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SPECTRAL ANALYSIS OF MORSE-SMALE GRADIENT FLOWS

NGUYEN VIET DANG AND GABRIEL RIVIÈRE

Abstract. On a smooth, compact and oriented manifold without boundary, we give a
complete description of the correlation function of a Morse-Smale gradient flow satisfying a
certain nonresonance assumption. This is done by analyzing precisely the spectrum of the
generator of such a flow acting on certain anisotropic spaces of currents. In particular, we
prove that this dynamical spectrum is given by linear combinations with integer coefficients
of the Lyapunov exponents at the critical points of the Morse function. Via this spectral
analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the
Morse complex as the image of the de Rham complex under the spectral projector on
the kernel of the generator of the flow. This allows us to recover classical results from
differential topology such as the Morse inequalities and Poincaré duality.

1. Introduction

Consider a smooth (C∞) flow (ϕt)t∈R acting on a smooth, compact, oriented manifold
M which has no boundary and which is of dimension n ≥ 1. A natural question to raise is
whether the limit

lim
t→+∞

(ϕ−t)∗ψ

exists for any smooth function ψ defined on M . This is of course very unlikely to happen
in a general case, and a natural setting where one may expect some convergence occurs for
dynamical systems with hyperbolic behaviour and for a nice enough measure of reference.
For instance, if ϕt is a topologically transitive Anosov flow [1] and if we study the weak
limit with respect to a so-called Gibbs measure, it is known from the works of Bowen,
Ruelle and Sinai that such a limit exists and is equal to the average of ψ with respect to
the Gibbs measure1 [61, 10]. If one is able to show that this equilibrium state exists, a
second natural question to raise is: can one describe the fluctuations? For instance, what
is the rate of convergence to this state?

These problems are naturally related to the study of the operator generating the flow :

L : ψ ∈ C∞(M) 7→ −
d

dt

(
(ϕ−t)∗ψ

)
|t=0 ∈ C∞(M).

Note that, by duality, this operator acts on the space of distributions D′(M). In recent
years, many progresses have been made in the study of such operators acting on suitable
Banach spaces of distributions when the flow ϕt enjoys the Anosov property. In [49],
Liverani defined Banach spaces of distributions with “anistropic Hölder regularity ” for

1Such measures are also often called SRB measures. Recall that a well-known example is the Liouville
measure for the geodesic flow on a negatively curved manifold.
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2 NGUYEN VIET DANG AND GABRIEL RIVIÈRE

which he could make a precise spectral analysis of L. For instance, he proved the existence
of a spectral gap for contact Anosov flows from which one can deduce that, for every t ≥ 0
and for every ψ1, ψ2 in C∞(M),

(1) Cψ1,ψ2(t) :=

∫

M

ϕ−t∗(ψ1)ψ2dvolg =

∫

M

ψ1dvolg

∫

M

ψ2dvolg +Oψ1,ψ2(e
−Λt),

where Λ > 0 is some fixed positive constant related to the spectral gap of L and where
volg is the Riemannian volume. His construction was inspired by similar results for dif-
feomorphisms [8] and by a proof of Dolgopyat which holds in the 2-dimensional case [21].
Introducing Banach spaces inside D′(M) contrasts with earlier approaches to these ques-
tions where symbolic coding of Anosov flows was used to describe the weak convergence
of (ϕ−t)∗ψ. For more general Anosov flows, Butterley and Liverani also showed how this
direct approach allows to make a meromorphic extension for the Laplace transform of the
correlation function Cψ1,ψ2(t) to the entire half plane [15]. This extended earlier works of
Pollicott [56] and Ruelle [58] which were also based on the use of symbolic dynamics. Such
poles (and their corresponding eigenstates) describe in some sense the fine structure of the
long time dynamics and are often called Pollicott-Ruelle resonances. Pushing further this
direct approach [36], Giulietti, Liverani and Pollicott proved that, for any smooth Anosov
flow, the Ruelle zeta function has a meromorphic extension to C. In the case of Anosov
geodesic flows satisfying certain pinching assumptions, they also showed that (1) also holds
for the Bowen-Margulis measure (and not only with respect to the Riemannian volume).
Even if we mostly focus on direct approaches to the analysis of Anosov flows, we mention
that Stoyanov proved recently via methods involving symbolic dynamics that (1) in fact
holds with respect to any Gibbs measure for contact Anosov flows [66].

In parallel to this approach via spaces of anisotropic Hölder distributions, it was observed
that the spectral analysis of Anosov flows can in fact be understood as a semiclassical
problem which fits naturally in the theory of semiclassical resonances [43, 25]. Building on
earlier works for Anosov diffeomorphisms by Baladi-Tsujii [6] and Faure-Roy-Sjöstrand [27]
involving microlocal tools, this kind of approach to Pollicott-Ruelle resonances was initiated
for Anosov flows by Tsujii [68, 69], Faure-Sjöstrand [28] and Faure-Tsujii [30, 29]. Thanks
to this microlocal approach, several new results or alternative proofs were obtained in
the last few years: upper bounds on the counting function in the high frequency limit
near the imaginary axis [28, 19], explicit bounds on the size of the spectral gap [68, 69,
55, 29], meromorphic extension of the Ruelle zeta function [24], band structure of the
resonances [30, 29, 22]. We refer to the survey article of Gouëzel for a recent account on
these progresses.

Regarding the important steps made in the Anosov case, it is natural to understand to
what extent these methods can be adapted to more general dynamical systems satisfying
weaker chaotic features. A natural extension to consider is the class of hyperbolic flows with
discontinuities. Results in this direction were obtained recently by Baladi-Liverani [5] and
Baladi-Demers-Liverani [4]. For instance, they proved exponential decay of correlations for
the 2-dimensional finite horizon Sinai billiard flow [4]. We also refer to [65] for results on
open billiard flows and to [20] for billiard maps. Another natural direction is to consider the
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case of open systems which was recently studied by Dyatlov and Guillarmou via microlocal
techniques [23] – see also [2, 31] for similar problems concerning expanding maps. Their
framework is in fact related to the so-called Axiom A flows [64, 10]. In particular, they
show that Pollicott-Ruelle resonances can be defined on a small neighborhood of any basic
set of a given Axiom A flow.

In this article, we aim at extending the microlocal approach of Faure-Sjöstrand-Tsujii
for maybe one of the simplest dynamical system ϕt : M → M which exhibits hyperbolic
features, namely gradient flows associated with a Morse function. Such dynamical systems
of course do not satisfy the Anosov property and hyperbolicity is in some sense concentrated
at the critical points of the Morse function. It could be thought as a degenerate form of
an Axiom A flow where we would allow the vector field to vanish on the basic sets [64, 10].
In fact, if we consider the time 1 map induced by the flow, such a map enters the class
of Axiom A diffeomorphisms whose dynamical spectrum was studied by Ruelle in [58] via
methods from symbolic dynamics.

Near the critical points of the Morse function, this kind of dynamical system has a very
simple structure and behaves like the flow induced by an hyperbolic matrix acting on Rn

thanks to the Grobman-Hartman Theorem [39]. We note that hyperbolic linear models on
R
n were already analyzed via microlocal techniques by Faure and Tsujii in [30, Ch. 3-4]

where it also served as a local picture for their global model. Here we will make use of
similar ideas and one of the main task of the present article will be to understand how
these local models can be patched together in our dynamical framework. As we shall see,
it will allow us to give a rather precise description of the spectrum of L and of the long
time dynamics of the flow ϕt acting on smooth differential forms of any degree.

Finally, recall that gradient flows associated to a Morse function are also interesting
because of their deep connections with differential topology which first appeared in the
pioneering works of Thom [67], Smale [62, 63]. Our microlocal approach to the properties of
gradient flows will allow among other things to give new (spectral) interpretations of some
results of Laudenbach [47, 48] and Harvey-Lawson [40, 41] and to recover some classical
facts from differential topology such as the finiteness of the Betti numbers, the Morse
inequalities and Poincaré duality. Then the work of Witten [71], Helffer-Sjöstrand [42],
Bismut-Zhang [7, 72], Burghelea et al. [13, 12, 14] developped the relationship of Morse
theory with Hodge theory and Ray-Singer analytic torsion. For an introduction to this
spectral approach to Morse theory, we refer the reader to the survey of Henniart [44]. To
compare with our results, recall that Witten’s approach applies to the operator ds = d+siV
where s > 0, d is the usual coboundary operator and iV is the contraction operator induced
by the vector field V of ϕt. More precisely, he studied the Hamiltonian d∗s ◦ ds+ ds ◦ d

∗
s [71,

Sect. 3] and gave, in the limit s → +∞, a topological interpretation of its kernel in
terms of the zero set of V . Here, instead of d∗s ◦ ds + ds ◦ d∗s, we will study the operator
sL = d2s = −(d∗s)

2 in the specific case of Morse-Smale vector fields. We will show that, even
if L is not elliptic, its spectrum on convenient Sobolev spaces has a very nice structure
which also carries some topological informations on the manifold. For a more detailed
exposition on these relations between dynamical systems, topology and spectral theory, we
refer to classical survey article of Bott [9].
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2. Statement of the main results

2.1. Dynamical framework. We fix f to be a smooth (C∞) Morse function, meaning
that f has only finitely many critical points and that these points are non degenerate. We
denote by Crit(f) the set of critical points. For simplicity, we shall always assume that f
is excellent in the sense that, given a 6= b in Crit(f), one has f(a) 6= f(b). If we consider a
smooth Riemannian metric g on M , we can define a vector field Vf as follows

(2) ∀(x, v) ∈ TM, dxf(v) = 〈Vf(x), v〉g(x).

This vector field generates a complete flow on M [48, Ch. 6] that we denote by ϕtf . Given
any point a in Crit(f), we can define its stable (resp. unstable) manifold, i.e.

W s/u(a) :=

{
x ∈M : lim

t→+/−∞
ϕtf(x) = a

}
.

One can show that W s(a) (resp. W u(a)) is an embedded submanifold in M of dimension
0 ≤ r ≤ n (resp. n − r) where r is the index of the critical point [70]. Note that this
submanifold always contains the corresponding critical point a. A remarkable property of
these submanifolds is that they form a partition of the manifold M [67], i.e.

M =
⋃

a∈Crit(f)

W s(a), and ∀a 6= b, W s(a) ∩W s(b) = ∅.

The above property also holds true for the unstable manifolds. This partition in stable
(and unstable) leaves will play a central role in our analysis. Among these Morse gradient
flows, Smale introduced a particular family of flows [62]. Namely, given any a and b in
Crit(f), he required thatW s(a) and W u(b) intersect transversally whenever they intersect.
This assumption also turns out to be a crucial ingredient to make our proofs work. We will
use the terminology Morse-Smale for any gradient flow enjoying the above properties.
Finally, for any point a in Crit(f), we define Lf (a) as the only matrix satisfying

∀ξ, η ∈ TaM, d2af(ξ, η) = ga(Lf (a)ξ, η).

As a is a nondegenerate critical point, Lf (a) is symmetric with respect to ga and invertible.
Its eigenvalues are called the Lyapunov exponents at the point a and we write them as

χ1(a) ≤ . . . ≤ χr(a) < 0 < χr+1(a) ≤ . . . ≤ χn(a),

where r is the index of the critical point a. All along this article, we will also make the
assumption that (f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow. By
smooth Morse pair, we roughly mean that there is a smooth linearizing chart for Vf near
any critical point. By the Sternberg-Chen Theorem [16], this is for instance satisfied when,
for every critical point a, the Lyapunov exponents (χj(a))1≤j≤n are rationally independent
– see paragraph 3.5 for more details.

