algebraic multiplicity) and the eigenspaces of −L(k)
Vf

:

Hm
k (M) → Hm

k (M) are in fact independent of the choice of escape function. For every
0 ≤ k ≤ n, we call the eigenvalues the Pollicott-Ruelle resonances of index k. For
later use, we will write

Rk(f, g) := {Pollicott-Ruelle resonances of index k} ⊂ C.

In other words, these complex numbers are the poles of the meromorphic extension of the
resolvent (

−L(k)
Vf

− z
)−1

: Ωk(M) → D′,k(M).

Finally, we note that, by duality, the same spectral properties holds for the dual operator

(12) (−L(k)
Vf
)† = −L(n−k)

V−f
: H−m

n−k(M) → H−m
n−k(M).

5. Upper bound on the set of eigenvalues

We aim at describing completely the eigenvalues and the eigenmodes in great detail. To
begin with, we shall first show an upper bound on the spectrum :
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Proposition 5.1. Suppose that (f, g) is a smooth Morse pair inducing a Morse-Smale
gradient flow. Then, one has, for every 0 ≤ k ≤ n,

Rk(f, g) ⊂ Ik :=
⋃

a∈Crit(f)

Ik(a),

where, for every a in Crit(f) of index 0 ≤ r ≤ n,

(13) Ik(a) :=
⋃

(∗)

{
−

n∑

j=1

αj |χj(a)| : ∀j ∈ I ∪ J, αj ≥ 1

}
.

where (∗) means α ∈ Zn+ and6 I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n} with |J | − |I| = k − r.

Building on the construction of section 4, we shall now give the proof of this Proposition
by making use of our a priori information on the regularity of the resonant states. Among
other things, we will use the following property of transport equations:

Lemma 5.2 (Propagation Lemma). Let 0 ≤ k ≤ n, let z in C and let u ∈ D′,k(M) be a

solution of L(k)
Vf
u = zu. If u|U = 0 where U ⊂ M is some open subset then u vanishes on

the larger open subset
⋃
t∈R ϕ

t
f(U).

The proof of this Lemma follows from the fact that ϕt∗f u = etzu.

5.1. Proving Rk(f, g) ⊂ Ik. We let 0 ≤ k ≤ n. Let z = λ+ iγ be an element in Rk(f, g).
We will prove that z belongs to Ik by ordering a1 < a2 < . . . < aK by increasing order
as in the proof of Lemma 3.9 and we will treat our problem using the pull-back Theorem
of Hörmander [32]. Assume that, for all i 6 j, the eigenfunction u vanishes near ai and
assume the germ of u near aj+1 is non vanishing (see Lemma 5.3 below). In that case, we
would like to prove that z is of the form:

z = −
n∑

l=1

αl|χl(aj+1)|,

with some restrictions on the coefficients αl. For that purpose, we start with the following
central observation:

Lemma 5.3. Let u ∈ D′,k(M) be some eigencurrent of −L(k)
Vf

acting on Hm
k (M).

If u vanishes in some neighborhood of all ai for i 6 j, then u restricted to the level
f−1(< f(aj+1)) vanishes. Moreover, if the germ u|Vaj+1

6= 0 (for the adapted chart κaj+1
:

Vaj+1
→Waj+1

defined in paragraph 3.5), then the germ u|Vaj+1
is supported in the germ of

unstable manifold W u(aj+1) ∩ Vaj+1
.

Remark 5.4. A first consequence of this Lemma is that there is necessarily a critical point
a in a neighborhood of which u does not vanish.

6Note that I and J may be empty.
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Proof. Assume without loss of generality that f(aj+1) = 0. The level f−1(< 0) contains
only the critical points {a1, . . . , aj}. Moreover, since the value of the potential f is mono-
tonic along the flow it follows that the level f−1(< 0) is contained in the union of unstable
manifolds

⋃
i≤jW

u(ai). Hence, by the propagation Lemma, u|{f−1(<0)} = 0. Now consider

some open set V in Vaj+1
which does not interset W u(aj+1). Using the facts that f is

excellent that W u(aj+1) is an embedded submanifold and that f must increase along the
flow, one knows that, for every x in V , x− = limt→−∞ ϕtf (x) belongs to {a1, . . . , aj}. Using
the propagation Lemma one more time, one can then deduce that u|V = 0. This is valid
for any open set V ⊂ Vaj+1

which does not intersect W u(aj+1). In other words, u|U is
supported in the germ of unstable manifold W u(aj+1) ∩ Vaj+1

, which concludes the proof
of the Lemma. �

We now let ψ be a smooth test form in Ωn−k(M) which is compactly supported in Vaj+1
.

We can then write, for every s in (0, 1],
〈
(ϕln s

f )∗u, ψ
〉
= s−(λ+iγ)〈u, ψ〉.

As we made the assumption that u is not identically vanishing in the neighborhood of aj+1,
we can choose ψ compactly supported near aj+1 such that 〈u, ψ〉 6= 0. Then, we would like
to prove that the left-hand side of the equality admits a polyhomogeneous expansion in s
which is indexed by the set Ik(aj+1). Combining this to Lemma C.3, we would then deduce
that z is of the expected form. Thus, our last task is to prove that

〈
(ϕln s

f )∗u, ψ
〉
admits a

polyhomogeneous expansion indexed by Ik(aj+1). For that purpose, we shall work using
the local coordinates (x, y) defined in paragraph 3.5. We denote by ũ the image of u in
this chart. From Lemma 5.3, this defines a current which is carried in (−δa, δa)

n∩{x = 0}.
This can be extended into a current defined on W̃a := Rr(a) × (−δa, δa)n−r(a) by setting
ũ = 0 outside (−δa, δa)n. Then, we introduce the following map

Φ : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (s−1
1 x1, . . . , s

−1
r xr, sr+1yr+1, . . . , snyn) ∈ W̃a.

Note that this is well defined except if si = 0 for some 1 ≤ i ≤ r(a). We also define the
partial maps:

Φ1 : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (xj, sjyj) ∈ W̃a,

and

Φ2 : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (sjxj , yj) ∈ W̃a.

Contrary to Φ, these two maps are well defined for s belonging to the whole set (−1, 1)n.
Let s be a point in (−1, 1)n with all entries which are non vanishing. In that case, we can
write

(14) 〈Φ(s)∗ũ, ψ̃〉 = 〈Φ2(s)∗Φ
1(s)∗ũ, ψ̃〉 = 〈Φ1(s)∗ũ,Φ2(s)∗ψ̃〉.

This is valid as long as sj 6= 0 for every 1 ≤ j ≤ n. Our next step is to show that this
extends as a smooth function on (−1, 1)n. From the previous expression, one can observe
that the main concern is to be able to study the smoothness of Φ1(s)∗ũ in the variable

(sj)j ∈ (−1, 1)n. Recall that u is an eigenvector of −L(k)
Vf

acting on a certain anisotropic
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Sobolev space Hm
k (M). According to [21, Th. 1.5], the eigenmodes are independent of the

choice of the order function m(x, ξ) satisfying the assumptions of Lemma 4.1. Letting the
parameter N1 → +∞ in Lemma 4.1 and using Lemma 5.3, one finds that the wave front
set WF (ũ) of ũ satisfies the following

(15) WF (ũ) ⊂
{
(0, y, ξ, 0) ∈ T ∗W̃a : ξ 6= 0

}
.

We would now like to define the pull-back of ũ under the map Φ1, and, for that purpose,
we shall apply Hörmander’s pullback Theorem [32, Th. 8.2.4] – see also [10]. Hence, we

have to compute the normal N∗
Φ1 ⊂ T ∗W̃a of the map Φ1,

N∗
Φ1 = {(x, sjyj; ξ, η) such that (0, 0, 0) = (ξ, η) ◦ d(s,x,y)Φ

1, (ξ, η) 6= (0, 0)}

= {(x, sjyj; ξ, η) such that (0, 0, 0) = (ξ, η) ◦

(
0 1 0
y 0 (sj)j

)
, (ξ, η) 6= (0, 0)}

=

{
(x, sjyj; ξ, η) such that

(∑

j

yjη
j, ξ,

∑

j

sjη
j

)
= (0, 0, 0), (ξ, η) 6= (0, 0)

}

=

{
(x, sjyj; 0, η) such that η 6= 0,

∑

j

sjη
j =

∑

j

yjη
j = 0

}
.

In particular, from (15), N∗
Φ1∩WF (ũ) is empty. Hence, we can apply Hörmander’s pullback

Theorem, i.e. (Φ1)∗ũ is well defined and its wave front set is contained in

(Φ1)∗WF (ũ) =

{(
s, x, y;

∑

j

yjη
j, ξ,

∑

j

sjη
j

)
such that

(
x,
∑

j

sjyj; ξ, η

)
∈ WF (ũ)

}

⊂ {(s, 0, y; 0, ξ, 0) such that ξ 6= 0}.

As ψ̃ is a smooth test form, we note that (Φ1)∗ũ ∧ (Φ2)∗ψ̃ is a current of degree n on
(−1, 1)n × W̃a whose wave front set is included in (Φ1)∗WF (ũ). Consider now the push-
forward of this current under the map :

p : (x, y, s) ∈ W̃a × (−1, 1)n 7→ s ∈ (−1, 1)n.

By the push-forward Theorem [32, 10], the wave front set of the pushforward distribution
is included in

p∗

(
(Φ1)∗WF (ũ)

)
=
{
(s; σ) such that (s, x, y; σ, 0, 0) ∈ (Φ1)∗WF (ũ), σ 6= 0

}
= ∅.

In other words, the pushforward distribution is a smooth function in the variable s ∈
(−1, 1)n. In particular, according to (14), 〈Φ(s)∗ũ, ψ̃〉 has a well–defined Taylor expan-
sion in s around 0. Then, we can combine Lemma C.2 to the fact that, in our system of
adapted coordinates, the reparametrized flow ϕln s

f can be written (sχj(a)xj , s
χj(a)yj). From

that, we deduce the expected property, i.e.
〈
(ϕln s

f )∗u, ψ
〉
admits a polyhomogeneous ex-

pansion indexed by (α.|χ(a)|)α∈Nn. In order to conclude the proof, we should observe that
u(x, y, dx, dy) is of degree k and ψ(x, y, dx, dy) of degree n − k. This forces that some
of the αj do not vanish when we express z as a combination of the Lyapunov exponents,
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i.e. z must in fact belong to the set Ik(aj+1). This concludes the proof of the inclusion
Rk(f, g) ⊂ Ik.

Remark 5.5. We shall use this kind of arguments several times in the following. We observe
that we have just been able to prove that 〈ϕln s∗

f u, ψ〉 has a polyhomogeneous expansion
indexed by the set Ik(aj+1) and that our proof only made use of the facts that the support
of u near aj+1 was included in W u(aj+1) and that its wave front is included in E∗

u near
aj+1.

In particular, we have implicitely shown the following useful statement:

Proposition 5.6. Suppose that (f, g) is a smooth Morse pair generating a Morse-Smale

gradient flow. Let u 6= 0 be an element of Hm
k (M) satisfying −L(k)

Vf
u = λu. Let a be the

critical point of f satisfying the following properties:

• u does not vanish in any neighborhood of a,
• for every a′ in Crit(f) satisfying f(a′) < f(a), u identically vanishes near a′.

Then, λ belongs to the index set Ik(a). Moreover, if λ = 0, then the index of a is equal to
k.