Remark 2.1. Let us fix some conventions. We will denote by N∗ the set of positive integers
{1, 2, . . .} while N will be the set of nonnegative integers {0, 1, 2, . . .}. We will use α =
(α1, . . . , αn) for a multi-index in Nn. Given any critical point a of f , we denote by |χ(a)|
the vector (|χ1(a)|, . . . , |χn(a)|). For any 0 ≤ k ≤ n, Ωk(M) will be the space of smooth
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differential forms of degree k and D′,k(M) will be the topological dual of Ωn−k(M), i.e. the
space of currents of degree k (or of dimension n− k). For an introduction to the theory of
currents, we refer to [57, 60].

2.2. Correlation function. The main concern of the article will be to perform a spectral
analysis of the operator LVf acting on appropriate spaces of currents. As an application of

our analysis, we will prove the following result on the asymptotic behaviour of ϕ−t∗
f ψ:

Theorem 2.2. Let (f, g) be a smooth Morse pair inducing a Morse-Smale gradient flow
ϕtf . Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) and for every α in Nn, there exist

• an integer 0 ≤ mk,a(α) ≤ 2n,

• (Uα,j
a,k )j=1,...,mk,a(α) in D′,k(M) whose supports are equal to W u(a),

• (Sα,ja,n−k)j=1,...,mk,a(α) in D′,n−k(M) whose supports are equal to W s(a),

such that, for every Λ > 0, for every ψ1 in Ωk(M), for every ψ2 in Ωn−k(M), and for every
t ≥ 0,

〈ϕ−t∗
f ψ1, ψ2〉 =

∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|<Λ

e−tα.|χ(a)|
mk,a(α)∑

j=1

〈Sα,ja,n−k, ψ1〉〈U
α,j
a,k , ψ2〉+Oψ1,ψ2(e

−Λt),

where 〈., .〉 is the duality pairing between D′,∗(M) and Ωn−∗(M).
Moreover2, mk,a(0) = δk,r where r is the index of a, and mk,a(α) = n!

k!(n−k)!
for every

α ∈ (N∗)n.

This Theorem gives us an asymptotic expansion at any order of the correlation function
associated with a Morse-Smale gradient flow and it is a consequence of Proposition 7.7
below. As we shall see in the proof, we will also provide a more or less explicit expression
for the currents Uα,j

a,k and Sα,ja,n−k near the critical point a – see Proposition 7.3. We note
that each term appearing in the sum looks very much like the expansion obtained by Faure
and Tsujii in the case of linear models acting on R

n [30, Ch. 3-4]. Here, one of the main
difficulty will be to understand how these local models can be glued together in order to
obtain a result valid on the whole manifold.

Even if our example does not enter the class of Axiom A flows, we note that this result is
also closely related to the results of Dyatlov and Guillarmou on Pollicott-Ruelle resonances
for open systems [23]. Maybe the main difference with this reference is that Theorem 2.2
holds globally and not only in a neighborhood of the critical points3. As was already
mentioned, if we consider the time 1 map of the flow, the induced diffeomorphism h = ϕ−1

f is
maybe one of the simplest example of an Axiom A (but not hyperbolic) diffeomorphism [64],
even if it is a kind of “trivial” example as all the basic sets are reduced to points. We
emphasize that resonances of general Axiom A diffeomorphisms were studied by Ruelle
in [59] via methods of symbolic dynamics. More precisely, he showed that, for a general

2We will in fact give a (rather combinatorial) explicit expression ofmk,a(α) in the proof – see Remark 7.4.
3We also note that [23] made the assumption that the vector field does not vanish.
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Axiom A diffeomorphism, the Laplace transform of the correlation function extends to
a certain half-plane of C. Here, due to the simple structure of the diffeomorphism, the
meromorphic extension of the correlation function can be made in the entire complex plane
with discrete poles on the real axis which are completely determined by the Lyapunov
exponents on the basic sets of the diffeomorphism (i.e. the critical points of f). Moreover,
the corresponding resonant states can also be made explicit.

In order to clarify the above statement, let us mention the following corollary:

Corollary 2.3. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient flow
ϕtf . Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) of index k, there exist

• Ua in D′,k(M) whose support is equal to W u(a),

• Sa in D′,n−k(M) whose support is equal to W s(a),

such that, for every

0 < Λ < min {|χj(b)| : 1 ≤ j ≤ n, b ∈ Crit(f)} ,

for every (ψ1, ψ2) in Ωk(M)× Ωn−k(M), and for every t ≥ 0,

〈ϕ−t∗
f ψ1, ψ2〉 =

∑

a∈Crit(f): ind(a)=k

〈Sa, ψ1〉〈Ua, ψ2〉+Oψ1,ψ2(e
−Λt),

where 〈, 〉 is the duality pairing between D′,∗(M) and Ωn−∗(M).

To our knowledge, the currents Ua and Sa appearing in the leading term of the asymptotic
expansion were first constructed by Laudenbach [47, 48] in the case of a “locally flat metric
adapted to the Morse coordinates”. In the following, we shall refer to them as Laudenbach’s
currents. The difficulty is that the submanifoldsW u(a) andW s(a) are not a priori properly
embedded and one has to justify that the currents of integration are well defined. Precisely,
one can integrate on W u(a) a differential form ψ whose support is included in a compact
part of W u(a) but integration of a general form whose support may intersect the boundary
needs to be justified. This can solved by analyzing the mass of the currents near the
boundary of the unstable (resp. stable manifold) which requires a careful description of
the structure of the boundary of W u(a) [47, 48]. Even if it is in a different manner, similar
difficulties involving the boundary will of course occur at some point of our analysis and we
shall deal with this difficulty via dynamical techniques following the works of Weber [70]
– see for instance Lemmas 3.6 and 3.8.

After properly defining the spectral framework of our problem, we will recover the ex-
istence of these currents as a consequence of our spectral analysis. They correspond to
the kernel of the operator LVf acting on an appropriate anisotropic space of currents. The
advantage of this approach is that it allows to treat more general families of gradient flows
and that it sheds a new (spectral) light on these natural dynamical objects. A difficulty
may be that it relies on microlocal techniques which are maybe not as well-known as the
theory of currents. The interpretation of these currents as a limit of the correlation func-
tion was made in [40, 41] by Harvey and Lawson under the assumption of finite volume –
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see also [52] for generalizations of this result. Theorem 2.2 generalizes this type of result in
the sense that it does not only give the existence of the limit but also a rate of convergence
to this equilibrium state and all the asymptotic expansion as t→ +∞.

2.3. Topological interpretation of the leading term. One of the main application of
this dynamical approach to Morse theory is that the partition of the manifold into unstable
components has beautiful topological implications [67, 62, 41, 48]. In section 8, we will
explain how to recover some classical results from differential topology (e.g. finiteness of
Betti numbers, Poincaré duality, Morse inequalities) via our spectral approach and via some
analogies with Hodge-de Rham theory. For that purpose, we can set, for every 0 ≤ k ≤ n,

Ck(f) := span {Ua : ind(a) = k} ,

In analogy with Hodge-de Rham theory where one uses the formula ∆ = d ◦ d∗ + d∗ ◦ d,
we can write the Cartan formula

LVf = d ◦ iVf + iVf ◦ d,

where d is the coboundary operator and iVf is the contraction by the vector field Vf . We
will verify that (C∗(f), d) induces a cohomological complex while (C∗(f), iVf ) induces a
homological complex. The first complex is known as the Morse complex (also sometimes
called the Thom-Smale-Witten complex) and we will call the second one the Morse-

Koszul complex. Using our spectral analysis of Morse-Smale gradient flows, we will recover
the following results:

Theorem 2.4. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient flow
ϕtf . Then, the following holds.

(1) The maps

P
(k) : ψ ∈ Ωk(M) 7→

∑

a∈Crit(f): ind(a)=k

〈Sa, ψ〉Ua ∈ Ck(f)

induce an isomorphism between the cohomology groups of (Ω∗(M), d) and (C∗(f), d).
(2) The Euler characteristic of M is equal to the one of the Morse-Koszul (C∗(f), iVf )

while the one of the Koszul complex (Ω∗(M), iVf ) is equal to |Crit(f)|.

The first part of the Theorem is due to Laudenbach in the case of a “locally flat metric
adapted to the Morse coordinates” [47, 48]. In particular, it recovers the classical fact that
the de Rham complex (Ω∗(M), d) is isomorphic to the Morse complex. From this, it is
classical to deduce the so-called Morse inequalities – see section 8 for more details. The
second part seems new since it shows the surprising result that the Morse-Koszul complex
(C∗(f), iVf ) is not isomorphic to the classical Koszul complex (Ω∗(M), iVf ) via P∗. This is
due to the fact that, contrary to the coboundary operator d, iVf is sensitive to the regularity
of the elements of the complex.
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2.4. About the proof: spectral analysis of LVf . As was already alluded, understand-

ing the asymptotic properties of ϕ−t∗
f is related to the spectral analysis of its generator

which is nothing else but the Lie derivative LVf along the vector field Vf . One of the main
difficulty one encounters when trying to describe this spectrum is to find good Banach
spaces containing Ω∗(M) as a dense subset and where LVf has nice spectral properties such
as discrete spectrum. We already explained that important progresses were made recently
concerning this problem especially in the case of Anosov vector fields. Among the type of
spaces that can be considered, we can very roughly distinguish two types: (1) anisotropic
Hölder spaces like in [49], (2) anisotropic Sobolev spaces obtained via microlocal techniques
like in [28]. Here, we will in fact closely follow the construction of Faure-Sjöstrand in [28]
(see also [24, 29] in the case of currents) and explain how to adapt it to our dynamical
framework. One of the main issue we have to deal with is the asymptotic behaviour of the
Hamiltonian lift of ϕtf . In particular, we have to verify that the attractor and the repeller
of the normalized Hamiltonian flow are compact subsets – see Lemmas 3.6 and 3.8. This is
one of the first place where we will strongly use our extra assumptions on the flow, namely
the Smale transversality and the (smooth) linearizing property near every critical point.

After setting properly this dynamical framework and its asymptotic properties, we can
closely follow the construction from [28] which requires minor (but necessary) modifications
and which will be described in section 4 – see also appendices A and B. Given any Λ > 0
and any 0 ≤ k ≤ n, this procedure allows us to construct an anisotropic Sobolev space
HmΛ

k (M) ⊂ D′,k(M) such that

−L(k)
Vf

: HmΛ
k (M) → HmΛ

k (M),

and such that the operator has only discrete spectrum with finite multiplicity in the half
plane {Re(z) > −Λ}. According to [28, Th. 1.5], these values are independent of the
choice of our anisotropic space. These complex numbers are called the Pollicott-Ruelle

resonances of−L(k)
Vf

[56, 58], and they correspond to the poles of the meromorphic extension

of (−L(k)
Vf

− z)−1 : Ωk(M) → D′,k(M) to the complex plane. We denote these poles by

Rk(f, g).
In the case where (f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow,

we will obtain several results on their structure that we will now describe:

(1) Any element in Rk(f, g) is contained in (−∞, 0] and is a linear combination with
integer coefficients of the Lyapunov exponents at a fixed critical point a (Proposi-
tion 5.1).