5.2. Asymptotic expansion of the correlation function. Let us now draw some con-
sequences of the fact that Rk(f, g) ⊂ Ik following the lines of [20]. From (40) in the ap-
pendix, we also know that (ϕ−t

f )∗ generates a strongly continuous semi-group from Hm
k (M)

to Hm
k (M) for every 1 ≤ k ≤ n whose norm is bounded by etC0 . Fix now Λ > 0. Suppose

without loss of generality that −Λ does not belong to Ik. From Proposition 4.2, we now
observe that, for every Λ > 0, one can find a weight function m(x, ξ) such that the operator

−L(k)
Vf

: Hm
k (M) → Hm

k (M)

has only discrete spectrum with finite multiplicity in the half plane Re(λ) > −Λ. Moreover,
from the fact that Rk(f, g) ⊂ Ik, the operator has only finitely many eigenvalues in this

region which are real and nonpositive. We denote by −λ(k)i the eigenvalues of −L(k)
Vf

(counted with their algebraic multiplicities). Note that each eigenvalue may a priori be

associated with a Jordan block of size d
(k)
i ≥ 1. Following [31, App. A], we fix a Jordan

path in C which separates the eigenvalues in the half plane Re(λ) > −Λ from the rest of
the spectrum. Then, according to this reference, the spectral projector associated with this
finite part of the spectrum can be written as

Π
(k)
Λ :=

1

2iπ

∫

γ

(−L(k)
Vf

− z)−1dz.

We can then split the operator −L(k)
Vf

as follows:

−L(k)
Vf

:= Π
(k)
Λ ◦ (−L(k)

Vf
) ◦ Π(k)

Λ + (Id− Π
(k)
Λ ) ◦ (−L(k)

Vf
) ◦ (Id− Π

(k)
Λ ).
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According to [19, p. 244-246], the spectrum of the operator (Id−Π
(k)
Λ )◦(−L(k)

Vf
)◦(Id−Π

(k)
Λ )

is contained in the half plane Re(λ) < −Λ while the finite rank part can be written as

(16) Π
(k)
Λ ◦ (−L(k)

Vf
) ◦ Π(k)

Λ =
∑

i:λ
(k)
i ≤Λ




d
(k)
i∑

l=1

−λ(k)i |u(k)i,l 〉〈v
(k)
i,l |+

d
(k)
i −1∑

l=1

|u(k)i,l 〉〈v
(k)
i,l+1|




where

• (u
(k)
i,l )λ(k)i ≤Λ,l=1,...d

(k)
i

belongs to Hm
k (M) ⊂ D′,k(M),

• (v
(k)
i,l )λ(k)i ≤Λ,l=1,...d

(k)
i

belongs to H−m
n−k(M) ⊂ D′,n−k(M),

• |u〉〈v| : ψ ∈ Hm
k (M) 7→ 〈v, ψ〉u ∈ Hm

k (M)

Recall from [21, Th. 1.5] that these “generalized eigendistributions” are intrinsic and that
they do not depend on the choice of the order function m. We also note that the vectors

v
(k)
∗ give rise to a Jordan basis for the spectral decomposition of the dual operator acting on
H−m
n−k(M). We now want to relate this spectral decomposition to the correlation function

from the introduction :

Proposition 5.7. Let 0 ≤ k ≤ n and Ik be the subset defined in Proposition 5.1. Then

for every i ≥ 0, there is an integer d
(k)
i ≥ 1 and λ

(k)
i ∈ Ik s.t. for any Λ > 0, for every

(ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M) and for every t ≥ 0,

(17) 〈(ϕ−t
f )∗ψ1, ψ2〉 =

∑

i:λ
(k)
i <Λ

e−λ
(k)
i t

d
(k)
i −1∑

l=0

tl

l!

d
(k)
i∑

j=l+1

〈u(k)i,j , ψ2〉〈v
(k)
i,j+l, ψ1〉+Oψ1,ψ2,Λ(e

−Λt).

In fact, the result also holds for any ψ1 in Hm
k (M) provided the parameters (N0, N1) involved

in the definition of m are large enough.

Note that the sum is finite and that all the quantities involved in the sum are independent
of the choice of the order function m. This expression gives us an asymptotic expansion
for the correlation function at any order of precision. As was already explained, all the

λ
(k)
i appearing in the sum belong to the set −Ik ⊂ R+. The rest of the article is devoted

to a more precise understanding of the terms appearing in this asymptotic expansion. Yet,
before that, let us prove this Proposition.

Proof. Fix q ≥ 1. We first follow the arguments of [20, Th. 1] applied to the hyperbolic

diffeomorphism ϕq := ϕ
− 1

q

f rather than to the generator −L(k)
Vf
. Precisely, following this

reference, we can verify that the order functionm from Lemma A.1 satisfies the assumptions
of [20, Lemma 2]. Then, following almost verbatim [20, section 3.2], we can deduce that
the transfer operator

ϕ∗
q : ψ ∈ Hm

k (M) → ϕ
− 1

q
∗

f ψ ∈ Hm
k (M)

defines a bounded operator on the anisotropic space Hm
k (M) which can decomposed as

(18) ϕ∗
q = r̂m,q + ĉm,q,
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where ĉm,q is a compact operator and the remainder r̂m,q has small operator norm bounded

as : ‖r̂m,q‖ ≤ e
C−

CN
q

3 (for some uniform C that may be slightly larger than the one
from Proposition 4.2). Note that, for every q ∈ N, we can make ‖r̂m,q‖ arbitrarily small
by choosing N large enough. The proof follows similar lines as for the definition of the

spectrum of −L(k)
Vf

except that we deal with the propagator at discrete times instead of

the generator. Again, we can verify that the spectrum is intrinsic, i.e. independent of the
choice of order function. This is because the eigenvalues and associated spectral projectors
correspond to the poles and residues of a discrete resolvent defined as an operator from
Ωk(M) to D′,k(M) as follows. Consider the series

∑+∞
l=0 e

−lzϕl∗q . Then, by the direct bound

‖
+∞∑

l=0

e−lzϕl∗q ψ‖Hm
k (M) 6

+∞∑

l=0

e−lRe(z)‖ϕ∗
q‖
l‖ψ‖Hm

k (M),

we deduce that, for Re(z) large enough, the series
∑+∞

l=0 e
−lzϕl∗q ψ converges absolutely in

Hm
k (M) for every test form ψ ∈ Ωk(M). Hence, by the continuous injections Ωk(M) →֒

H
mN0,N1
k (M) →֒ D′,k(M), the identity

(Id− e−zϕ∗
q)

−1 :=
+∞∑

l=0

e−lzϕl∗q : Ωk(M) → D′,k(M)

holds true for Re(z) large enough. A consequence of the decomposition (18) is that the
resolvent of ϕ∗

q

(λ− ϕ∗
q)

−1 : Ωk(M) → D′,k(M)

has a meromorphic extension from |λ| > eC0 to λ ∈ C with poles of finite multiplicity
which correspond to the eigenvalues of the operator ϕ∗

q [20, Corollary 1]. In other words,

(Id − e−zϕ∗
q)

−1 : Ωk(M) → D′,k(M) has a meromorphic extension from Re(z) > C0 (with

C0 > 0 large enough) to z ∈ C with poles of finite multiplicity. Denote by π̃
(k)
λ,q the spectral

projector of ϕ∗
q associated to the eigenvalue λ which is obtained from the contour integral

formula :

π̃
(k)
λ,q =

1

2iπ

∫

γ

(
µ− ϕ∗

q

)−1
dµ

where γ is a small circle around λ. This corresponds to the residues of the discrete resolvent

at ez = λ. As ϕ∗
q commutes with −L(k)

Vf
, we can deduce that the range of π̃

(k)
λ,q is preserved by

−L(k)
Vf
. In particular, any eigenvalue z0 of −L(k)

Vf
on that space must verify e

z0
q = λ. As we

know that any resonance of −L(k)
Vf

is real, we can deduce that the poles of (Id− e−z/qϕ∗
q)

−1

belong to Rk(f, g) ⊂ R modulo 2iπZ. Take now z0 in Rk(f, g). We want to show that

(19) π̃
(k)
ez0 ,1 = π(k)

z0
,

where π
(k)
z0 is the spectral projector of −L(k)

Vf
associated to the eigenvalue z0. Equivalently,

the spectral projectors are the same for both problems. Once it will be done, the proposition
is just a consequence of decomposition (18) for q = 1 when t is an integer as a consequence
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of [20, Corollary 1]. When t is a positive real number, we can conclude by writing ϕ−t =
ϕ−[t]ϕ−t+[t] and by using (40) from the appendix.

In order to show (19), we first observe that π̃
(k)

ez0/q,q
= π̃

(k)
ez0 ,1 and we decompose the

resolvent (z + L(k)
Vf
)−1 as follows:

(z + L(k)
Vf
)−1 =

+∞∑

l=0

e−
z
qϕ∗

q

∫ 1
q

0

e−ztϕ−t∗
f dt = (Id− e−

z
qϕ∗

q)
−1

∫ 1
q

0

e−ztϕ−t∗
f dt.

For Re(z) large enough, this expression makes sense viewed as an operator from Ωk(M) to
D′,k(M). We have seen that it can be meromorphically continued to C by using the fact
that we have built a proper spectral framework and that we may pick N0 and N1 arbitrarily
large in the definition of m. Consider now a small contour γ around z0 containing no other
elements of Rk(f, g). Integrating over this contour tells us that, for every q ≥ 1 :

π(k)
z0

= π̃
(k)

ez0/q,q
q

∫ 1
q

0

e−z0tϕ−t∗
f dt = π̃

(k)
ez0 ,1

∫ 1

0

e−t
z0
q ϕ

− t
q
∗

f dt.

As an operator on Ωk(M), we can observe that
∫ 1

0
e−t

z0
q ϕ

− t
q
∗

f dt converges to the identity

as q → +∞. Hence, π
(k)
z0 = π̃

(k)
ez0 ,1 as expected. �

6. Proof of Theorems 2.2 and 2.3

We now turn to the proofs of our main results. Thanks to Proposition 5.7, it amounts

to compute explicitely the eigenvalues and the eigenmodes of the operator −L(k)
Vf

on our

families of anisotropic Sobolev spaces. We proceed in several steps. First, we show how to
eliminate the Jordan blocks (Propositions 6.1 and 6.3). Then, we define a canonical basis
of our generalized eigenspaces (Proposition 6.6) and conclude the proof of Theorems 2.2
and 2.3 (Proposition 6.9). Finally, we end this section with some extra comments related
to Weyl’s asymptotics and trace formulae.

6.1. Jordan blocks. We distinguish the cases λ = 0 and λ 6= 0 as we can eliminate Jordan
blocks for reasons of different nature in both cases.

6.1.1. The case λ = 0. Let us first show the absence of Jordan blocks in the kernel:

Proposition 6.1. Suppose that (f, g) is a smooth Morse pair which induces a Morse-
Smale gradient flow. Let 0 ≤ k ≤ n. Then, when acting on a convenient7 anisotropic space
Hm
k (M), one has

Ker(L(k)
Vf
) = Ker((L(k)

Vf
)2).

We start with the following Lemma:

7It means that there is a discrete spectrum for Re(λ) < C if C > 0.
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Lemma 6.2. Let 1 ≤ j ≤ K. Then, there exists an open neighborhood Vaj of aj such that,
for every i < j with r(ai) ≥ r(aj), one has

W u(ai) ∩ Vaj = ∅.

Proof. Let 1 ≤ j ≤ K. Let i < j satisfying r(ai) ≥ r(aj). The closure of W u(ai) is
a compact subset. In order to prove this Lemma, we suppose by contradiction that aj
belongs to W u(ai). It means that there exists a sequence (xm)m≥1 in W

u(ai) such that xm
converges to aj as p → +∞. Without loss of generality, we can suppose that there exists
a unique b in Crit(f) such that, for every m ≥ 1, xm ∈ W s(b). Using the conventions
of Remark 3.8 for our fixed sequence (xm)m≥1, there exists a sequence of critical points
ai = bl, bl−1, . . . , b1 = b and a finite sequence of points z(p) in W u(bp+1)∩W s(bp) such that

∀ǫ1 > 0, ∃m0, ∀m ≥ m0, d
(
O(xm),∪1≤p≤l−1O(z(p))

)
< ǫ1,

where O(x) denotes the orbit of x under the flow ϕtf . Note from Lemma 3.2 that r(bp+1) <
r(bp) for every 1 ≤ p ≤ l − 1. On the one hand, xm converges to a point belonging
to ∪1≤p≤l−1O(z(p)), and, on the other one, xm converges to aj . Hence, there exists 0 ≤
p ≤ l − 1 such that aj = bp, and one has r(aj) = r(bp) > r(bl) = r(ai) which gives the
contradiction. �

We can now give the proof of Proposition 6.1. Suppose by contradiction that there exists
a Jordan block associated to the eigenvalue 0 for a certain degree of currents k. Then, it
means that there exists u0 6= 0 and u1 6= 0 in our anisotropic Sobolev space of currents
Hm
k (M) such that

L(k)
Vf
u0 = 0 and L(k)

Vf
u1 = u0.

Integrating these expressions, we find that, for all t in R,

(ϕtf)
∗u0 = u0 and (ϕtf)

∗u1 = u1 + tu0.

As in our computation of the spectrum, we let t = ln s with 0 < s ≤ 1,

(20) (ϕln s
f )∗u1 − u1 = (ln s)u0.

As above, we order our critical points a1 < a2 < . . . < aK using the fact that the critical
values of f are distinct.

We now use this Lemma to get the expected contradiction. We fix j ≥ 0. We suppose
that u0 is vanishing in a neighborhood of any critical point (ai)i≤j and that it does not
vanish in a neighborhood of aj+1. According to Lemma 5.3, we can deduce that supp(u0)∩
Vaj+1

is included in W u(aj+1). Arguing as in paragraph 5.1 (i.e. via the pull-back Theorem

of Hörmander), we can verify that 〈(ϕln s
f )∗u0, ψ〉 = 〈u0, ψ〉 has a bounded asymptotic

expansion in s for ψ a smooth test form compactly supported in Vaj+1
. Moreover, we can

choose ψ such that the right hand side of the equality does not vanish. Hence, the leading
order of this expansion must be of degree 0. This implies that aj+1 is a critical point of
index r(aj+1) = k.

We would now like to prove that, near aj+1, u1 is also supported in W u(aj+1). We fix V
an open subset of Vaj+1

which does not intersect W u(aj+1). From Lemma 6.2, one knows
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that, for every x in V , there exists i ≤ j such that ai = limt→−∞ ϕtf(x) and r(ai) < r(aj+1).
Hence, we would conclude that supp(u1) ∩ Vaj+1

is included in W u(aj+1) if we could show
that, for every i ≤ j with r(ai) < k, u1 identically vanishes in an open neighborhood of ai.

Let i0 ≤ j be an index with r(ai0) < k. Then, either supp(u1) ∩ Vai0 is included in

W u(ai0), or, as LVfu1 = u0 = 0 on f−1(< f(aj+1)), we can deduce by propagation that
there exists a critical point a of smaller index such that u1 does not vanish in a neighborhood
of a. Hence, without loss of generality, we can suppose that supp(u1) ∩ Vai0 is included in
W u(ai0). As LVfu1 = 0 in Vai0 , we can argue one more time as in paragraph 5.1. From
that, we deduce that

〈(ϕln s
f )∗u1, ψ〉 = 〈u1, ψ〉

has a bounded asymptotic expansion in s for every choice of ψ compactly supported in
Vai0 . Using the fact that r(ai0) < k, we conclude that the left hand side must go to 0 as

s→ 0+. Thus, one has 〈u1, ψ〉 = 0 as expected from which we deduce that supp(u1)∩Vaj+1

is included in W u(aj+1).
Thanks to the fact that supp(u1)∩Vaj+1

is included in W u(aj+1) and to the fact that u1
belongs to our family of anisotropic spaces, we can argue one more time as in paragraph 5.1.
We find then that 〈(ϕln s

f )∗u1, ψ〉 has a bounded asymptotic expansion as s → 0+ for any
smooth test function ψ supported near aj+1. Using then that u1 verifies equation (20),
we can finally conclude that 〈u0, ψ〉 = 0 for every ψ supported near aj+1 which gives the
contradiction to the fact that there exists a nontrivial Jordan block in the kernel.

6.1.2. The case λ 6= 0. When we make a slightly more restrictive assumption on the
Lyapunov exponents, we can also eliminate Jordan blocks when λ 6= 0:

Proposition 6.3. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Let 0 ≤ k ≤ n. Then, when acting on a convenient anisotropic
space Hm

k (M), one has, for every λ ∈ Rk(f, g),

Ker((L(k)
Vf

+ λ)) = Ker((L(k)
Vf

+ λ)2).

Proof. We only treat the case λ 6= 0. Suppose by contradiction that there exists a Jordan
block associated to the eigenvalue λ > 0 for a certain degree k. Once again, it means that
there exists u0 6= 0 and u1 6= 0 in our anisotropic Sobolev space of currents Hm

k (M) such
that

L(k)
Vf
u0 = λu0 and L(k)

Vf
u1 = λu1 + u0.

Integrating these expressions, we find that, for all t in R−,

(ϕtf )
∗u0 = eλtu0 and (ϕtf )

∗u1 = eλt (u1 + tu0) .

As in our computation of the spectrum, we let t = ln s with 0 < s ≤ 1,

(21) (ϕln s
f )∗u1 − sλu1 = sλ(ln s)u0.

Following the proof of paragraph 5.1, we denote by j + 1 the index point such that, for
every i ≤ j, u0 vanishes in a neighborhood of ai and such that u0 does not vanish near aj+1.
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This implies that supp(u0) ∩ Vaj+1
is included in W u(aj+1) and that λ is of the following

form:

λ =
n∑

i=1

αi|χi(aj+1)|.

As L(k)
Vf
u1 = λu1+u0, we know that L(k)

Vf
u1 = λu1 on the open set f−1(< f(aj+1)). Suppose

now that there exists i0 ≤ j such that u1 does not identically vanish near ai0 . Without
loss of generality, we may suppose that i0 is minimal. In such a neighborhood, one has

L(k)
Vf
u1 = λu1 as u0 vanishes near ai0 . Arguing as in paragraph 5.1 one more time, we would

find that

λ =

n∑

i=1

αi|χi(ai0)|.

As we supposed that λ 6= 0 and that the Lyapunov exponents are rationally independent,
this would lead to a contradiction. Hence, u1 vanishes near any critical point ai with i ≤ j.
As u0 is locally supported on W u(aj+1), we know that u1 still satisfies the eigenvalue

equation L(k)
Vf
u1 = λu1 near aj+1 and outside W u(aj+1). By propagation, we deduce that

u1 is locally supported on W u(aj+1). According to Remark 5.5, we are then able to infer
that 〈(ϕln s

f )∗u1, ψ〉 has a (bounded) polyhomogeneous expansion in s as s → 0+ for every
smooth test form ψ supported near aj+1. From our assumption on j, one can find ψ such
that 〈u0, ψ〉 6= 0 which gives the expected contradiction when we write (21). �

6.2. Background material on currents. In order to describe the eigenmodes, we start
with some background material on the theory of currents. By a Theorem of Schwartz [44,
Th. 37 p. 102] whose adaptation to the case of currents is straightforward, we first recall
that :

Theorem 6.4 (Schwartz). Let u be a current of degree k supported by a smooth submanifold
X embedded in M . Suppose that in a small neighborhood of x ∈ X, one has a system
of coordinate functions (xi, yj)16i6r,r+16j6n where the coordinates (xi)16i6r are transversal
coordinates of X, i.e. the submanifold X is given by the equations {xi = 0, 1 6 i 6 r}.
Then the current u reads locally as a finite sum :

(22) u(x, y) =
∑

α,|I|+|J |=k

uα,I,J(y)∂
α
x δ

Rr

{0}(x)dx
I ∧ dyJ

where (α, I, J) are multi–indices, the uα,I,J are distributions in D′(Rn−r).

If we denote by N∗X the conormal bundle of X , we also have the following property [13,
Lemma 9.2]:

Lemma 6.5. Suppose that the assumptions of the previous Theorem hold and use the same
notations. If WF (u) ⊂ N∗(X), then the current u reads

(23) u(x, y) =
∑

α,|I|+|J |=k

uα,I,J(y)∂
α
x δ

Rr

{0}(x)dx
I ∧ dyJ

where the uα,I,J are smooth functions in C∞(Rn−r).
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6.3. Description of the eigenmodes. Let 0 ≤ k ≤ n. In this paragraph, we will con-

struct a “canonical” basis for every eigenspace of the operator L(k)
Vf

acting on the anisotropic

space Hm
k (M). We proceed in three steps. First, we determine the local shape of an eigen-

mode u near the “smallest” critical point where it does not vanish – recall that such a
point exists from Lemma 5.3. Then, we prove that the germ of current defined near the
critical point a can be extended into a current carried by W u(a). Finally, we show that
these currents form indeed a basis of the kernel.

Before starting the proof which is a little bit combinatorial, recall from Proposition 5.1

that any eigenvalue λ of the operator L(k)
Vf

: Hm
k (M) → Hm

k (M) must be of the form

λ =
∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)|,

where

• a is a critical point of index r,
• for every 1 ≤ j ≤ n, αj is a nonnegative integer,
• I ⊂ {1, . . . , r} and J ⊂ {r + 1, . . . , n} such that |J | − |I| = k − r.

6.3.1. Local form near the “smallest” critical point. Let u 6= 0 be an element in Hm
k (M)

such that L(k)
Vf
u = λu. As before, we denote by j the index such that, for every i < j,

u vanishes in a neighborhood of ai and such that u does not vanish near aj . Recall that
supp(u)∩Vaj is included in W u(aj) for some small enough neighborhood Vaj of aj . Thanks
to Proposition 5.6, −λ belongs to Ik(aj). In order to alleviate notations, we will write
aj = a in the following.

Using Schwartz’s Theorem and Lemma 6.5, we deduce that, in the adapted coordinates
of paragraph 3.5, the current u reads as a finite sum :

(24) u(x, y, dx, dy) =
∑

α′,|I′|+|J ′|=k

uα′,I′,J ′(y)∂α
′

x δ
Rr

{0}(x)dx
I′ ∧ dyJ

′

where the uα′,I′,J ′ are smooth functions in C∞(Rn−r). A direct calculation shows us that,
in a small enough neighborhood of a, one has, for every 0 < s ≤ 1,

(ϕln s∗
f u)(x, y, dx, dy) =

∑

α′,|I′|+|J ′|=k

uα′,I′,J ′((sχj(a)yj)j)∂
α′

x δ
Rr

{0}(x)s
λ̃I′,J′,α′dxI

′

∧ dyJ
′

,

where

λ̃I′,J ′,α′ :=
r∑

j=1

(α′
j + 1)|χj(a)| −

∑

j∈I′

|χj(a)|+
∑

j∈J ′

|χj(a)|.