(2) Up to its multiplicity, we can determine exactly which linear combination appears
in the spectrum (Proposition 5.1).

(3) The dimension of the kernel is equal to the number of critical points of index k,
and we have an expression for any element of the basis in a neighborhood of any
critical point of index a (Propositions 6.7 and 6.8).

(4) We can determine the multiplicity of every element inRk(f, g) and the local expres-
sion of the eigenmodes near the associated critical point (Propositions 7.3 and 7.5).
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(5) The algebraic multiplicity of an eigenvalue is always equal to its geometric multi-
plicity (Propositions 6.1 and 7.6).

(6) In particular, we can determine Weyl asymptotics in terms of the Lyapunov expo-
nents (Proposition 7.8) and we recover the classical Lefschetz trace formula (Propo-
sition 7.9).

The combination of all these results allows to prove Theorem 2.2 – see Proposition 7.7.
The proofs of these different spectral results will heavily rely on the construction of the
spaces HmΛ

k (M). In particular, we will deduce from that construction that we have a
very strong information on the wave front set of our eigenmodes, namely it is contained
in the unstable direction of the gradient flow. Combining this a priori information to the
dynamical structure of our flow and to results from distribution theory and microlocal
analysis, we will be able to reconstruct in some sense a lot of informations on the Pollicott-
Ruelle resonances and their corresponding eigenmodes. As a by-product of our spectral

analysis (see paragraph 6.4.5), we observe that our description of the spectrum of L(k)
Vf

implicitely shows the following result:

Corollary 2.5. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient flow
ϕtf and let 0 ≤ k ≤ n. Then, for every ψ in Ωk(M), the cohomological equation

L(k)
Vf
u = ψ

admits a solution in HmΛ
k (M) if and only if, for every critical point a of index k, one has

〈Sa, ψ〉 = 0.

From the construction, one knows that the anisotropic Sobolev space HmΛ
k (M) is con-

tained in the standard Sobolev space H−N
k (M) for some large positive constant N . In the

case of a strongly non-resonant Morse-Smale gradient flow, the argument of paragraph 6.4.5

could be adapted to find criteria under which the cohomological equation (L(k)
Vf

+ z)u = ψ

admits solution in H−N
k (M) for N > 0 large enough depending on the real part of z.

2.5. Witten’s approach to Morse theory and supersymmetric quantum mechan-

ics. In [71], Witten recovered the classical Morse inequalities by studying the operator

d~ := ~e−
f
~ de

f
~ and its adjoint d∗

~
in the semiclassical limit ~ → 0. More precisely, he

obtained this result by considering the bottom of the spectrum of the twisted Laplacian
d∗
~
d~ + d~d

∗
~
. Even if the operator LVf is of different nature, we would like to emphasize

the following common point with Witten’s approach. Like in [28, 24], the strategy is to

consider the action of L(k)
Vf

on certain anisotropic Sobolev spaces HmΛ
k (M). As we shall see

in Appendix B, this is equivalent to conjugate the operator by a certain elliptic pseudiffer-

ential operator Op(A
(k)
mΛ) with variable order and to consider the action of the conjugated

operator on the Hilbert space L2(M,Λk(T ∗M)). Compared with Witten, we deform the

operators d and iVf (instead of d and d∗) by conjugating them by Op(A
(k)
mΛ) (instead of

e
f
~ ). Following the works of Faure-Sjöstrand, the effect of this conjugation is to unveil
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some dynamical resonances of the operator L(k)
Vf
, and, like in Witten’s approach, this dy-

namical spectrum carries some topological informations related to the Morse complex –
see section 8 for more details.

Recall that Witten’s theory was inspired by supersymmetric (SUSY) quantum mechan-
ics. In some sense, this framework allows to compare our approach with Hodge theory
(and also with Witten’s work). This unifying point of view is discussed from the physical
perspective in inspiring works of Losev and collaborators [32, 33, 46, 50, 51]. In order
to make this parallel between Hodge theory and the present work, we observe that the
(N = 1) supersymmetric quantum mechanical system associated with our problem is given
by:

• a Z2-graded state space HmΛ(M) = HmΛ
+ (M) ⊕ HmΛ

− (M) of anisotropic Sobolev
currents with bosonic (resp fermionic) states HmΛ

+ (M) (resp HmΛ
− (M)) of even (resp

odd) degree.
• a fermion operator (−1)F whose eigenspaces are (HmΛ

+ (M),HmΛ
− (M)) with eigen-

value ±1 depending on the parity of the state,
• two operators of symmetry, i.e. Q1 = d + iVf and Q2 = i(d − iVf ) which satisfies
Q1Q2 +Q2Q1 = 0 (iVf plays the role of d∗ in Hodge theory),

• an Hamiltonian which is given by the Lie derivative LVf and which verifies LVf =
Q2

1 = Q2
2 = diVf + iVfd from Cartan’s formula.

As we shall see, the currents Ua appearing in Corollary 2.3 can be interpreted as Lagrangian
states whose wave front set lies in conormals of unstable manifolds. From the point of
view of supersymmetry, they span the vacuum C∗(f) (generated by eigenstates of minimal
energy) of our quantum theory.

2.6. Organization of the article. In section 3, we gather some crucial dynamical prelim-
inaries and introduce some notations that will be used all along the article. In section 4, we
make use of our dynamical assumptions in order to construct anisotropic spaces of currents
which are adapted to our problem. As our construction is very close to the one in [28],
we mostly focus on the differences, namely the construction of the escape function whose
detailed proof is postponed to appendix A. In section 5, we make use of the regularity
properties of the eigenmodes to determine exactly the Pollicott-Ruelle spectrum (up to
its multiplicities). In section 6, we rule out the existence of Jordan blocks under certain
assumptions. Section 7 is devoted to describe the local structure of the eigenmodes. From
that, we deduce some results on the multiplicity of the eigenvalues. We explain in section 8
how to deduce some classical results of differential topology from the results obtained in
the previous sections. In appendix A, we give the complete proof of the construction of the
escape function. Appendix B is devoted to a brief reminder of the proof of Proposition 4.2.
Finally, appendix C collects some facts on asymptotic expansions that we use at several
stages of our work.
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about his recent works on transfer operators and for generously sharing his knowledge
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3. Morse-Smale gradient flows

In this section, we briefly collect some facts on the dynamical properties of Morse-Smale
gradient flows. The main new results of this section are Lemmas 3.6 and 3.8 which are
related to earlier works of Weber [70] on the space of connecting orbits for gradient flows.
These two lemmas are the crucial ingredients to develop the machinery of anisotropic
Sobolev spaces of Faure and Sjöstrand [28]. We also fix some conventions that we will use
all along the article. For the well-known results, we follow the lines of [48, 70] and we refer
to these references for a more detailed exposition. Recall that, in all the article, M denotes
a smooth (C∞), oriented, compact manifold without boundary.

3.1. Gradient flows. Let f :M → R be a smooth function onM . If we fix a Riemannian
metric g on M (compatible with our orientation), then we can define the corresponding
gradient vector field as follows:

∀x ∈M, 〈gradf(x), .〉g(x) := df(x).

In local coordinates, this can we written as

Vf(x) := gradf(x) =

n∑

i,j=1

gij(x)∂xjf∂xj ,

where (gij(x))1≤i,j≤n is the induced Riemannian metric on T ∗
xM . Under our geometric as-

sumptions (compactness of the manifold), one knows that the gradient vector field induces
a complete flow that we denote by

ϕtf :M →M.

If it does not create any particular confusion, we will sometimes use the convention x(t) =
ϕtf(x0) for a fixed x0 in M . Note that, for any integral curve t 7→ x(t) of the gradient
vector field, one has

(3) ∀t1, t2 ∈ R, f(x(t2))− f(x(t1)) =

∫ t2

t1

‖gradf(x(t))‖2g(x(t))dt.

Suppose now that f is a Morse function. We denote by Critf its critical points. For the
sake of simplicity, we will also assume our Morse function f to be excellent which means
that all critical values are distinct. Recall that such functions are dense in the topological
space C∞(M,R). The Morse Lemma tells us
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Lemma 3.1 (Morse Lemma). Let f be a Morse function on a Riemannian manifold (M, g).
Then, near any critical point a, there is a system of coordinates (zi)i such that the point a
is given by z = 0, and such that

f(x) = f(a)−
z21
2

− . . .−
z2r
2

+
z2r+1

2
+ . . .+

z2n
2
,

for some 0 ≤ r ≤ n. The integer r is called the index of the critical point a. We will
either denote it by r(a) or ind(a).

An important property of the dynamical system ϕtf : M → M is that, for any given x0
in M , there exist two points x− and x+ in Critf such that

(4) lim
t→±∞

ϕtf(x0) = x±.

3.2. Stable and unstable manifolds. Let a be a critical point of f . The stable (resp.
unstable) manifold W s(a) (resp. W u(a)) is defined as the set of points x in M satisfying
ϕtf(x) → a as t→ +∞ (resp. t→ −∞). From [70, Th. 2.7], one knows that W s(a) (resp.
W u(a)) is a smooth submanifold of dimension r(a) (resp. n− r(a)) where 0 ≤ r(a) ≤ n is
the index of the critical point a. Note that, for more general vector fields with an hyperbolic
point, the stable (resp. unstable) manifold is a priori only injectively immersed in M . The
fact that we consider a gradient flow allows to show that it is also embedded [70, Th. 2.7],
even if it is not a priori properly embedded.

We will say that the gradient flow ϕtf satisfies the Morse-Smale assumption if for
every pair of critical points (a, b), the submanifolds W s(a) and W u(b) are transversal.
Note that, in the case where a = b, the intersection of the tangent spaces is in fact reduced
to {0}. When a 6= b and W s(a) ∩W u(b) is non empty, then this assumption ensures that
r(b) < r(a).

Let us now fix some conventions. Given any x0 inM , there exists a unique pair of critical
points (x−, x+) such that x0 belongs to W u(x−) ∩W s(x+). We define

Eu(x0) := Tx0W
u(x−) and E

s(x0) := Tx0W
s(x+).

Note that, whenever x0 is not a critical point of f , the intersection of these two subspaces
is not reduced to 0. From our transversality assumption, one has Tx0M = Eu(x0)+E

s(x0).
We refer to paragraph 3.3 for a more detailed description of these subspaces at the critical
points of a. We can also introduce the dual spaces E∗

u(x0) and E∗
s (x0) which are defined

as the annihilators of these unstable and stable spaces, i.e. E∗
u/s(x0)(E

u/s(x0)) = 0. From
the Morse-Smale transversality assumption, one can verify that, for any x0 in M ,

(5) E∗
u(x0) ∩ E

∗
s (x0) = {0}.

3.3. Lyapunov exponents. Given every point x in M , we define Lf (x) as the unique
matrix satisfying

∀ξ, η ∈ TxM, 〈Lf(x)ξ, η〉g(x) = d2xf(ξ, η).
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Let a be an element in Crit(f). The matrix Lf(a) corresponds to the linearization of Vf
at the point a. It can be shown [70, Lemma 2.5] that

∀t ∈ R, dϕtf(a) = exp(tLf (a)).