On the other hand, as u satisfies L(k)
Vf
u = λu, we know that, for every smooth test form ψ

of degree n− k and for every 0 < s ≤ 1,

〈ϕln s∗
f u, ψ〉 = sλ〈u, ψ〉.
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Combining this equality to the local form of u, we find

sλ〈u, ψ〉 =
∑

α′,|I′|+|J ′|=k

sλ̃I′,J′,α′

〈
∂α

′

x δ
Rr

{0}(x), uα′,I′,J ′((sχj(a)yj)j)dx
I′ ∧ dyJ

′

∧ ψ(x, y, dx, dy)
〉
.

Write now the Taylor expansion of uα′,I′,J ′ (which is C∞). From that, we find that

uα′,I′,J ′(y) = cα′,I′,J ′y
α′

r+1

r+1 . . . yα
′

n
n ,

where cα′,I′,J ′ is some fixed constant, α′
j belongs to N for every r + 1 ≤ j ≤ n and

λ̃I′,J ′,α′ +
n∑

j=r+1

α′
j |χj(a)| = λ.

Equivalently, one has

λ =
r∑

j=1

(α′
j + 1)|χj(a)|+

n∑

j=r+1

α′
j |χj(a)| −

∑

j∈I′

|χj(a)|+
∑

j∈J ′

|χj(a)|.

To summarize, this shows that the current u reads in the adapted cooordinates near a:

(25) u(x, y, dx, dy) =
∑

α,I,J :(∗)

cα,I,J (y∂x)
α δR

r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) ,

where cα,I,J are some fixed constant and where (∗) means that (α, I, J) satisfies

• for every 1 ≤ j ≤ n, αj ∈ N,
• I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n},
• |J | − |I| = k − r,
• λ =

∑
j∈I∪J(αj + 1)|χj(a)|+

∑
j∈(I∪J)c αj |χj(a)|,

6.3.2. Extension of the local form to M . We will now explain how the local form obtained
in (25) can be extended into a natural eigencurrent carried by the closure of W u(a). For
a fixed triple (α, I, J) satisfying the conditions (∗), we define

(26) Ũα,I,J
a (x, y, dx, dy) := θ(x, y) (y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) ,

where θ is a smooth cutoff function supported near a (in particular, it is equal to 1 near
a). By construction, one can verify that

L(k)
Vf
Ũα,I,J
a = λŨα,I,J

a

on the open neighborhood (−δa/4, δa/4)n. Moreover, this current belong to the anisotropic
space Hm

k (M) provided that we pick N0 large enough (compared with |α|) in the definition
of the order function m. Using the conventions of (16), we then set

Uα,I,J
a =

∑

i:λ
(k)
i =λ

〈Ũα,I,J
a , v

(k)
i,1 〉u

(k)
i,1 ,

which obviously satisfies the eigenvalue equation:

L(k)
Vf
Uα,I,J
a = λUα,I,J

a
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Let us now describe some properties of this current. First, we let ψ be a smooth n−k form
carried outsideW u(a). For such a form and for every 0 < s ≤ 1, one has 〈ϕ− ln s∗

f Ũα,I,J
a , ψ〉 =

0. Hence, every term in the asymptotic expansion (17) must vanish. In particular, one has

〈Uα,I,J
a , ψ〉 = 0 for every smooth test form supported outside W u(a). Equivalently, one has

supp
(
Uα,I,J
a

)
⊂W u(a).

By invariance under the gradient flow, the support is in fact equal to W u(a). Like in the
case of the kernel, we would like to verify that Ũα,I,J

a and Uα,I,J
a coincide in a neighborhood

of the critical point a. For that purpose, we let ψ(x, y, dx, dy) be a some smooth test form
carried in the neighborhood with adapted coordinates. Then, one finds that, for every
0 < s ≤ 1,

〈ϕln s∗
f Ũα,I,J

a , ψ〉 = sλ(1 + o(1))
〈
(y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) , ψ
〉
.

Using one more time the spectral expansion of the correlation function (17) and using the
fact that there is no Jordan blocks, one can identify the term of order sλ in the asymptotic.
In particular, this implies that

〈Uα,I,J
a , ψ〉 =

∑

i:λ
(k)
i =λ

〈Ũα,I,J
a , v

(k)
i,1 〉〈u

(k)
i,1 , ψ〉 =

〈
(y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) , ψ
〉
,

for every smooth test form ψ compactly supported in a small enough neighborhood of a.
To summarize, we have shown the following:

Proposition 6.6. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Let a be a critical point of index r, let 0 ≤ k ≤ n and let
0 ≤ θ ≤ 1 be a smooth cutoff function which is compactly supported in a small enough
neighborhood Va of a, and equal to 1 in an open neighborhood of a. Let I be a subset of
{1, . . . , r} and J be a subset of {r + 1, . . . , n} satisfying |J | − |I| = k − r. Let α be an
element in Nn. Set [W u(a)]α,I,J to be the image in the adapted coordinate chart of

(y∂x)
α δR

r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) .

Then, there exists an open neighborhood Ṽa ⊂ Va of a such that the current

Uα,I,J
a :=

∑

i:λ
(r)
i =λ

〈θ[W u(a)]α,I,J , v
(r)
i,1 〉u

(r)
i,1

satisfies

• Uα,I,J
a |Ṽa = [W u(a)]α,I,J |Ṽa,

• supp(Uα,I,J
a ) = W u(a),

• L(k)
Vf
(Uα,I,J

a ) = λUα,I,J
a with

λ =
∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)|.
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Remark 6.7. Note that, in the case λ = 0, everything is well defined as soon as (f, g) is
a smooth Morse pair generating a Morse-Smale gradient flow. Note that the eigenvalue 0
can only occur if the index r of the point a is equal to k. In that case, the current can
be easily interpreted. In fact, using the result of Corollary D.4 in [14], we recognize that

δR
k

{0}(x)dx1 ∧ . . . ∧ dxk is the integral formula for the current of integration on the germ

of submanifold W u(a) = {xi = 0, 1 6 i 6 k}. This proposition shows how this germ of
current can be extended to a current Ua := U0,∅,∅

a defined on M . We call these currents
Laudenbach’s currents of degree k. Recall that the extension of this current is a
delicate task which was first achieved by Laudenbach in [34] in the case of a locally flat
metric.

In any case, up to the linearization chart, the expression of the eigenmodes is more or
less explicit. For every λ in Ik(a), we define the “multiplicity” of λ as

(27) mk(λ) := |{(α, I, J) satisfying (∗)}| ,

where (∗) means that (α, I, J) satisfies

• for every 1 ≤ j ≤ n, αj ∈ N,
• I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n},
• |J | − |I| = k − r,
• λ =

∑
j∈I∪J(αj + 1)|χj(a)|+

∑
j∈(I∪J)c αj |χj(a)|.

Remark 6.8. In order to compute the Weyl’s law for our eigenvalues, it will be convenient
to rewrite things in a slightly different manner. More precisely, for any given α in Nn, we
set

mk,a(α) := |{(I × J ⊂ {1, . . . , r} × {r + 1, . . . , n} : |J | − |I| = k − r, and ∀j ∈ I ∪ J, αj ≥ 1}| ,

where r is the index of a. With these conventions and thanks to the rational independence,
any α.|χ(a)| appears with multiplicity mk,a(α) in Rk(f, g).

6.3.3. The generation Theorem. We conclude this section by showing that the currents we

have just constructed generate a basis of Ker(L(k)
Vf

+ λ), i.e.

Proposition 6.9. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Let 0 ≤ k ≤ n and let λ 6= 0 be an element in Rk(f, g). The
family of currents



U

α,I,J
a :

∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)| = −λ





forms a basis of the kernel of the operator

L(k)
Vf

+ λ : Hm
k (M) → Hm

k (M).

In particular, the kernel of this operator is of dimension mk(λ).



SPECTRAL ANALYSIS OF MORSE-SMALE GRADIENT FLOWS 37

Note that the proof of Theorem 2.2 is then just a combination of Proposition 5.7 with
this statement and with the fact that there is no Jordan blocks. In the case λ = 0,
this statement is true without the rational independence assumption. Hence, except for
the properties on the support of the dual basis (Sa)a∈Crit(f) (see paragraph 6.3.4 below),
Theorem 2.3 is a consequence of Proposition 5.1, Proposition 5.7, Proposition 6.9 (for
λ = 0) and Proposition 6.1.

Proof. Again, we need to distinguish the case λ = 0 and the case λ 6= 0. Let us start with
the case λ = 0. First, we show that this family of currents is linearly independent. For
that purpose, we suppose that

∑

a∈Crit(f):ind(a)=k

αaUa = 0.

Let a be the “smallest” point of index k, in the sense that, for every other point a′ 6= a of
index k, f(a′) > f(a). We pick ψ a smooth form which is compactly supported near a and

such that 〈[W u(a)], ψ〉 6= 0. As the support of Ub is contained in W u(b) for any critical
point b of index k, we can deduce (provided that the support of ψ is small enough) that

0 =
∑

b∈crit(f):ind(b)=k

αb〈Ub, ψ〉 = αa〈Ua, ψ〉 = αa〈[W
u(a)], ψ〉.

From this, we deduce that αa = 0. By induction, we can conclude that the family contains
only linearly independent currents. It remains to verify that this family generates all the

kernel. Let u 6= 0 be an element in Hm
k (M) in the kernel of L(k)

Vf
. From Remark 6.7, we

know that u must be equal to ca[W
u(a)] in a neighborhood of a where a is the “smallest”

critical point where u does not identically vanish and where ca is a fixed constant. Set now

u1 = u− caUa.

We know that u1 belongs to Hm
k (M) and that it satisfies L(k)

Vf
u1 = 0. Morever, by con-

struction, we know that u1 vanishes identically near every critical point a′ with a′ ≤ a.
Repeating the process a finite number of times, we finally get that

u =
∑

a∈Crit(f):ind(a)=k

caUa,

for some ca in R.
Suppose now that λ 6= 0. Let us first show that it generates the kernel of L(k)

Vf
+ λ. This

follows from the discussion from paragraph 6.3.1. If we take u in Hm
k (M) satisfying L(k)

Vf
u =

−λu, then (25) gives us a family of constants cα,I,J . We then set ũ = u−
∑

α,I,J cα,I,JU
α,I,J
a

where a is the smallest critical point where u does vanish in a neighborhood. Note that

λ belongs to Ik(a) from Proposition 5.6. One still has that L(k)
Vf
ũ = −λũ. From para-

graph 6.3.1, we also know that ũ vanishes near any critical point b satisfying f(b) ≤ f(a).
Then, combing the rational independence of the Lyapunov exponents with Proposition 5.6,
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we conclude that ũ = 0. Let us now briefly verify that these elements are independent.
Suppose that one can write

∑

(α,I,J)satisfying (∗)

γα,I,JU
α,I,J
a = 0

We write this relation near the critical point a and we use that the germs of current
are (from proposition 6.6) linearly independent near this critical point. This implies that
γα,I,J = 0 for every (α, I, J) associated with a.

�

6.3.4. Support of the dual basis. In order to conclude the proof of Theorem 2.3, it remains
to say a word on the basis dual to (Ua)a∈Crit(f). Note that the same discussion would hold
for other eigenvalues. We have shown that there is no Jordan blocks for the eigenvalue 0
(Prop. 6.1), and that we can choose a basis of eigenmodes (Ua)a indexed by the critical
points of index k. Moreover, all the elements in this basis can be chosen in such a way
that the support of Ua is equal to W u(a). We denote by Sa the corresponding dual basis.
Following paragraph 5.2, we have then

∀ψ1 ∈ Hm
k (M), ∀ψ2 ∈ H−m

n−k(M), 〈ϕ−t∗
f ψ1, ψ2〉 =

∑

a:ind(a)=k

〈Ua, ψ2〉〈ψ1, Sa〉+Oψ1,ψ2(e
−Λt),

for every t > 0. Applying the arguments of the previous paragraphs to the operator L(n−k)
V−f

acting on the anisotropic space H−m
n−k(M), we can construct a basis of the kernel that we

denote by (Sa)a indexed by the critical points of index k. Mimicking the above procedure,

we can impose that Sa has support contained in W s(a) and that Sa coincides with [W s(a)]

in a neighborhood of the critical point a. In particular, as W s(a) ∩W u(a) = {a}, we can
use our local adapted coordinates near a to find that 〈Ua, Sa〉 = 1. Consider now a′ 6= a of
index k. If we are able to show that 〈Sa, Ua′〉 = 0 for every such a′, then we will have that
Sa = Sa which would conclude the proof of Theorem 2.3. To prove this, we just need to
observe that W s(a) ∩W u(a′) = ∅. In fact, according to Remark 3.8 applied to f and −f ,

we find that, if x belongs to W s(a) ∩W u(a′), then ind(x−) ≥ k and ind(x+) ≤ k, where
x ∈ W u(x−)∩W s(x+). In other words, from the Morse-Smale assumption, x− = x+. From
Lemma 6.2, we would then have a = a′ which gives the contradiction.

6.4. Asymptotic formulas. In order to conclude this section, we will give some nice
asymptotic formulas that can be easily derived from our description of the spectrum.

6.4.1. Weyl asymptotics. Due to the fact that we obtained an explicit expression for the
spectrum of the transfer operator, we can easily obtain some Weyl’s formula. More pre-
cisely,
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Proposition 6.10 (Weyl Law). Let 0 ≤ k ≤ n and let ϕtf be a Morse-Smale gradient flow
all of whose Lyapunov exponents are rationally independent.. Then, one has

|{λ ∈ Rk(f, g) : |λ| ≤ Λ}| =
Λn

k!(n− k)!

∑

a∈Crit(f)

1∏n
j=1 |χj(a)|

+O(Λn−1), as Λ → +∞,

where the elements in Rk(f, g) are counted with their algebraic multiplicities.

Proof. From Remark 6.8 and Propositions 6.9 and 6.3, one knows that

|{λ ∈ Rk(f, g) : |λ| ≤ Λ}| =
∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|≤Λ

mk,a(α).

Hence, we can fix a critical point a and compute
∑

α∈Nn:α.|χ(a)|≤Λmk,a(α). We write
∑

α∈Nn:α.|χ(a)|≤Λ

mk,a(α) = |{α ∈ N
n; I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n} : α.|χ(a)| ≤ Λ and (∗∗)}| ,

where r is the index of a and where (∗∗) means that |J |−|I| = k−r and ∀j ∈ I∪J, αj ≥ 1.
We start by fixing a pair (I, J) where I ⊂ {1, . . . , r} and J ⊂ {r+1, . . . , n} subject to the
condition |J | − |I| = k − r. We then want to compute

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| .

One can verify that

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| = |{α ∈ N

n : α.|χ(a)| ≤ Λ}|+O(Λn−1).

Then, one has

|{α ∈ N
n : α.|χ(a)| ≤ Λ}| = Vol ({x ∈ (R+)

n : |χ(a)|.x ≤ Λ}) +O(Λn−1),

which is the volume of a simplical domain. Hence, one has

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| =

Λn

n!|
∏n

j=1 χj(a)|
+O(Λn−1).

This is valid for any I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n} subject to the condition |J | −
|I| = k − r. One can remark that the number of such I × J is equal to the number of
I ′ × J ⊂ {1, . . . , r} × {r+ 1, . . . , n} subject to the condition |J |+ |I ′| = k. This is exactly

equal to

(
n
k

)
. This concludes the proof of the Proposition. �

6.4.2. Trace formulas. In this paragraph, we discuss briefly some trace formulas related to
our problem. For every 0 ≤ k ≤ n and every λ ≥ 0, we set

Ck(f, λ) := Ker(L(k)
Vf

− λ),

where we mean the kernel of the operator in an appropriate anisotropic Sobolev space as
above. We define then the spaces of even (bosonic) and odd (fermionic) eigenstates:

Ceven(f, λ) :=
⊕

k≡0(mod2)

Ck(f, λ), and Codd(f, λ) :=
⊕

k≡1(mod2)

Ck(f, λ)
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The fermion number operator (−1)F acts on

C(f, λ) = Ceven(f, λ)⊕ Codd(f, λ)

with eigenvalue ±1 depending on the parity of the state. Let now θ : R → C. We define
the super8-trace as follows:

Str
(
θ
(
LVf
))

= Tr
(
(−1)F θ

(
LVf
))

= Tr
(
θ
(
LVf
)
⌉Ceven(f,λ)

)
− Tr

(
θ
(
LVf
)
⌉Codd(f,λ)

)

:=
∑

λ∈∪n
k=0Rk(f,g)

θ(λ)
(
dimCeven(f, λ)− dimCodd(f, λ)

)
.

This allows to define a notion of super-trace as soon as the last quantity is well-defined.
In order to avoid too many complications that would be beyond the scope of this article,
we take this as a definition of the trace in our framework.

The operators d and iVf both commute with LVf . Hence, Q = (d + iVf ) defines an
operator

Qλ : C
even(f, λ)⊕ Codd(f, λ) 7→ Codd(f, λ)⊕ Ceven(f, λ).

which exchanges chiralities. We observe that, for every λ > 0, Qλ is an isomorphism since
Q2
λ = LVf = λId. In particular, for every λ > 0, one has

dimCeven(f, λ) = dimCodd(f, λ).

Combined with Proposition 6.9 (when λ = 0), this implies

Str
(
θ
(
LVf
))

= θ(0)
n∑

k=0

(−1)k|{a ∈ Crit(f) : ind(a) = k}| = θ(0)
∑

a∈Crit(f)

(−1)ind(a).

By the classical Morse inequalities, the right-hand side of this equality is equal to θ(0)χ(M),
where χ(M) is the Euler characteristic of M . We shall prove this property in section 7.

Let us now specialize this result when we take θ(λ) = e−λt1[0,Λ](λ) some fixed Λ > 0. In
that case, we get the following spectral version of the Atiyah–Bott–Lefschetz fixed point
Theorem [2]:

Proposition 6.11. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov expo-
nents are rationally independent. Then, one has, for every Λ > 0, and for every t > 0,

(28)

n∑

k=0

(−1)k Tr
(
Π

(k)
Λ ϕ−t∗

f Π
(k)
Λ

)
=

∑

x=ϕ−t
f (x)

det(Id−dxϕ
−t
f )

| det(Id−dxϕ
−t
f )|

,

where Π
(k)
Λ is the spectral projector defined in paragraph 5.2 and Tr is the standard trace.

8One more time, the prefix super just emphasizes the fact that we are considering functions of odd (dzi)
and even (zi) variables.
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In the terminology of [2], the left-hand side of (28) is called the Lefschetz number of

ϕ−t∗
f (more precisely of Π

(k)
Λ ϕ−t∗

f Π
(k)
Λ ). As was already mentionned, we will verify in the

next section that the right-hand side is equal to the Euler characteristic χ(M) of M . Note
that, after integrating the previous equality against ts−1e−zt between 0 and +∞, one can
write the following expression for the spectral (super-)zeta function of LVf + z:

ζ(s, z) :=
1

Γ(s)

n∑

k=0

(−1)k
∫ +∞

0

tse−ztTr
(
Π

(k)
Λ ϕ−t∗

f Π
(k)
Λ

) dt
t
=
χ(M)

zs
.

At s = 0, this is formally equal to χ(M). If we differentiate this expression with respect to
s and evaluate it at 0, we find that e−∂sζ(0,z) = zχ(M). Equivalently, the super-determinant
of (LVf + z) verifies:

Corollary 6.12. Let ϕtf be a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Then, one has, for every Λ > 0 and for every z in C∗,

(29)

n∏

k=0

det
(
Π

(k)
Λ (L(k)

Vf
+ z)Π

(k)
Λ

)(−1)k

= zχ(M).

where Π
(k)
Λ is the spectral projector defined in paragraph 5.2 and det is the standard deter-

minant.

7. Topological considerations

Studying Morse functions has deep connections with the topology of the manifold, and
we will now describe some topological consequences of our spectral analysis of the operator

L(∗)
Vf
. In all this section, we still suppose that (f, g) is a smooth Morse pair inducing a

Morse-Smale gradient flow but we do not suppose a priori that the Lyapunov exponents
are rationally independent. The results presented here are in fact related to the descrip-
tion of the Morse complex given by Laudenbach in [34, 35] and to the interpretation of
Morse theory given by Harvey and Lawson in [30]. The main novelty here is the spectral
interpretation of these results in analogy with Hodge-de Rham theory.

7.1. De Rham cohomology. We start with a brief reminder on de Rham cohomology [41,
44]. Recall that, for every k ≥ 0, the coboundary operator d sends any element in Ωk(M)
to an element in Ωk+1(M), and that it satisfies d ◦ d = 0. In particular, one can define a
cohomological complex (Ω∗(M), d) associated with d:

0 → Ω0(M) → Ω1(M) → . . .→ Ωn(M) → 0.

This complex is also called the de Rham complex. An element ω in Ω∗(M) such that
dω = 0 is called a cocycle while an element ω which is equal to dα for some α ∈ Ω∗(M)
is called a coboundary. We define then

Zk(M) = Ker(d) ∩ Ωk(M), and Bk(M) = Im(d) ∩ Ωk(M).

Obviously, Bk(M) ⊂ Zk(M), and the quotient space Hk(M) = Zk(M)/Bk(M) is called
the k-th de Rham cohomology.
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According to [44, p. 344-345], the coboundary operator d can be extended into a map
acting on the space of currents. This allows to define another cohomological complex
(D′,∗(M), d):

0 → D′,0(M) → D′,1(M) → . . .→ D′,n(M) → 0,

where we recall that D′,k(M) is the topological dual of Ωn−k(M). One can similarly define
the k-th cohomology of that complex. A remarkable result of de Rham is that these two
cohomologies coincide [41, Ch. 4] – see also [44, p.355] for a generalization of this result.

Theorem 7.1 (de Rham). Let u be an element in D′,k(M) satisfying du = 0.

(1) There exists ω in Ωk(M) such that u− ω belongs to Im(d) ∩ D′,k(M).
(2) If u = dv with (u, v) in Ωk(M) × D′,k−1(M), then there exists ω in Ωk−1(M) such

that u = dω.