Moreover, from the definition and from the Morse assumption, one can verify that Lf (a)
is an invertible matrix which is symmetric with respect to the Riemannian metric g. In
particular, it is diagonalizable and we denote by (χj(a))j=1,...,n its eigenvalues. These
nonzero real numbers are called the Lyapunov exponents of the system. They depend
both on f and on the metric g. We will always suppose that χi(a) < 0 for 1 ≤ i ≤ r
and χi(a) > 0 for r + 1 ≤ i ≤ n. Moreover, there exists a basis of eigenvectors which
is orthonormal with respect to the metric g. According to [70, Th. 2.7], the stable (resp.
unstable) space is in fact equal to the direct sum of eigenspaces corresponding to the
negative (resp. positive) eigenvalues of Lf(a).

3.4. Lift to the cotangent space. We will now explain how one can lift this gradient
flow to the cotangent space T ∗M . We associate to the vector field Vf an Hamiltonian
function Hf which can be written as follows:

∀(x, ξ) ∈ T ∗M, Hf(x, ξ) := ξ (Vf(x)) .

This Hamiltonian function also induces an Hamiltonian flow that we denote by Φtf : T ∗M →
T ∗M . We note that, by construction,

Φtf (x, ξ) :=
(
ϕtf(x),

(
dϕtf(x)

T
)−1

ξ
)
,

and that this flow induces a diffeomorphism between T ∗M − {0} and T ∗M − {0}. When
it does not lead to any confusion, we will also write Φtf(x, ξ) = (x(t), ξ(t)). We note that
this flow induces a smooth flow on the unit cotangent bundle S∗M , i.e.

∀t ∈ R, ∀(x, ξ) ∈ S∗M, Φ̃tf (x, ξ) =


ϕtf (x),

(
dϕtf(x)

T
)−1

ξ∥∥∥
(
dϕtf(x)

T
)−1

ξ
∥∥∥


 .

We denote by X̃Hf
the induced smooth vector field on S∗M .

3.5. Adapted coordinates. We will say in the following that (f, g) is a smooth Morse

pair if, given any critical point a of f , one can find an open neighborhood Va of a and a
system of smooth (meaning C∞) local coordinate charts (zj)j=1,...,n = (x, y) such that, in
this coordinate chart, the vector field Vf reads

(6) Vf :=
n∑

j=1

χj(a)zj∂zj = −
r∑

j=1

|χj(a)|xj∂xj +
n∑

j=r+1

|χj(a)|yj∂yj .

The key point for us is that this change of coordinates is smooth which will allow us to take
as many derivatives as we want in the following sections where we aim at using microlocal
techniques. Requiring that there exists a smooth change of coordinates for which the
gradient vector field can be linearized may a priori look as a strong assumption. We will
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briefly discuss below two situations where this assumption is satisfied, the second one being
related to the notion of nonresonance introduced above.

When this assumption is satisfied, we shall say that we have an adapted system

of coordinates. We note that the function f may not have a nice expression in these
coordinates, meaning that f may a priori not have a Morse-type expression. In such a
coordinate chart, the gradient flow reads

ϕtf(z) = (etχ1(a)z1, . . . , e
tχn(a)zn)

= (e−|χ1(a)|tx1, . . . , e
−|χr(a)|txr, e

|χr+1(a)|tyr+1, . . . , e
|χn(a)|tyn).

Let us fix some conventions that we will use in the following. For every critical point a, we
denote the change of coordinates by

κa : w ∈ Va ⊂M → (x, y) ∈ Wa = (−δa, δa)
n ⊂ R

n,

where δa > 0 is some small enough parameter.

Remark 3.2. Let (U, κ) = (ui) be local coordinates on M . Whenever the chart is of
class C1, one can lift in a canonical way these coordinates into coordinates (ui, vj) on the
cotangent space T ∗M by using (K, T ∗U), where K(x, ξ) = (κ(x), (dκ(x)T )−1ξ). When we
make a change of coordinates (ũi, ṽj), one can verify that ṽ is the image of v under a linear
transformation (depending only on the coordinate charts (ui) and (ũi)).

We can also write the expression of the Hamiltonian flow in the corresponding adapted
coordinate chart near a critical point a. In such a chart, one can write

Hf(z, ζ) =

n∑

j=1

χj(a)zjζj = −
r∑

j=1

|χj(a)|xjξj +
n∑

j=r+1

|χj(a)|yjηj.

In particular, the map Φtf can be written in this local coordinate chart as

Φtf (z, ζ) = (eχ1(a)tz1, . . . e
χn(a)tzn; e

−χ1(a)tζ1, . . . e
−χn(a)tζn).

3.5.1. Locally flat metrics. The vector field Vf is a priori not linear in the chart of the
Morse Lemma. In fact, there might be no Morse chart in which gij(0) is diagonal and the
vector field linear. We will call the metric g locally flat with respect to f if, for any
critical point of f , there exists a smooth Morse chart (zi) in which the vector field Vf has
the linear form

Vf (z) =

n∑

j=1

χj(a)zj∂zj .

Such flows are also sometimes refered as tame flows. This type of locally flat metrics
appears for instance in [40, 48]. It is shown in [40] that, given any Morse function, one can
find an adapted metric g such that the Morse-Smale transversality assumption is satisfied.
Moreover, they proved that this property is more or less generic among such metrics.
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3.5.2. Sternberg-Chen Theorem. We would like to justify that asking for a smooth change
of coordinates which linarizes the gradient flow is in some sense generic. For that purpose,
we just recall Sternberg-Chen’s Theorem on the linearization of vector fields near hyperbolic
critical points [16] (see also [53, Th. 9, p.50]):

Theorem 3.3 (Sternberg-Chen). Let X(x) =
∑

j aj(x)∂xj be a smooth vector field defined

in a neighborhood of 0 in Rn. Suppose that X(x) = 0. Denote by (χj) the eigenvalues of
L := (∂xkaj(0))k,j. Suppose that the eigenvalues satisfy the non resonant assumption,

∀ k1, . . . , kn ∈ Z s.t k1, . . . kn ≥ 2, ∀ 1 ≤ i ≤ n, χi 6=
n∑

j=1

kjχj .

Then, there exists a smooth diffeomorphism h which is defined in a neighborhood of 0 such
that

X ◦ h = dh ◦ L.

The classical Grobman-Hartman Theorem [39] ensures the existence of a conjugating
homeomorphism. The crucial point of the Sternberg-Chen Theorem is that the conjugating
map is smooth provided some non resonance assumption is made. Applying this Theorem
locally near the critical points of f allows to show the existence of a smooth and adapted
system of coordinates. Note that this non-resonant assumption on the eigenvalues is for
instance satisfied if, for every a in Crit(f), the Lyapunov exponents (χj(a))j=1,...,n are
rationally independent.

3.6. Attractor and repeller of the Hamiltonian flow. We now introduce the following
subsets of T ∗M :

Γ+ =
⋃

x∈M

E∗
s (x), Γ− =

⋃

x∈M

E∗
u(x), and Γ =M × {0}.

We have then

Lemma 3.4. Suppose that (f, g) is a smooth Morse pair which generates a Morse-Smale
gradient flow ϕtf . One has, for every (x, ξ) in T ∗M with ξ 6= 0,

(x, ξ) ∈ Γ± =⇒ lim
t→±∞

‖ξ(t)‖x(t) = 0,

and

(x, ξ) /∈ Γ± =⇒ lim
t→±∞

‖ξ(t)‖x(t) = +∞,

where (x(t), ξ(t)) = Φtf (x, ξ).

This Lemma tells us that the trapped set of the Hamiltonian flow is reduced to the zero
section of T ∗M . The proof of this Lemma will crucially use the fact that we made the
Morse-Smale assumption and that we have a smooth (at least C1) change of coordinates
which linearizes the vector field.
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Proof. We only consider the case where t → +∞ (the other case can be obtained by
replacing f by −f). Let (x, ξ) be an element in T ∗M with ξ 6= 0. There exists a critical
point x+ of f such that limt→+∞ ϕtf(x) = x+. In particular, for t > 0 large enough, ϕtf (x)
belongs to the adapted chart around x+ which was defined in paragraph 3.5. Up to a
translation of time, one can write that, in this system of adapted coordinates and for every
t ≥ 0

Φtf (x, ξ) = (e−|χ1|tx1, . . . , e
−|χr|txr, 0, . . . , 0, e

|χ1|tξ1, . . . , e
|χr|tξr, e

−|χr+1|tηr+1, . . . , e
−|χn|tηn).

Hence, as all the norms can be made uniformly equivalent to the Euclidean norm in a small
neighborhood of x+, one can find two positive constants 0 < C1 < C2 such that

C1

(
r∑

j=1

e2|χj |tξ2j +

n∑

j=r+1

e−2|χj |tη2j

)
≤ ‖ξ(t)‖2x(t) ≤ C2

(
r∑

j=1

e2|χj |tξ2j +

n∑

j=r+1

e−2|χj |tη2j

)
.

The fact that (x, ξ) belongs to Γ+ is exactly equivalent to the fact that ξ1 = . . . = ξr = 0
from which one can easily conclude the expected property. �

Introduce now the two following disjoint subsets of S∗M :

Σu := S∗M ∩ Γ+, and Σs := S∗M ∩ Γ−.

Then, one has:

Lemma 3.5. Suppose that (f, g) is a smooth Morse pair which generates a Morse-Smale
gradient flow ϕtf . One has

(7) ∀(x, ξ) ∈ S∗M − Σs, lim
t→−∞

dS∗M

(
Φ̃tf (x, ξ),Σu

)
= 0,

and

(8) ∀(x, ξ) ∈ S∗M − Σu, lim
t→+∞

dS∗M

(
Φ̃tf(x, ξ),Σs

)
= 0.

This lemma tells us that Σu and Σs are in a certain weak sense repeller and attractor of
the flow Φ̃tf . A stronger version of this fact will be given in Lemma 3.8.

Proof. We proceed as in the proof of Lemma 3.4, and we just treat the case where t→ +∞.
Let (x, ξ) be an element in S∗M − Σu. In other words, (x, ξ) does not belong Γ+. Using
the notations of the proof of Lemma 3.4, it means that

Φtf (x, ξ) = (e−|χ1|tx1, . . . , e
−|χr|txr, 0, . . . , 0, e

|χ1|tξ1, . . . , e
|χr|tξr, e

−|χr+1|tηr+1, . . . , e
−|χn|tηn),

with ξj 6= 0 for some 1 ≤ j ≤ r. By letting t → +∞, we find that that any accumu-

lation point of Φ̃tf(x, ξ) is of the form (0, . . . , 0, ξ̃1, . . . , ξ̃r, 0, . . . , 0). Equivalently, every
accumulation point belongs to Σs. �
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3.7. Compactness. In order to make the machinery of anisotropic Sobolev space work, it
will first be important for us that Σu and Σs are compact subsets of S∗M . This assumption
is verified for gradient flow satisfying the Morse-Smale assumption:

Lemma 3.6. Suppose that (f, g) is a smooth Morse pair which induces a gradient flow
with the Morse-Smale property. Then, the subsets Σu and Σs are compact in S∗M .

This property combined with Lemma 3.8 will be crucial in our construction of anisotropic
Sobolev spaces. In particular, they are necessary to prove Lemma 2.1 from [28] which is
at the heart of this construction. We note that the proof of Lemma 3.6 requires both the
Morse-Smale assumption and the existence of a (at least C1) linearizing chart for the flow.

Remark 3.7. Even if this Lemma sounds natural, the proof is a little bit subtle and it is
related to the so-called Whitney regularity condition [54, Ch. 7] – see also the appendix
of [48] for related results in the case of locally flat metrics. Here, we are aiming at weaker
results than in these references and we shall give a proof of our Lemma which is based
on purely “dynamical arguments”. Our argument is in fact very close to the proof of the
compactness of the space of connecting orbits of Weber in [70, Th. 3.8]. In this reference,
it was proved that the space of connecting orbits between two critical points a and b is
“compact up to broken orbits”. It means that, for a fixed sequence (xp)p≥1 in W u(a) ∩
W s(b), there exists (up to extraction) a sequence of critical points a = b0, b1, . . . , bl = b
and a finite sequence of points um in W u(bm) ∩W

s(bm+1) such that

∀ǫ1 > 0, ∃p0, ∀p ≥ p0, d (O(xp),∪0≤m≤l−1O(um)) < ǫ1,

where O(x) denotes the orbit of x under the flow ϕtf . The key “dynamical argument”
in the proof of Weber was to use the Grobman-Hartman linearization Theorem around
the critical points of f . Here, we want to prove something slightly stronger in the sense
that we will have to keep track of the behaviour of the cotangent vectors in the phase
space S∗M and not only of the points in the position space M . For that purpose, we will
crucially makes use of the fact that we have a smooth (at least C1) chart where the vector
field can be linearized. In some sense, our compactness statement on S∗M requires the
Sternberg-Chen’s Theorem while Weber’s compactness statement on M only required the
Grobman-Hartman’s Theorem.

Proof. We only treat the case of Σs as the case of Σu can be obtained by replacing f by −f .
In order to prove compactness, we will just prove that Σs is closed (as S∗M is compact).
Consider (zm, ζm) a converging subsequence in Σs. We denote by (z∞, ζ∞) its accumulation
point which belongs to S∗M . We will proceed by contradiction and suppose that (z∞, ζ∞)
does not belong to Σs. Without loss of generality, we can suppose that, for every m ≥ 1,
zm belongs to the unstable manifold W u(a) of some critical point a. Observe also that z∞
belongs to W u(b1) for some b1 in Crit(f). If a = b1, we can apply the backward flow Φ−T

for T large enough to the sequence (zm; ζm)m and its limit (z∞, ζ∞) so that we may assume
that the sequence and its limit are in the linearized chart near a and go directly to the
final step of our proof.
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Suppose now that a 6= b1. In that case, we will show that there exists a converging

subsequence (z
(1)
m , ζ

(1)
m ) in Σs ∩W u(a) such that the accumulation point (z

(1)
∞ , ζ

(1)
∞ ) belongs

to W s(b1) − {b1} but not to Σs. For that purpose, we note that z∞ ∈ W u(b1) =⇒
limT→+∞ ϕ−T (z∞) = b1. Hence by continuity of ϕ−T

f :M 7→M , applying the flow Φ̃−T
f for

some large T > 0 and up to another extraction, we can suppose that, for every m ≥ 1, zm
belongs to the neighborhood of b1 with adapted coordinates as defined in paragraph 3.5.
In other words, we can write zm as a point (xm,1, . . . , xm,r, ym,r+1, . . . , ym,n) such that,

r∑

j=1

|xm,j |+
n∑

j=r+1

|ym,j| ≤
δb1
2
,

where δb1 > 0 is the size of the chart of adapted coordinates defined in paragraph 3.5. As
a 6= b1, we also know that, for every m ≥ 1, there exists 1 ≤ j ≤ r such that xm,j 6= 0.
Otherwise the sequence xm would belong to W u(b1) which is given in local coordinates
near b1 by the equations {xj = 0, 1 6 j 6 r}. In particular, for every m ≥ 1, there exists
some Tm > 0 such that

z(1)m = ϕ−Tm
f (zm) = (eTmxm,1, . . . , e

Tmxm,r, e
−Tmym,r+1, . . . , e

Tmym,n) = (x
(1)
m,1, . . . , x

(1)
m,r, y

(1)
m,r+1, . . . , y

(1)
m,n)

verifies

∃1 ≤ j ≤ r s.t. |x(1)m,j | ≥
δb1
2
.

One can verify that any accumulation point z
(1)
∞ belongs toW s(b1)−{b1}. Up to this point,

we did not use our assumption on ζ∞ and we did not track what happens for the covector
ζm under application of the flow Φ̃−Tm

f . From our assumption that (z∞, ζ∞) does not belong

to Σs and from property (7), we find that d
(
Φ̃−T
f (z∞, ζ∞),Σu

)
→ 0 when T → +∞. Since

Σu is locally given by {ξ1 = · · · = ξr = 0}, we observe that if we pick T > 0 larger in
the first step (in a way that depends on p ≥ 1) and up to another extraction, we suppose
that, for every p ≥ 1, one can find m(p) ≥ 1 such that ζm(p) belongs to a small conic
neighborhood of size 1/p of {ξ1 = . . . = ξr = 0}. If the conic neighborhood is chosen small

enough (i.e. if p ≥ 1 is large enough), then it is stable under the action of Φ̃−Tm
f . Hence,

if we set (z
(1)
m , ζ

(1)
m ) = Φ̃−Tm

f (zm, ζm), then, for every p large enough, ζ
(1)
m(p) still belongs to

a conic neighborhood of the stable direction of size 1/p. Note that, as in the proof of
Lemma 3.4, this property follows from the expression we have for the Hamiltonian flow Φtf
in the adapted system of coordinates.

Up to another extraction, we can thus suppose that the limit (z
(1)
∞ , ζ

(1)
∞ ) satisfies

z(1)∞ ∈ W s(b1)− {b1}, and ζ
(1)
∞ ∈ E∗

s (z
(1)
∞ ),

which means in fact that (z
(1)
∞ , ζ

(1)
∞ ) ∈ Σu. In particular, as E∗

u ∩E
∗
s = {0} from the Morse-

Smale assumption, we can deduce that (z
(1)
∞ , ζ

(1)
∞ ) does not belong to Σs which implies the

expected property.

Now, there exists another critical point b2 such that z
(1)
∞ belongs toW u(b2). If b2 6= a, we

can apply the same procedure one more time. As there are only finitely many critical points,
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this iteration should terminate with a convergent sequence (z
(l)
m , ζ

(l)
m )m in Σs∩S∗

Wu(a)M such

that its limit (z
(l)
∞ , ζ

(l)
∞ ) ∈ S∗

Wu(a)M does not belong to Σs by construction. We can iterate

the flow Φ̃tf in backward times once again. Thus, we can suppose that (z
(l)
∞ , ζ

(l)
∞ ) belongs

to the adapted chart around a. As W u(a) is a smoothly embedded manifold around the
point a, we can finally get the contradiction as any sequence in Σs belonging to this small
neighborhood should then converge to a point in Σs.

�

3.8. Invariant neighborhoods. We conclude this dynamical section with the following
Lemma which states that Σu and Σs are repeller and attractor in a slightly stronger sense
than in Lemma 3.5.

Lemma 3.8. Let (f, g) be a smooth Morse pair that induces a Morse-Smale gradient flow.
Let ǫ > 0. Then, there exists an open neighborhood V s of Σs which is of size ≤ ǫ and such
that

∀t ≥ 0, Φ̃tf (V
s) ⊂ V s.

The same holds for Σu in backward times.

One more time, the proof makes use of the existence of a (at least C1) linearizing chart
for the flow. For the sake of simplicity, we also make use of the fact that the critical values
of f are distinct even if it is maybe not completely necessary.

Proof. Again, we only treat the case of Σs (the case of Σu can be obtained by replacing
f by −f). Recall that we assumed our Morse function f to be excellent, meaning that
all its critical values are distinct. Thus, we can define the following total order relation
between critical points. We say that a < b if f(a) < f(b). This relation allows to order
the critical points as a1 < a2 < · · · < aK .

The proof of this lemma requires one more time a delicate analysis of the flow. We
construct the neighborhood in a progressive manner. First, we build a small neighborhood
of the projection of Σs on M which is equal to ∪1≤j≤K:r(aj)6=0W

u(aj). Then, we adjust the
construction to be able to lift this open set into a small open neighborhood of Σs inside
S∗M . In order to construct the neighborhood in M , we fix, for every 1 ≤ j ≤ K for which
aj has positive Morse index (i.e. r(aj) > 0), the following open neighborhood of aj inside
M :

R(aj , ǫj, ǫ
′
j) := {(x, y) : ∀j, |xj| < ǫ′j , |yj| < ǫj},

where ǫj, ǫ
′
j > 0 are small enough parameters to ensure that this defines an ǫ neighborhood

of aj. We will now adjust the values of these parameters to construct a neighborhood of
the projection of Σs which is invariant by ϕtf for every t ≥ 0. For that purpose, we proceed
by induction starting from the largest values of f .

First, we observe that every point whose trajectory enters R(aj , ǫj, ǫ
′
j) will either stay in

this open set for every t ≥ 0, or escape this open set (in a maybe arbitrarly large time) by
crossing the following subset of M :

F (aj, ǫj , ǫ
′
j) := {(x, y) : ∀j, |xj | < ǫ′j , ∃j, |yj| = ǫj}
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which is one of the face of the boundary of R(aj , ǫj, ǫ
′
j). We will inductively construct

from the maximum of f a system of open neighborhoods R(aj , ǫj , ǫ
′
j)j , r(aj) > 0 such that

for every face F (aj , ǫj, ǫ
′
j) of R(aj , ǫj , ǫ

′
j), there exists a finite time Tj > 0, such that for

every x ∈ F (aj , ǫj, ǫ
′
j), the trajectory t 7→ ϕtf(x) meets ∪j<iR(ai, ǫi, ǫ′i) for some t ∈ (0, Tj).

For j = K, one can verify that the neighborhood is invariant by the flow in positive time
provided that we pick ǫK = ǫ′K > 0 small enough to ensure that we are in the neighborhood
of adapted coordinates defined in paragraph 3.5. Suppose now that we have fixed the values
of ǫi and ǫ

′
i for every i > j with r(ai) 6= 0 and that r(aj) 6= 0. We will explain how to fix the

value of ǫj and ǫ
′
j . We claim that the forward trajectory of every point inside F (aj , ǫj, ǫ

′
j)

will reach ⋃

i>j:r(ai)6=0

R(ai, ǫi, ǫ
′
i)

in a finite time 0 < t < Tj where Tj depends only on ǫi, ǫ
′
i with i > j satisfying r(ai) 6= 0

and on ǫj . In particular, this time can be made uniform in ǫ′j . Assume by contradiction
that, for every m > 0 and for every T > 0, there exists xm,T in F (aj, ǫj , 1/m) such that the
orbit t ∈ [0, T ] 7→ ϕtf(xm,T ) does not meet the subset

⋃
i>j:r(ai)6=0R(ai, ǫi, ǫ

′
i). We fix T > 0,

and, by compactness, one can extract a subsequence such that xm,T → x∞,T as m → +∞
where x∞,T belongs to W u(aj) is at distance > O(ǫj) of aj . We now extract another
subsequence (as T → +∞) and we obtain a point x∞ 6= aj in W u(aj) that would not
reach

⋃
i>j:r(ai)6=0R(ai, ǫi, ǫ

′
i) in finite time. This contradicts the fact that limt→+∞ ϕtf(x∞)

is equal to ai for some i > j satisfying r(ai) 6= 0.
Recall now that the distance between two trajectories can grow at most exponentially

under the flow [73, Lemma 11.11]. Hence, if we choose ǫ′j > 0 small enough, we can ensure
that, the forward trajectory of every point inside F (aj , ǫj, ǫ

′
j) will remain ǫ close to W u(aj)

up the finite time t ≤ Tj where it will enter one of the neighborhood R(ai, ǫi, ǫ
′
i) with i > j

and r(ai) > 0. This construction defines a family of open neighborhood of the critical
points aj of index > 0 whose forward trajectory under the flow will remains within a
distance ǫ > 0 of ∪1≤j≤K:r(aj)6=0W

u(aj) which is exactly the projection of Σs on M . Then,
we set

N :=
⋃

t≥0

⋃

1≤j≤K:r(aj)6=0

ϕtf (R(aj, ǫj , ǫ
′
j)).