Remark 7.2. In the following, we will need something slightly more precise than (i). Namely

suppose that u is a cocycle in Hm+k
k (M). We denote by ∆

(k)
g the Laplace-Beltrami operator

acting on L2(M,Λk(T ∗M)). We can find a pseudodifferential operator Ak of order −2 such

that u − ∆
(k)
g Aku belongs to Ωk(M). As u is a cocycle, one can deduce that d∆

(k)
g Aku ∈

Ωk+1(M). From the ellipticity of ∆g, we find that dAku ∈ Ωk+1(M). This implies that
d∗dAku ∈ Ωk(M) and thus u−dd∗Ak(u) belongs to Ωk(M). As u belongs to Hm+k

k (M), we
get a refinement for point (i) in the sense that u−ω = dd∗Ak(u) belongs to d(H

m+k−1
k−1 (M)).

7.2. Finite dimensional complexes. Proving that the k-th cohomology is finite dimen-
sional requires more work – see e.g. [41, Ch. 4]. Before deducing that result from our
spectral analysis of LVf , we start with some general considerations on finite dimensional
cohomological complexes. Consider a cohomological complex (C∗, d) associated with the
coboundary operator:

0 → C0 → C1 → . . .→ Cn → 0,

where for every 0 ≤ k ≤ n, Ck is a finite dimensional subspace of D′,k(M). Consider now
the complexes induced by the operator LVf . For that purpose, we pick N0 and N1 large
enough in the definition of the order function m(x, ξ), and we define

Ck(f) := Ker
(
L(k)
Vf

)

which is a finite dimensional space. Recall one more time from [21, Th. 1.5] that these
spaces are intrinsic in the sense that they do not depend on the choice of the order function

m. As d commutes with the Lie derivative LVf , one can verify that, if L(k)
Vf
u = 0 with u

in Hm
k (M), then L(k+1)

Vf
(du) = 0 with du belonging to Hm+1

k−1 (M). Hence, the coboundary

operator d induces a finite dimensional cohomological complex (C∗(f), d)

0 → C0(f) → C1(f) → . . .→ Cn(f) → 0.

We can now apply Propositions 6.6 and 6.9 (for λ = 0) and we find that dim(Ck(f)) is in
fact equal to the number ck(f) of critical point of f which are of index k.
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7.3. Morse type inequalities. Consider a finite dimensional complex (C∗, d). We briefly
recall how to obtain Morse type inequalities in that abstract framework arguing as in [35,
Ch. 6]. For that purpose, we define

Zk(C∗) = Ker(d) ∩ Ck, and Bk(C∗) = Im(d) ∩ Ck.

As above, we define the quotient space (or the k-th cohomology of the complex):

H
k(C∗) := Zk(C∗)/Bk(C∗).

We denote by βk(C
∗) <∞ the dimension of that quotient space. We also introduce

bk(C
∗) = dim Bk(C∗), ck(C

∗) = dim Ck, and zk(C
∗) = dim Zk(C∗).

We observe that

βk(C
∗) = zk(C

∗)− bk(C
∗) and ck(C

∗) = bk+1(C
∗) + zk(C

∗).

We now write that, for every k ≥ 0,

0 ≤ bk+1(C
∗) = (ck(C

∗)− βk(C
∗))− (ck−1(C

∗)− βk−1(C
∗)) + . . .

From this expression, we can deduce the following Morse type inequalities associated
with the complex (C∗, d):

(30) ∀0 ≤ k ≤ n,

k∑

j=0

(−1)k−jcj(C
∗) ≥

k∑

j=0

(−1)k−jβj(C
∗),

and using bn+1(C
∗) = 0 :

(31)

n∑

j=0

(−1)n−jcj(C
∗) =

n∑

j=0

(−1)n−jβj(C
∗).

In the case where we pick C∗ = C∗(f), inequalities (30) and (31) are exactly the Morse
inequalities for the complex C∗(f) which is nothing else but the Morse complex (also called
Thom-Smale-Witten complex).

7.4. The Morse complex is isomorphic to the de Rham complex. Let 0 ≤ k ≤ n.
We would like now to give a spectral proof of the fact that the k-th cohomology of the
Morse complex is isomorphic to the de Rham cohomology of degree k. A proof of this
result based on the theory of currents can be found in [35, Ch. 6] in the case of locally flat
metrics – see also [29, 30]. Here, we give an alternative proof of that result based on our
spectral analysis of the operator LVf .

7.4.1. Spectral decomposition. Let m(x, ξ) be an order function with N0 and N1 sufficiently
large to ensure that 0 is an isolated eigenvalue with finite algebraic multiplicity (eventually
equal to 0). Introduce the spectral projector associated with the eigenvalue 0:

P
(k) :=

∫

γ

dz

(z − L(k)
Vf
)
: Hm

k (M) → Ck(f),
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where γ is a small Jordan path which separates 0 from the rest of the spectrum of L(l)
Vf

acting on Hm
l (M) for every 0 ≤ l ≤ n – see [31, App. A]. This operator commutes with

L(k)
Vf
. According to [19, p.244-246], one knows that

L(k)
Vf

:
(
IdHm

k
− P

(k)
)
Hm
k (M) →

(
IdHm

k
− P

(k)
)
Hm
k (M)

does not contain 0 in its spectrum. In particular, we can write the following decomposition:

IdHm
k
= P

(k) + L(k)
Vf

◦
(
(L(k)

Vf
)−1 ◦

(
IdHm

k
− P

(k)
))
.

By Cartan’s formula [44, p. 351], one knows that L(k)
Vf

= iVf ◦ d+ d ◦ iVf . Hence,

(32) IdHm
k
= P

(k) + (d ◦ iVf + iVf ◦ d) ◦
(
(L(k)

Vf
)−1 ◦

(
IdHm

k
− P

(k)
))
.

Moreover, d commutes with LVf hence with P
(k) from the expression of the spectral pro-

jector. Hence, for every u in (Id− P(k))Hm
k (M), du ∈ (Id− P(k+1))Hm+1

k+1 (M), and one has

L−1
Vf

◦ du = L−1
Vf

◦ d ◦ LVf ◦ L
−1
Vf
(u) = d ◦ L−1

Vf
(u). From that, we infer that d also commutes

with L−1
Vf

◦
(
IdHm

k
− P(k)

)
. Combining this last observation with the fact that d commutes

with P
(k) and with (32), we finally find that, for every u in Hm

k (M), one has

(33) u = P
(k)(u) + d ◦R(k)

∞ (u) +R(k+1)
∞ ◦ d(u),

where R
(n+1)
∞ = 0 and, for every 0 ≤ l ≤ n,

R(l)
∞ := iVf ◦ (L

(l)
Vf
)−1 ◦

(
IdHm

l
− P

(l)
)
.

Remark 7.3. Recall that, from our complete description of the spectrum of LVf , one has,
for every u in Hm

k (M),

P
(k)(u) = lim

t→+∞
ϕ−t∗
f u =

∑

a∈Crit(f): ind(a)=k

〈u, Sa〉Ua ∈ Ck(f).

Up to its spectral interpretation, this type of “limit homotopy equation” already appears
in the works of Harvey and Lawson [30, Th. 2.3].

7.4.2. Cohomological consequences. As the coboundary operator d commutes with LVf ,

it also commutes with P(k). In particular, the map P(k) induces a map from Zk(M) to
Zk(C∗(f)). We will now show (using our spectral approach) that it induces an isomorphism
between the quotient spaces:

Proposition 7.4. Let 0 ≤ k ≤ n. The map

P
(k) : Ωk(M) → Ck(f)

induces an isomorphism between the vector spaces Hk(C∗(f), d) and Hk(M).

In particular, Hk(M) is a finite dimensional space for every 0 ≤ k ≤ n, and its dimension
is called the k-th Betti number that we will denote by bk(M). With the notations of
paragraph 7.2, we have bk(M) = βk(C

∗(f)) for every 0 ≤ k ≤ n. In particular, if we
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apply (30) and (31) in the case of the complex (C∗(f), d), we recover the classical Morse
inequalities:

Corollary 7.5 (Morse inequalities). Let

ck(f) = |{a ∈ Crit(f) s.t. ind(a) = k}|.

Then, for all k ∈ {0, . . . , n}, we have:

k∑

j=0

(−1)k−jcj(f) ≥
k∑

j=0

(−1)k−jbj(M),

with equality in the case9 k = n.

Proof of Proposition 7.4. Let us start with injectivity. Let u be a cocycle in Ωk(M) such
that P(k)(u) = 0. We use equality (33), and we find that

u = d ◦R(k)
∞ (u),

which exactly says that u is a coboundary for the complex (D′,∗(M), d). As u is smooth,
we know from de Rham Theorem 7.1 that u is a coboundary in Ωk(M).

Let us now consider the surjectivity. Fix u a cocycle in Ker(L(k)
Vf
. From Remark 7.2, we

know that there exists ω ∈ Ωk(M) and v in Hm+k−1
k−1 (M) such that u − ω = dv. Writing

the cochain homotopy equation (33) for ω, we find that

ω = P
(k)(ω) + d ◦R(k)

∞ (ω).

This implies that
u = P

(k)(ω) + d
(
R(k)

∞ (ω) + v
)
.

By construction, R
(k)
∞ (ω)+v belongs toHm+k−1

k−1 (M). Hence, applying the spectral projector

to the previous equality and as d commutes with P(k) (thanks to the integral expression of
the spectral projector), we find that

u = P
(k)(ω) + d ◦ P(k)

(
R(k)

∞ (ω) + v
)
,

which proves the surjectivity. �

7.5. Poincaré duality and f 7→ −f . By construction, one knows that the currents
(Sa)a∈Crit(f) is the dual basis to (Ua)a∈Crit(f) for the duality bracket between Hm

k (M) and
H−m
n−k(M) which coincides (in the case of smooth forms) with the standard duality bracket

between D′,∗(M) and Ωn−∗(M). Moreover, from paragraph 6.3.4, it is in fact a basis of the

kernel of the operator L(∗)
V−f

acting on H−m
n−∗(M). We set

Cn−k(−f) := Ker(L(n−k)
V−f

).

We can then define the following complex associated with the coboundary operator d:

0 → C0(−f) → . . .→ Cn−1(−f) → Cn(−f) → 0.

9Recall that in that case, the sum is the Euler characteristic χ(M) of M .
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As was already explained, the two complexes (C∗(f), d) and (C∗(−f), d) are dual to each
other via the duality between Hm

k (M) and H−m
n−k(M), i.e.

∀(u, v) ∈ Ck(f)× Cn−k(−f), 〈u, v〉 = 〈u, v〉Hm
k (M),H−m

n−k(M) =

∫

M

u ∧ v.

Introduce now the following Poincaré isomorphism between Ck(f) and the dual of
Cn−k(−f):

P(k)
0 : u ∈ Ck(f) 7→ 〈u, .〉 ∈ Cn−k(−f)′.

We observe that 〈u, v〉 does not depend on the cohomology class of u and v. Hence,

P(k)
0 induces a linear map between Hk(C∗(f), d) and Hn−k(C∗(−f), d)′. We now follow

closely [35, Ch. 6] and verify that this is in fact an isomorphism betweeen the quotient
spaces. Suppose that θ is a linear form on H

n−k(C∗(−f), d). This induces a linear form θ
on Zn−k(C∗(−f), d) which vanishes on Bn−k(C∗(−f), d). By the Hahn-Banach Theorem,
we extend this linear form to Cn−k(−f). From the duality between Ck(f) and Cn−k(−f),
there exists a unique u in Ck(f) such that θ(v) = 〈u, v〉 for every v in Cn−k(−f). As θ
vanishes on the image of d, we find that, for every v in Cn−k−1(−f), 〈u, dv〉 = 0 from which

one can deduce that du = 0. This shows surjectivity of the linear map induced by P(k)
0 .