By construction, this set is invariant by ϕtf . Moreover, it defines a neighborhood of
∪1≤j≤K:r(aj)6=0W

u(aj) which is of size ≤ ǫ.
It now remains to verify that we can lift this neighborhood into a neighborhood of size ǫ of

Σs. For that purpose, we rely on the fact that, our smooth system of coordinate chart allows
to linearize also the Hamiltonian flow Φtf . Hence, we fix another positive parameter ǫ′′j > 0

and we consider above each neighborhood R(aj , ǫj, ǫ
′
j) an open neighborhood R̃(aj, ǫj , ǫ

′
j , ǫ

′′
j )

in S∗M made of unit covectors which are within a distance < ǫ′′j of ξ1 = . . . = ξr = 0. For
every fixed choice of ǫj > 0 and ǫ′′j > 0, we can use the compactness of Σs to fix ǫ′j > 0 small
enough to ensure that this defines indeed a neighborhood of size < ǫ of Σs∩S∗R(aj , ǫj, ǫ

′
j).

Using the fact that the distance between two trajectories can grow at most exponentially
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under the flow Φ̃tf , we can argue by induction as in the case of M . More precisely, at each
step of the induction, we can fix ǫ′′j > 0 small enough in a way that depends only on the

values of ǫj and of ǫ
(∗)
i with i > j and r(ai) > 0 and such that

Ñ :=
⋃

t≥0

⋃

1≤j≤K:r(aj)6=0

Φ̃tf (R̃(aj, ǫj , ǫ
′
j , ǫ

′′
j ))

defines a forward invariant open neighborhood of Σs of size < ǫ. �

4. Spectral properties of the transfer operator acting on currents

In [28], Faure and Sjöstrand constructed some anisotropic Sobolev spaces adapted to the
spectral study of transfer operators for Anosov flows – see also [27] for the case of Anosov
diffeomorphisms. The extension to anisotropic spaces of currents was done by Dyatlov and
Zworski in [24, Sect. 3] by a slightly different approach. The definition of these spaces is
based on the construction of a nice escape function adapted to the dynamics of the flow,
namely a function that is strictly decreasing along the flow. This type of construction
appears in fact naturally in the study of semiclassical resonances – see e.g. the appendix
of [34]. In our framework, a natural candidate to pick regarding (3) is the opposite of the
function f . However, near the critical points of f , the derivative along the flow vanishes,
and we have to find an appropriate candidate for this part of phase space. This can be
done by using the hyperbolicity of the flow at these points and mimicking the construction
of [28].

This section is organized as follows. First, we establish the existence of a nice escape
function enjoying the dynamical features of [28, 24]. This allows us to define some Sobolev
spaces of anisotropic currents following these references. Finally, we recall the spectral

properties of −L(k)
Vf

acting on these spaces. The main difference with the above references

is the construction of the escape function which requires modifications compared with
the setting from [28, Lemma 2.1] where the authors made use of the Anosov property.
Lemmas 3.6 and 3.8 will in fact ensure that the construction of Faure and Sjöstrand can
be extended to our framework.

From this point on, we will always assume that (f, g) is a smooth Morse pair gener-

ating a Morse-Smale gradient flow.

4.1. Construction of anisotropic Sobolev spaces.

4.1.1. Escape function. The key ingredient in the construction of [28] is the following
Lemma which will allow us to define appropriate Sobolev spaces where the operator LVf
has nice spectral properties.

Lemma 4.1 (Escape function). Let N0, N1 > 4‖f‖C0 be two elements in R. Then, there
exist c0 > 0 (depending on (M, g) but not on N0 and N1) and a smooth function m(x, ξ)
in C∞(T ∗M) with bounded derivatives and which

• takes values in [−2N0, 2N1],
• is 0 homogeneous for ‖ξ‖x ≥ 1,
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• is ≤ −N0

2
on a conic neighborhood of Γ− (for ‖ξ‖x ≥ 1),

• is ≥ N1

2
on a conic neighborhood of Γ+ (for ‖ξ‖x ≥ 1),

and such that there exists R0 > 0 for which the escape function

Gm(x, ξ) := m(x, ξ) log(1 + ‖ξ‖2x)

verifies, for every (x, ξ) in T ∗M with ‖ξ‖x ≥ R0,

XHf
.(Gm)(x, ξ) ≤ −CN := −c0 min{N0, N1}.

Now that we have settled the dynamical framework precisely in section 3, the construc-
tion of the function Gm closely follows the one from [28]. For the sake of exposition, we
postpone the detailed proof of this result to appendix A, and we just mention the key in-
gredients: (1) f is strictly decreasing along the flow, (2) there exists a C1 chart of adapted
coordinates (see paragraph 3.5), (3) the attractor and repeller of the Hamiltonian flow
(Lemmas 3.6 and 3.8) are compact. Lemma 4.1 is in fact the only step in the construction
of the anisotropic Sobolev space where one uses the dynamical properties of the flow under
consideration.

4.1.2. Anisotropic Sobolev spaces. Let us now define the corresponding anisotropic Sobolev
spaces. We fix N0, N1 > 4‖f‖C0 large and we set

(9) Am(x, ξ) := expGm(x, ξ),

where Gm(x, ξ) is given by Lemma 4.1. Following paragraph 1.1.2 in [28], one can define
the following anisotropic Sobolev space

Hm(M) := Op(Am)
−1(L2(M)),

where Op(Am) is a pseudodifferential operator4 with principal symbol Am.
We now briefly collect some facts concerning these spaces and we refer to [27, Sect. 3.2]

for more properties of these spaces. The space Hm(M) is endowed with a Hilbert structure
induced by the Hilbert structure on L2(M). The space

H−m(M) = Op(Am)L
2(M)

is the topological dual of Hm(M). The anisotropic Sobolev space Hm(M) is a reflexive
space. Finally, one has

C∞(M) ⊂ Hm(M) ⊂ D′(M),

where the injections are continuous.

4Note that this requires to deal with symbols of variable orders whose symbolic calculus was described
in Appendix A of [27]. This can be done as the symbol m(x, ξ) belongs to the standard class of symbols
S0(T ∗M).
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4.1.3. Anisotropic Sobolev spaces of currents. Let 0 ≤ k ≤ n. We consider the vector

bundle Λk(T ∗M) of exterior k forms. We define A
(k)
m (x, ξ) := Am(x, ξ)Id belonging to

Hom(Λk(T ∗M)). We fix the inner product 〈, 〉(k)g∗ on Λk(T ∗M) which is induced by the
metric g on M .

This allows to define the Hilbert space L2(M,Λk(T ∗M)) and to introduce an anisotropic
Sobolev space of currents by setting

Hm
k (M) = Op(A(k)

m )−1L2(M,Λk(T ∗M)),

where Op(A
(k)
m ) is a pseudodifferential operator with principal symbol A

(k)
m . We refer to [24,

App. C.1] for a brief reminder of pseudodifferential operators with values in vector bundles.
In particular, adapting the proof of [27, Cor. 4] to the vector bundle valued framework, one

can verify that A
(k)
m is an elliptic symbol, and thus Op(A

(k)
m ) can be chosen to be invertible.

Mimicking the proofs of [27], we can deduce some properties of these spaces of currents.
First of all, they are endowed with a Hilbert structure inherited from the L2-structure on
M . The space

Hm
k (M)′ = Op(A(k)

m )L2(M,Λk(T ∗M))

is the topological dual of Hm
k (M) which is in fact reflexive. We also note that the space

Hm
k (M) can be identified with Hm(M)⊗C∞(M) Ω

k(M). Finally, one has

Ωk(M) ⊂ Hm
k (M) ⊂ D′,k(M),

where the injections are continuous.

4.2. Identifying the dual. Recall that the Hodge star operator is the unique isomorphism
⋆k : Λ

k(T ∗M) → Λn−k(T ∗M) such that, for every ψ1 in Ωk(M) and ψ2 in Ωn−k(M),∫

M

ψ1 ∧ ψ2 =

∫

M

〈ψ1, ⋆
−1
k ψ2〉

(k)
g∗(x)ωg(x),

where ωg is the volume form induced by the Riemannian metric on Λk(T ∗M). In particular,
⋆k induces an isomorphism from Hm

k (M)′ to H−m
n−k(M), whose Hilbert structure is given by

the scalar product

(ψ1, ψ2) ∈ H−m
n−k(M)2 7→ 〈⋆−1

k ψ1, ⋆
−1
k ψ2〉Hm

k
(M)′ .

Thus, the topological dual of Hm
k (M) can be identified with H−m

n−k(M), where, for every ψ1

in Ωk(M) and ψ2 in Ωn−k(M), one has the following duality relation:

〈ψ1, ψ2〉Hm
k
×H−m

n−k
=

∫

M

ψ1∧ψ2 = 〈Op(A(k)
m )ψ1,Op(A(k)

m )−1⋆−1
k ψ2〉L2 = 〈ψ1, ⋆

−1
k ψ2〉Hm

k
×(Hm

k
)′ .

4.3. Discrete spectrum. The main result on the spectral properties of −L(k)
Vf

acting on

these anisotropic spaces is the following Proposition:

Proposition 4.2 (Discrete spectrum). The operator −L(k)
Vf

defines a maximal closed un-

bounded operator on Hm
k (M),

−L(k)
Vf

: Hm
k (M) → Hm

k (M),
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with domain given by D(−L(k)
Vf
) := {u ∈ Hm

k (M) : −L(k)
Vf
u ∈ Hm

k (M)}. It coincides with

the closure of −L(k)
Vf

: Ωk(M) → Ωk(M) in the graph norm for operators. Moreover, there

exists a constant C0 in R (that depends on the choice of the order function m(x, ξ)) such

that −L(k)
Vf

has empty spectrum for Re(z) > C0. Finally, the operator

−L(k)
Vf

: Hm
k (M) → Hm

k (M),

has a discrete spectrum with finite multiplicity in the domain

Re(z) > −CN + C,

where C > 0 depends only the choice of the metric (and the local coordinate charts) and
CN > 0 is the constant from Lemma 4.1.

We note that the second part on the discrete spectrum is obtained by showing that the

operator is (−L(k)
Vf

− z) is a Fredholm operator of index 0 depending analytically on z in

the corresponding half plane [43, 73]. In the case of Anosov flows, the proof of this result
was given by Faure-Sjöstrand in [28, Sect. 3] for k = 0 while the extension to the case
of currents was done by Dyatlov-Zworski in [24, Sect. 3]. Note that the proofs in both
references are of slightly different nature but they both crucially rely on the properties of
the escape function used to define the anisotropic space Hm

k (M). Up to some adaptations
to deal with the case of currents, we can in fact follow the proof of [28] for the extension
to the case of currents – see appendix B for a brief account on the proof of Faure and
Sjöstrand.

We now list some properties of this spectrum. As in [28, Th. 1.5], we can show that

the eigenvalues (counted with their algebraic multiplicity) and the eigenspaces of −L(k)
Vf

:

Hm
k (M) → Hm

k (M) are in fact independent of the choice of escape function. For every
0 ≤ k ≤ n, we call the eigenvalues the Pollicott-Ruelle resonances of index k. For
later use, we will write

Rk(f, g) := {Pollicott-Ruelle resonances of index k} ⊂ C.

In other words, these complex numbers are the poles of the meromorphic extension of the
resolvent (

−L(k)
Vf

− z
)−1

: Ωk(M) → D′,k(M).

Finally, we note that, by duality, the same spectral properties holds for the dual operator

(10) (−L(k)
Vf
)† = −L(n−k)

V−f
: H−m

n−k(M) → H−m
n−k(M).

5. Computing the spectrum

In sections 5 to 7, we aim at describing the eigenvalues and the eigenmodes in great
details. In order to explain the idea in a simpler manner, we start with the simpler

question of determining the Pollicott-Ruelle resonances of −L(k)
Vf

without describing their

corresponding eigenmodes and/or their algebraic multiplicity. In sections 6 and 7, we
will refine the argument presented here in order to obtain a complete description of the
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spectrum. Yet, in order to emphasize the main ideas of the proof, we start with this simpler
question, and the main result of this section reads:

Proposition 5.1. Suppose that (f, g) is a smooth Morse pair inducing a Morse-Smale
gradient flow. Then, one has, for every 0 ≤ k ≤ n,

Rk(f, g) = Ik :=
⋃

a∈Crit(f)

Ik(a),

where, for every a in Crit(f) of index 0 ≤ r ≤ n,

(11) Ik(a) :=
⋃

I⊂{1,...,r}, J⊂{r+1,...,n}:|J |−|I|=k−r

{
−

n∑

j=1

αj |χj(a)| : ∀j ∈ I ∪ J, αj ≥ 1

}
.

In other words, up to the multiplicities, we are able to determine exactly the Pollicott-
Ruelle spectrum. Building on the construction of section 4, we shall now give the proof of
this Proposition. We emphasize that the existence of a smooth linearizing chart is crucial
in our proof. With lower regularity (say C1), we would not a priori obtain such a precise
description. We proceed in several steps. First, we start with a simple propagation Lemma
which will be used at several stages of our proof. Then, we use our a priori information
on the regularity of the resonant states to show the inclusion Rk(f, g) ⊂ Ik. Finally, by
considering appropriate test functions, we obtain the converse inclusion Ik ⊂ Rk(f, g).

5.1. Propagation Lemma. In our proof, we intend to use a simple propagation Lemma
that we will now prove.

Lemma 5.2 (Propagation Lemma). Let 0 ≤ k ≤ n, let z in C and let u ∈ D′,k(M) be a

solution of L(k)
Vf
u = zu. If u|U = 0 where U ⊂ M is some open subset then u vanishes on

the larger open subset
⋃
t∈R ϕ

t
f(U).

Proof. We shall establish the result by a duality argument. First, we note that, for every
ψ in Ωn−k(M),

d

dt

〈
ϕt∗f u, ψ

〉
=
〈
ϕt∗f L

(k)
Vf
u, ψ

〉
= z

〈
ϕt∗f u, ψ

〉
.

Hence, solving the ODE yields

ϕt∗f u = etzu, ∀t ∈ R.

Assume now x ∈
⋃
t∈R ϕ

t
f(U). It means that there is some t0 ∈ R such that x ∈ ϕt0f (U)

which is an open subset of M . Let ψ be an element in Ωn−k(ϕt0f (U)). We have the identity

〈u, ψ〉 = 〈(ϕt0f )
∗u, (ϕ−t0

f )∗ψ〉 = 〈et0zu, (ϕ−t0
f )∗ψ〉 = 0

since supp
(
(ϕ−t0

f )∗ψ
)
⊂ U and u|U = 0. �
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5.2. Proving Rk(f, g) ⊂ Ik. We let 0 ≤ k ≤ n. Let z = λ+ iγ be an element in Rk(f, g).
We will prove that z belongs to Ik via a kind of induction argument on the set of critical
points. For that purpose, we order this set a1 < a2 < . . . < aK by increasing order as in the
proof of Lemma 3.8. In order to clarify the main idea, we will explain first the argument
in the case of critical points of index 0, i.e. minima of f . Then, we will treat the general
case using the pull-back Theorem of Hörmander [45].

5.2.1. Smoothness near minima. From the definition of Rk(f, g), one knows that there

exists u in Hm
k (M) such that L(k)

Vf
u = −zu. From [28, Th. 1.5], we know that the spectrum

and the generalized eigenvalues are intrinsic, i.e. they do not depend on the choice of the
order function m(x, ξ). Thus, for any given N , we know from Sobolev injections that, if
we pick N1 large enough in the definition of m, u is of class CN in a small neighborhood of
any minimum. The neighborhood may depend on the choice of N1. Yet, by a propagation
argument, this remains true on the image of this neighborhood under the flow ϕtf . In other
words, u is smooth in the neighborhood of any local minimum of f , i.e. close to every
point a of index r(a) = 0. We have then the following alternative

• either u identically vanishes in a neighborhood of every point of index 0,
• or there exists w0 in a small neighborhood of a point a of index 0 such that w0

belongs to the neighborhood of adapted coordinates of paragraph 3.5 and u(w0) 6= 0.

Suppose that we are in the second case. Following the proof of the propagation Lemma,
we write that, for every t ≥ 0,

u ◦ ϕ−t
f (w0) = e(λ+iγ)tu(w0).

Equivalently, if we set t = − ln s for 0 < s ≤ 1, one has

(12) u ◦ ϕln s
f (w0) = s−(λ+iγ)u(w0).

Recall that, if we integrate the flow of ϕln s
f in the adapted coordinates w = (yi)1≤i≤n of

paragraph 3.5, we get

ϕln s
f (w) = (sχi(a)yi)i=1,...,n.

Hence, when we look at equality (12), the flow acts on the (yi)1≤i≤n variables via scalings
with different speeds depending on the various Lyapunov exponents. We would now like
to conclude that equality (12) combined with u(w0) 6= 0 implies that z belongs to Ik(a).

For that purpose, we will use Taylor expansion of u in both even and odd variables as
u is a smooth form near a. Indeed, we think of exterior forms u ∈ Ωk(M) as super
functions, i.e. as elements

u(y1, . . . , yn; dy1, . . . , dyn)

of the Grassmann algebra C∞(M)[dy1, . . . , dyn] over the algebra C∞(M). Hence, as u
is smooth, it admits a Taylor expansion in both even (y1, . . . , yn) and odd variables
(dy1, . . . , dyn). The Taylor formula reads :

u(y; dy) ∼
∑

(α,β)6N

uα,βy
αdyβ
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where (α, β) are multi–indices and the polynomials are of bounded degree in the odd
variables dy. Note that this Taylor expansion in the adapted coordinate charts makes
sense because we are considering smooth change of variables. We now introduce n scaling
variables (s1, . . . , sn) ∈ Rn. Then, with the conventions of paragraph 3.5, we consider the
map Φ : (sj, yj)1≤j≤n ∈ (−1, 1)n ×Wa 7→ (sjyj)1≤j≤n ∈ Wa which acts by pull–back as :

(13) Φ∗u(s, x, dx) = u(sjyj, sjdyj)

which implies that Φ∗u(s, y, dy) is smooth in s = (s1, . . . , sn) ∈ R
n. However our goal is to

study the asymptotic behaviour of u(sχj(a)yj, s
χj(a)dyj) near s = 0. Thanks to Lemma C.3,

we can deduce that this expression has a polyhomogeneous expansion in s. Combining this
observation to equation (12) (with u(w0) 6= 0) and to Lemma C.4, we deduce that

γ = 0, and λ = −
n∑

j=1

αjχj(a),

for some αj ∈ N. We also note that, as u belongs to Ωk(M), at least k of the αj must
be ≥ 1. This shows that z belongs to Ik(a) except if u was identically vanishing in a
neighborhood of a. Our next step will be to generalize this argument near any critical
point of f .

5.2.2. The general case. Assume now that, for all i 6 j, the eigenfunction u vanishes near
ai and assume the germ of u near aj+1 is non vanishing (see Lemma 5.3 below). In that
case, we would like to prove that z is of the form:

z = −
n∑

l=1

αl|χl(aj+1)|,

with some restrictions on the coefficients αl. For that purpose, we start with the following
central observation:

Lemma 5.3. Let u ∈ D′,k(M) be some eigencurrent of −L(k)
Vf

acting on Hm
k (M).

If u vanishes in some neighborhood of all ai for i 6 j, then u restricted to the level
f−1(< f(aj+1)) vanishes. Moreover, if the germ u|Vaj+1

6= 0 (for the adapted chart κaj+1
:

Vaj+1
→Waj+1

defined in paragraph 3.5), then the germ u|Vaj+1
is supported in the germ of

unstable manifold W u(aj+1) ∩ Vaj+1
.

Remark 5.4. A first consequence of this Lemma is that there is necessarily a critical point
a in a neighborhood of which u does not vanish.

Proof. Assume without loss of generality that f(aj+1) = 0. The level f−1(< 0) contains
only the critical points {a1, . . . , aj}. Moreover, since the value of the potential f is mono-
tonic along the flow it follows that the level f−1(< 0) is contained in the union of unstable
manifolds

⋃
i≤jW

u(ai). Hence, by the propagation Lemma, u|{f−1(<0)} = 0. Now con-

sider some open set V in Vaj+1
which does not interset W u(aj+1). Using the fact that f

is excellent and that f must increase along the flow, one knows that, for every x in V ,
x− = limt→−∞ ϕtf(x) belongs to {a1, . . . , aj}. Using the propagation Lemma one more
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time, one can then deduce that u|V = 0. This is valid for any open set V ⊂ Vaj+1
which

does not intersect W u(aj+1). In other words, u|U is supported in the germ of unstable
manifold W u(aj+1) ∩ Vaj+1

, which concludes the proof of the Lemma. �

We want to proceed as in the first step of the induction. In other words, we let ψ be a
smooth test form in Ωn−k(M) which is compactly supported in Vaj+1

. We can then write,
for every s in (0, 1], 〈

(ϕln s
f )∗u, ψ

〉
= s−(λ+iγ)〈u, ψ〉.