If we intertwine the role of f and −f , we find a linear surjection from Hn−k(C∗(−f), d)

to H
k(C∗(f), d)′. This implies that all the spaces have the same dimension. Hence, P(k)

0

induces an isomorphism between Hk(C∗(f), d) and Hn−k(C∗(−f), d)′ for every 0 ≤ k ≤ n.
Combined with Proposition 7.4 applied to both f and −f , this implies the following well
known result:

Proposition 7.6. Let M be a smooth, compact, oriented manifold without boundary.

Then, for every 0 ≤ k ≤ n, P(k)
0 induces an isomorphism between Hk(C∗(f), d) and

H
n−k(C∗(−f), d)′. In particular, bk(M) = bn−k(M) for every 0 ≤ k ≤ n.

7.6. Koszul complex associated with iVf . In some sense, the Cartan formula

LVf = d ◦ iVf + iVf ◦ d,

replaces in our context the formula ∆ = d ◦ d∗+ d∗ ◦ d in Hodge theory. Hence, what plays
the role in the Morse context of the complex (Ω∗(M), d∗) from Hodge theory is the Koszul
complex induced by the contraction operator iVf .

We emphasize that the Cartan formula combined with our spectral decomposition yields
an analogue of the Hodge decomposition in our framework:

u = P
(k)(u) + d

(
iVf ◦ (L

(k)
Vf
)−1 ◦ (Id− P

(k))(u)
)
+ iVf

(
d ◦ (L(k)

Vf
)−1 ◦ (Id− P

(k))(u)
)
.

In other words, any u in Ωk(M) can be decomposed as the sum of an invariant current, of
a coboundary (for d) and of a boundary (for iVf ).

We now consider the Morse-Koszul homological complex (C∗(f), iVf )

0 → Cn(f) → Cn−1(f) → . . .→ C0(f) → 0.
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Again, this is a well defined complex as iVf commutes with the Lie derivative LVf . Recall
that the Euler characteristic of a homological complex (C∗, i) is given by

χ(C∗, i) =
n∑

j=0

(−1)jdim (Hk(C
∗, i)) ,

where Zj(C
∗, i) := Ker(i)∩Cj , Bj(C

∗, i) := Im(i)∩Cj , and Zj(C
∗, i)/Bj(C

∗, i). We have
the following property

Proposition 7.7. Let (f, g) be a smooth Morse pair inducing a Morse-Smale gradient
flow. Then, one has

Hk(C
∗(f), iVf ) = Ck(f).

In particular, χ(C∗(f), iVf ) = χ(M), where χ(M) is the Euler characteristic of the mani-
fold.

Proof. Recall that Ck(f) is equal to the vector space generated by the Laudenbach currents
Ua associated with critical points a of index k. According to Proposition 6.6, near a critical
point a of index k, Ua can be written in the adapted coordinates of paragraph 3.5 as

Ua(x, y, dx, dy) = δR
k

0 (x)dx1 ∧ dx2 ∧ . . . dxk.

On the other hand, the vector field Vf can be written in this system of coordinates:

Vf(x, y, ∂x, ∂y) =

r∑

j=1

χj(a)xj∂xj +

n∑

j=r+1

χj(a)yj∂yj .

Hence, locally near a, one has

iVf (Ua)(x, y, dx, dy) =
r∑

j=1

χj(a)xjδ
Rk

0 (x)dx1 ∧ . . . d̂xj . . . ∧ dxr = 0.

As Ua is supported in W u(a), we can deduce that iVf (Ua) is also carried by W u(a). As
we have just shown that it is equal to 0 near a and as LVf (iVf (Ua)) = 0, we can deduce

that the support of iVf (Ua) is contained in W u(a)−W u(a). According to Remark 3.8, we
can then deduce that the support of iVf (Ua) is contained in the union of unstable manifold
W u(b) with ind(b) > k. We now use Proposition 6.9 (with λ = 0) to write

iVf (Ua) =
∑

b′:ind(b′)=k−1

αb′Ub′ .

Using Proposition 6.6 and the fact that iVf (Ua) is carried on a union of unstable manifold
of index > k, we can deduce that αb′ = 0 for every critical point b′ of index k− 1. In other
words, Zk(C

∗(f), iVf ) = Ck(f) and Bk(C
∗(f), iVf ) = {0}. In particular, one has

χ(C∗(f), iVf ) =
n∑

j=0

(−1)jcn−j(f),
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from which the last result follows thanks to the case of equality in the Morse inequalities.
�

Appendix A. Proof of Lemma 4.1

In this appendix, we give the proof of Lemma 4.1, i.e. construct of the escape function
Gm(x, ξ). Let N0, N1 > 4‖f‖C0 be some large parameters. As was already explained, up to
some minor differences due to the special form of the dynamics, our construction is the one
given in section 2 of [21]. Using the conventions of paragraph 3.4, we recall the following
result [21, Lemma 2.1]:

Lemma A.1. Let V u and V s be small open neighborhoods of Σu and Σs respectively, and
let ǫ > 0. Then, there exist Wu ⊂ V u and Ws ⊂ V s, m̃ in C∞(S∗M, [0, 1]), η > 0 such

that X̃Hf
.m̃ ≥ 0 on S∗M , X̃Hf

.m̃ ≥ η > 0 on S∗M − (Wu ∪ Ws), m̃(x, ξ) > 1 − ǫ for
(x, ξ) ∈ Ws, m̃(x, ξ) < ǫ for (x, ξ) ∈ Wu and m̃(x, ξ) < (1 + ǫ)/2 for (x, ξ) /∈ V s.

Proof. Let us recall the main lines of the proof of this Lemma which relies only on the
compactness and on the attracting properties of Σu and Σs. First, we have to verify that,
up to shrinking Vu and Vs a little bit, V u ∩ V s = ∅,

(34) ∀t ≥ 0, Φ̃tf (V
s) ⊂ V s, and Φ̃−t

f (V u) ⊂ V u.

This follows from Lemmas 3.7 and 3.9. Once we have this property, we can follow the
proof of [21]. More precisely, we know that

I(x, ξ) := {t ∈ R : Φ̃tf (x, ξ) ∈ S∗M − (V u ∪ V s)},

is a closed, connected interval whose length is uniformly bounded by some constant τ > 0.
We then set T > 0 such that τ/(2T ) < ǫ satisfying

Wu := Φ̃−T
f (S∗M − V s) ⊂ V u, Ws := Φ̃−T

f (S∗M − V u) ⊂ V s.

Once these parameters are fixed, one just has to verify that, if m0 ∈ C∞(S∗M, [0, 1]) is
equal to 1 on V s and to 0 on V u, then the function

mT (x, ξ) :=
1

2T

∫ T

−T

m0 ◦ Φ̃
t
f (x, ξ)dt

satisfies the assumption of the Lemma – see [21] for details. �

We now use this Lemma with V u, V s and ǫ > 0 small enough (to be precised). Thus,
we have a function m̃(x, ξ) defined on S∗M . We introduce a smooth function m1 defined
on T ∗M which satisfies

m1(x, ξ) = N1m̃

(
x,

ξ

‖ξ‖x

)
−N0

(
1− m̃

(
x,

ξ

‖ξ‖x

))
, for ‖ξ‖x ≥ 1,

and

m1(x, ξ) = 0, for ‖ξ‖x ≤
1

2
.
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We set the order function of our escape function to be

m(x, ξ) = −f(x) +m1(x, ξ).

Set now

Γ̃∓ :=

{
(x, ξ) ∈ T ∗M : ξ 6= 0 and

ξ

‖ξ‖x
∈ Ws/u

}
.

From the definition of m, Γ̃− (resp. Γ̃+) is a small conical neighborhood of Γ− (resp. of
Γ+). Moreover, for every (x, ξ) in Γ̃− (resp. Γ̃+) satisfying ‖ξ‖x ≥ 1, one has

m(x, ξ) ≤ −N0(1− ǫ) +N1ǫ+ ‖f‖C0 (resp. ≥ N1(1− ǫ)−N0ǫ− ‖f‖C0).

If we choose ǫ small enough, then the first items of Lemma 4.1 are proved. We now set the
following escape function:

Gm(x, ξ) = m(x, ξ) log(1 + ‖ξ‖2x),

and we have to compute the derivative XHf
.Gm of Gm along the Hamiltonian vector field

XHf
associated with Hf . Note that

(35) XHf
.Gm(x, ξ) = log(1 + ‖ξ‖2x)XHf

.m(x, ξ) +m(x, ξ)
XHf

.‖ξ‖2x
1 + ‖ξ‖2x

.

Let r > 0 be a small parameter. We shall estimate the derivative of Gm along the Hamil-
tonian function in T ∗B(a, r) for every critical points and in the complementary of this
set.

Let us start with the case where (x, ξ) belongs to T ∗Mreg where Mreg is the complemen-
tary set of ∪a∈CritfB(a, r/2). In that case, we fix R0 > 1. Then, there exists Cg depending
only on the Riemannian metric and on f such that, for every (x, ξ) in T ∗M satisfying
‖ξ‖x ≥ R0,

XHf
.Gm(x, ξ) ≤ −XHf

.f(x) log(1 +R2
0) + Cg (N0 +N1 + ‖f‖C0) ,

as XHf
.m1 ≤ 0 for ‖ξ‖ > 1 according to Lemma A.1. As x is far from the critical points

of f , one knows from (4) that there exists a constant c(r) > 0 (depending only on r > 0)
such that XHf

.f(x) ≥ c(r). In particular, one has

XHf
.Gm(x, ξ) ≤ −c(r) log(1 +R2

0) + Cg (N0 +N1 + ‖f‖C0) ≤ −min{N0, N1},

where the last equality holds if we choose R0 > 1 large enough (in a way that depends on
r, N0 and N1).

It now remains to analyse the behaviour in a “neighborhood” of a critical point a in
Critf . In that case, we can as in [21] make use of the (local) hyperbolic structure of the
flow. We fix (x, ξ) in T ∗M such that ‖ξ‖x ≥ 1 and x in B(a, r), and we use (4) to write

XHf
.Gm(x, ξ) ≤ XHf

.m1(x, ξ) log(1 + ‖ξ‖2x) +m(x, ξ)
XHf

.‖ξ‖2x
1 + ‖ξ‖2x

.

We now distinguish three cases:
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• Suppose that we could show that, if (x, ξ) belongs to Γ̃− and ‖ξ‖ > 1, then, one
can find a constant10 c− > 0 depending only on f and g such that

(36) XHf
.(‖ξ‖2x) > c−‖ξ‖

2
x.

In particular, one could infer

XHf
.Gm(x, ξ) ≤ −

N0

2
c−,

where we used Lemma A.1 to bound XHf
.m1(x, ξ).

• Suppose that we could show that, if (x, ξ) belongs to Γ̃+ and ‖ξ‖ > 1, then, one
can find a constant c+ > 0 depending only on f and g such that

(37) XHf
.(‖ξ‖2x) < −c+‖ξ‖

2
x.

In particular, one could infer

XHf
.Gm(x, ξ) ≤ −

N1

2
c+,

where we used again Lemma A.1 to bound XHf
.m1(x, ξ).

• If (x, ξ) does not belong to Γ̃− ∪ Γ̃+, then
ξ

‖ξ‖
belongs to S∗M − (Wu ∪Ws), and,

by Lemma A.1, one finds

XHf
.Gm(x, ξ) ≤ −η(N0 +N1) log(1 + ‖ξ‖2) + Cg (N0 +N1 + ‖f‖C0) .

Thus, if we choose R0 > 1 large enough (in a way that depends on N0, N1), then
one can ensure that XHf

.Gm(x, ξ) ≤ −min{N0, N1} whenever ‖ξ‖ ≥ R0 on this
set.

This concludes the second part of the Lemma except for (36) and (37) that are still to be
proved. The proof is similar in both cases and we will only treat the first case. We note
that the compactness of Σu and Σs will one more time play a crucial role in the proof.

We start with the case where (x, ξ) = (a, ξ) belongs to E∗
s (a). In that case, we can make

use of the fact that we have a smooth linearizing chart – see paragraph 3.5. Recall also
that the linearized vector field Lg(a) is diagonalizable in a basis of eigenvectors which is
orthogonal for the metric g∗(a) – see paragraph 3.3. This implies that, for (a, ξ) = (0, ζ)
in E∗

s (a),

XHf
.(‖ξ‖2) = 2

r∑

j=1

|χj(a)|ζ
2
j .

In particular, provided that we take some small enough constant c− = c−(f, g) depending
on g and f , inequality (36) holds in the case where (x, ξ) = (a, ξ) belongs E∗

s (a). We then
define

Ur :=
{
(x, ξ) ∈ ∪y∈B(a,r)T

∗
yM : ‖ξ‖x > 1, and (36) holds with c− = 2c−(f, g)

}
,

10We note that we may have to take V s small enough.
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which is an open set in T ∗M − (M × {0}). Then, we have to prove that we can choose Vs
small enough to ensure that the neighborhood

Ṽ (r)
s := {(x, ξ) ∈ ∪y∈B(a,r)T

∗
yM : ‖ξ‖ > 1 and (x, ξ/‖ξ‖x) ∈ Vs}

is contained in Ur. We proceed by contradiction, and we suppose that, for every r > 0 small
enough, there exists m0 ≥ 1 such that, for any m ≥ m0 and for any neighborhood Vm of

Σs of size 1/m, one can find (x
(r)
m , ξ

(r)
m ) /∈ Ur belonging to Ṽ

(r)
m . Without loss of generality,

we can suppose that ‖ξ(r)m ‖ ≤ 2. By compactness, we can then extract a subsequence such

that limm→+∞(x
(r)
m , ξ

(r)
m ) = (x(r), ξ(r)). Moreover, as Σs is compact, (x(r), ξ(r)) belongs to

∪y∈B(a,r)(Γ−∩T ∗
yM), and, by construction of the sequence, (36) does not hold at this point

with the constant c− = 2c−(f, g). This holds for any r > 0 small enough. We now extract
a converging subsequence as r → 0+, and we find a point (x, ξ) in E∗

s (a) where we know
that (36) holds with the constant c− = c−(f, g). This gives the expected contradiction as
ξ 6= 0.

Appendix B. Proof of Proposition 4.2

The proof of this Proposition was given in great details in [21, Th. 1.4] for the case
k = 0. The adaptation to the case 0 ≤ k ≤ n is almost identical except that we have to
deal with pseudodifferential operators with values in Λk(T ∗M). The main point is that the
(pseudodifferential) operators under consideration have a scalar symbol. In fact, given any
local basis (ej)j=1,...Jk of Λk(T ∗M) and any family (uj)j=1,...Jk of smooth functions C∞(M),
one has

L(k)
Vf

(
Jk∑

j=1

ujej

)
=

Jk∑

j=1

LVf (uj)ej +

Jk∑

j=1

L(k)
Vf
(ej)uj,

where the second part of the sum in the right-hand side is a lower order term (of order
0). This scalar form allows to adapt the proofs of [21] to this vector bundle framework.
For completeness, we briefly recall the main lines of the proof and just point a (minor)
simplification due to the particular form of our flow. To make the comparison with that
reference simpler, we shall consider the operator −iLVf instead of −LVf .

Remark B.1. The case of currents was treated by Dyatlov and Zworski in [17] via a slightly
different approach. Their method could also probably be adapted to deal with the case of
Morse-Smale gradient flows.

The strategy is to consider the equivalent operator

(38) L̂(k)
f := Op(A(k)

m ) ◦ (−iL(k)
Vf
) ◦Op(A(k)

m )−1,

and to begin with, we recall the following result [21, Lemma 3.2]:

Lemma B.2. The operator

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 + iL(k)
Vf
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is a pseudodifferential operator in Ψ+0(M) whose symbol in any given system of coordinates
is of the form

P (x, ξ) = i(XHf
.Gm)(x, ξ)Id+O(S0) +Om(S

−1+0).

In this Lemma, the notation O(.) means that the remainder is independent of the order
function m, while the notation Om(.) means that it depends on m. In particular, this

Lemma says that L̂(k)
f is an element in Ψ1(M,Λk(T ∗M)). Then, combining this Remark

to [21, Lemma A.1] which can be adapted directly to the case of operators with values in a

vector bundle, one finds that L̂(k)
f has a unique closed extension as an unbounded operator

on L2(M,Λk(T ∗M)). This shows the first part of the Proposition in the case k = 0.

Remark B.3. The proof of this Lemma was given for k = 0 in [21] and the adaptation to
the case 1 ≤ k ≤ n follows from the diagonal structure of the operators involved. Let us
recall that the key idea is to observe, by linearizing the exponential,

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 ≃ (1 + Op(Gm) + . . .) ◦ (−iL(k)
Vf
) ◦ (1−Op(Gm) + . . .)

= −iL(k)
Vf

+ [Op(GmId),−iL
(k)
Vf
] + . . . ,

which implies via symbolic calculus

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 ≃ −iL(k)
Vf

+ iOp(XHf
.GmId) + . . . .

Then, up to the fact that we have to deal with L2(M,Λk(T ∗M)), the second part of
Proposition 4.2 is exactly the content of Lemma 3.3 of [21] which only makes use of the
properties of the escape function given in Lemma 4.1. We also note that they implicitely
shows that, for every z in C satisfying Imz > C0, one has

(39)

∥∥∥∥
(
L̂(k)
f − z

)−1
∥∥∥∥
L2(M,Λk(T ∗M))→L2(M,Λk(T ∗M))

≤
1

Im(z)− C0
.

Remark B.4. Combining Proposition 4.2 to the Hille-Yosida Theorem [19, Cor. 3.6, p. 76],
one knows that (by conjugation)

(40) (ϕ−t
f )∗ : Hm

k (M) → Hm
k (M),

generates a strongly continuous semigroup which is defined for every t ≥ 0 and whose norm
is bounded by etC0 .

Finally, the last part of the Proposition is based on results from analytic Fredholm
theory. It is in fact the only place where things differ with [21]. The situation is in fact
slightly simpler here as we shall now briefly explain it. We write

V̂
(k)
f :=

i

2

((
L̂(k)
f

)∗
− L̂(k)

f

)
.

We denote by V
(k)
f (x, ξ) the symbol of this operator. Note that, from [21, Lemma A.1],

(L̂(k)
Vf
)∗ also has a unique closed extension to L2(M,Λk(T ∗M)). Combining Lemma B.2 to
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Lemma 4.1, one knows that, for every (x, ξ) in T ∗M ,

V
(k)
f (x, ξ) ≤ (−CN + C)Id+Om(S

−1+0),

for some constant C > 0 which is independent of m and for the constant CN defined in
Lemma 4.1. From the sharp G̊arding inequality, one can deduce that, for every 0 < µ < 1,
there exists a constant Cµ,m > 0 such that, for every u in C∞(M)

〈(V̂(k)
f + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤ Cµ,m‖u‖

2

H
µ−1
2 (M,Λk(T ∗M))

,

where the remainder Om(S
−1+0) has been absorbed in the RHS thanks to the Calderón-

Vaillancourt Theorem. From this inequality, one can deduce that

〈(V̂k)
f + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤

〈
C̃µ,m

(
1−∆(k)

g

)µ−1
2 u, u

〉

L2(M,Λk(T ∗M))

,

where ∆
(k)
g is the Laplace-Beltrami operator acting on k differential forms. We define then

χ̂k := C̃µ,m
(
1−∆(k)

g

)µ−1
2 ∈ Ψµ−1(M,Λk(T ∗M)),

which is a compact operator as µ− 1 < 0. Hence, we can rewrite the last inequality as

〈(V̂(k)
f − χ̂k + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤ 0,

from which one can deduce11 that the resolvent(
L̂(k)
f − iχ̂k − z

)−1

defines a bounded operator from L2(M,Λk(T ∗M)) to itself as soon as Im(z) > −(CN −C).

From the compactness of χ̂k we can deduce that χ̂k

(
L̂(k)
f − iχ̂k − z

)−1

is also a compact

operator which is exactly the content of Lemma 3.4 in [21]. The conclusion then follows
by a classical argument from analytic Fredholm theory given in [21, Lemma 3.5].

Appendix C. Asymptotic expansions

In this appendix, we review some classical facts on asymptotic expansions (see [33, Ch. 1]
for a nice review).

Definition C.1. Let I be a discrete12 countable subset of R bounded from below. We
call I the index set. Then h ∈ C∞((0, 1],R) has polyhomogeneous asymptotic expansion
indexed by I if

∃(aλ)λ∈I such that ∀Λ ∈ R \ I, ∃C > 0, ∀s ∈ (0, 1]∣∣∣∣∣h(s)−
∑

λ∈I,λ6Λ

aλs
λ

∣∣∣∣∣ 6 Csλ0

where λ0 = inf{λ ∈ I ∩ [Λ,+∞)}.

11The proof of this fact is similar to the proof of Lemma 3.3 in [21].
12We mean that it has no accumulation point.
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The key property we use in this article is that, if such an asymptotic expansion exists,
then it is unique. We also have the following as a consequence of the Taylor formula:

Lemma C.2. Let (λi)
n
i=1 be a collection of n positive real numbers. Let I be the index set

defined as

I :=

{
n∑

j=1

kjλj : ∀1 ≤ j ≤ n, kj ∈ N

}
⊂ R.

Then, for all ψ ∈ C∞(Rn), the function

s ∈ (0, 1] 7−→ ψ(sλ1 , . . . , sλn)

has polyhomogeneous asymptotic expansion indexed by I.

A function h ∈ C∞((0, 1],R) is said to be weakly homogeneous if

∃C > 0, ∃d ∈ R, ∀s ∈ (0, 1], |h(s)| 6 Csd.

Recall that the Mellin transform of h1[0,1] for f weakly homogeneous is then defined as

(41) M
(
h1[0,1]

)
(z) =

∫ 1

0

h(s)sz
ds

s
,

and that it is holomorphic on the half–plane Re(z) > −d. Finally, we note that the
following holds:

Lemma C.3. Under the above conventions, one has:

(1) For w in C, the Mellin transform M(sw1[0,1](s))(z) equals
1

w+z
and thus, it extends

meromorphically with a simple pole at z = −w.
(2) For every polyhomogeneous h where h ∼

∑
λ∈I aλs

λ, the Mellin transform M
(
h1[0,1]

)
(z)

extends meromorphically to the complex plane with simple poles at z ∈ −I.

Proof. This is a particular case of [33, Thm 3.1 p. 11] �
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