As we made the assumption that u is not identically vanishing in the neighborhood of aj+1,
we can choose ψ such that 〈u, ψ〉 6= 0. Then, we would like to prove that the left-hand side of
the equality admits a polyhomogeneous expansion in s which is indexed by the set Ik(aj+1).
Combining this to Lemma C.4, we would then deduce that z is of the expected form. Thus,
our last task is to prove that

〈
(ϕln s

f )∗u, ψ
〉
admits a polyhomogeneous expansion indexed

by Ik(aj+1). For that purpose, we shall work using the local coordinates (x, y) defined in
paragraph 3.5. We denote by ũ the image of u in this chart. From Lemma 5.3, this defines
a current which is carried in (−δa, δa)n ∩ {x = 0}. This can be extended into a current
defined on W̃a := Rr(a) × (−δa, δa)n−r(a) by setting ũ = 0 outside (−δa, δa)n. Then, we
introduce the following map

Φ : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (s−1
i xi, sjxj) ∈ W̃a.

Note that this is well defined except if si = 0 for some 1 ≤ i ≤ r(a). We also define the
partial maps:

Φ1 : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (xj, sjyj) ∈ W̃a,

and

Φ2 : (s1, . . . , sn; x, y) ∈ (−1, 1)n × W̃a 7→ (sjxj , yj) ∈ W̃a.

Contrary to Φ, these two maps are well defined for s belonging to the whole set (−1, 1)n.
Let s be a point in (−1, 1)n with all entries which are non vanishing. In that case, we can
write

(14) 〈Φ(s)∗ũ, ψ̃〉 = 〈Φ2(s)∗Φ
1(s)∗ũ, ψ̃〉 = 〈Φ1(s)∗ũ,Φ2(s)∗ψ̃〉.

This is valid as long as sj 6= 0 for every 1 ≤ j ≤ n. Our next step is to show that this
extends as a smooth function on (−1, 1)n. From the previous expression, one can observe
that the main concern is to be able to study the smoothness of Φ1(s)∗ũ in the variable

(sj)j ∈ (−1, 1)n. Recall that u is an eigenvector of −L(k)
Vf

acting on a certain anisotropic

Sobolev space Hm
k (M). According to [28, Th. 1.5], the eigenmodes are independent of the

choice of the order function m(x, ξ) satisfying the assumptions of Lemma 4.1. As in the
case of minima, letting N1 → +∞ in this Lemma and using Lemma 5.3, one finds that the
wave front set WF (ũ) of ũ satisfies the following

(15) WF (ũ) ⊂
{
(0, y, ξ, 0) ∈ T ∗W̃a : ξ 6= 0

}
.
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We would now like to define the pull-back of ũ under the map Φ1, and, for that purpose,
we shall apply Hörmander’s pullback Theorem [45, Th. 8.2.4] – see also [11]. Hence, we
have to compute the normal N∗

Φ1 ⊂ T ∗W̃a of the map Φ1,

N∗
Φ1 = {(x, sjyj; ξ, η) such that (0, 0, 0) = (ξ, η) ◦ d(s,x,y)Φ, (ξ, η) 6= (0, 0)}

= {(x, sjyj; ξ, η) such that (0, 0, 0) = (ξ, η) ◦

(
0 1 0
y 0 (sj)j

)
, (ξ, η) 6= (0, 0)}

=

{
(x, sjyj; ξ, η) such that

(∑

j

yjη
j, ξ,

∑

j

sjη
j

)
= (0, 0, 0), (ξ, η) 6= (0, 0)

}

=

{
(x, sjyj; 0, η) such that η 6= 0,

∑

j

sjη
j =

∑

j

yjη
j = 0

}
.

In particular, from (15), N∗
Φ1∩WF (ũ) is empty. Hence, we can apply Hörmander’s pullback

Theorem, i.e. (Φ1)∗ũ is well defined and its wave front set is contained in

(Φ1)∗WF (ũ) =

{(
s, x, y;

∑

j

yjη
j, ξ,

∑

j

sjη
j

)
such that

(
x,
∑

j

sjyj; ξ, η

)
∈ WF (ũ)

}

⊂ {(s, 0, y; 0, ξ, 0) such that ξ 6= 0}.

As ψ̃ is a smooth test form, we note that (Φ1)∗ũ ∧ (Φ2)∗ψ̃ is a current of degree n on

(−1, 1)n × W̃a whose wave front set is included in (Φ1)∗WF (ũ). Consider now the push-
forward of this current under the map

p : (x, y, s) ∈ W̃a × (−1, 1)n 7→ s ∈ (−1, 1)n

By the push-forward Theorem [45, 11], the wave front set of the pushforward distribution
is included in

p∗

(
(Φ1)∗WF (ũ)

)
=
{
(s; σ) such that (s, x, y; σ, 0, 0) ∈ (Φ1)∗WF (ũ), σ 6= 0

}
= ∅.

In other words, the pushforward distribution is a smooth function in the variable s ∈
(−1, 1)n. In particular, according to (14), 〈Φ(s)∗ũ, ψ̃〉 has a well–defined Taylor expan-
sion in s around 0. Then, we can combine Lemma C.3 to the fact that, in our system of
adapted coordinates, the reparametrized flow ϕln s

f can be written (sχj(a)xj , s
χj(a)yj). From

that, we deduce the expected property, i.e.
〈
(ϕln s

f )∗u, ψ
〉
admits a polyhomogeneous ex-

pansion indexed by (α.|χ(a)|)α∈Nn. In order to conclude the proof, we should observe that
u(x, y, dx, dy) is of degree k and ψ(x, y, dx, dy) of degree n − k. This forces that some of
the αj do not vanish when we express z as a combination of the Lyapunov exponents, i.e.
z must in fact belong to the set Ik(aj+1). This concludes the proof of the first inclusion,
i.e. Rk(f, g) ⊂ Ik.

Remark 5.5. We shall use this kind of arguments several times in the following. We observe
that we have just been able to prove that 〈ϕln s∗

f u, ψ〉 has a polyhomogeneous expansion
indexed by the set Ik(aj+1) and that our proof only made use of the fact that the support
of u near aj+1 was included in W u(aj+1).
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5.3. Asymptotic expansion of the correlation function. Before proving the converse
inclusion, let us draw some consequences of the fact that Rk(f, g) ⊂ Ik following the lines
of [27]. From (46) in the appendix, we know that (ϕ−t

f )∗ generates also a strongly continuous

semi-group from Hm
k (M) to Hm

k (M) for every 1 ≤ k ≤ n whose norm is bounded by etC0 .
Fix now Λ > 0. Suppose without loss of generality that −Λ does not belong to Ik. From
Proposition 4.2, we now observe that, for every Λ > 0, one can find a weight function
m(x, ξ) such that the operator

−L(k)
Vf

: Hm
k (M) → Hm

k (M)

has only discrete spectrum with finite multiplicity in the half plane Re(λ) > −Λ. Moreover,
from the fact that Rk(f, g) ⊂ Ik, the operator has only finitely many eigenvalues in this

region which are real and nonpositive. We denote by −λ(k)i the eigenvalues of −L(k)
Vf

(counted with their algebraic multiplicities). Note that each eigenvalue may a priori be

associated with a Jordan block of size d
(k)
i ≥ 1. Following [43, App. A], we fix a Jordan

path in C which separates the eigenvalues in the half plane Re(λ) > −Λ from the rest of
the spectrum. Then, according to this reference, the spectral projector associated with this
finite part of the spectrum can be written as

Π
(k)
Λ :=

∫

γ

(−L(k)
Vf

− z)−1dz.

We can then split the operator −L(k)
Vf

as follows:

−L(k)
Vf

:= Π
(k)
Λ ◦ (−L(k)

Vf
) ◦ Π(k)

Λ + (Id− Π
(k)
Λ ) ◦ (−L(k)

Vf
) ◦ (Id− Π

(k)
Λ ).

According to [26, p. 244-246], the spectrum of the operator (Id−Π
(k)
Λ )◦(−L(k)

Vf
)◦(Id−Π

(k)
Λ )

is contained in the half plane Re(λ) < −Λ while the finite rank part can be written as

(16) Π
(k)
Λ ◦ (−L(k)

Vf
) ◦ Π(k)

Λ =
∑

i:λ
(k)
i

≤Λ




d
(k)
i∑

l=1

−λ(k)i |u(k)i,l 〉〈v
(k)
i,l |+

d
(k)
i −1∑

l=1

|u(k)i,l 〉〈v
(k)
i,l+1|




where

• (u
(k)
i,l )λ(k)i ≤Λ,l=1,...d

(k)
i

belongs to Hm
k (M) ⊂ D′,k(M),

• (v
(k)
i,l )λ(k)i ≤Λ,l=1,...d

(k)
i

belongs to H−m
n−k(M) ⊂ D′,n−k(M),

• |u〉〈v| : ψ ∈ Hm
k (M) 7→ 〈v, ψ〉u ∈ Hm

k (M)

Recall from [28, Th. 1.5] that these “generalized eigendistributions” are intrinsic and that
they do not depend on the choice of the order function m. We also note that the vectors

v
(k)
∗ give rise to a Jordan basis for the spectral decomposition of the dual operator acting
on H−m

n−k(M). Combining this spectral decomposition to Proposition 2.2 from [26, p. 251],
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we can deduce that, for every ψ1 in Hm
k (M), one has

(ϕ−t
f )∗ψ1 =

∑

i:λ
(k)
i
<Λ

e−λ
(k)
i t

d
(k)
i −1∑

l=0

tl

l!

d
(k)
i∑

j=l

〈v(k)i,j+l, ψ1〉u
(k)
i,j +OHm

k
(M)(e

−Λt).

In particular, for every ψ1 in Hm
k (M), and for every ψ2 in H−m

n−k(M), one has, for every
t ≥ 0

(17) 〈(ϕ−t
f )∗ψ1, ψ2〉 =

∑

i:λ
(k)
i <Λ

e−λ
(k)
i t

d
(k)
i −1∑

l=0

tl

l!

d
(k)
i∑

j=l

〈u(k)i,j , ψ2〉〈v
(k)
i,j+l, ψ1〉+Oψ1,ψ2,Λ(e

−Λt).

Note that the sum is finite and that all the quantities involved in the sum are independent
of the choice of the order function m. This expression gives us an asymptotic expression
for the correlation function at any order of precision. As was already explained, all the

λ
(k)
i appearing in the sum belong to the set −Ik ⊂ R+.
The rest of the article is devoted to a more precise understanding of the terms appearing

in this asymptotic expansion.

5.4. Proving Ik ⊂ Rk(f, g). Note that the formula we obtained for the correlation func-
tion in (17) shows that the function s ∈ (0, 1] 7→ 〈ϕln(s)∗ψ1, ψ2〉 admits an asymptotic

expansion in (ln s)lsλ where −λ belongs to the spectrum of L(k)
Vf

acting on the anisotropic

space Hm
k (M). We also observe that this asymptotic expansion is valid for ψ1 in Hm

k (M)
and ψ2 in Ωn−k(M).

This implies the following criteria: If there is some pair (ψ1, ψ2) ∈ Hm
k (M)×Ωn−k(M)

such that sλ shows up in the asymptotic expansion of 〈ψ1, ϕ
ln(s)∗ψ2〉 near s = 0 then λ

belongs to the spectrum of L(k)
Vf
. Hence, for every fixed 0 ≤ k ≤ n and every −λ ∈ Ik, we

would show that λ ∈ Rk(f, g) if we could find some pair (ψ1, ψ2) ∈ Hm
k (M) × Ωn−k(M)

such that 〈ϕlog(s)∗ψ1, ψ2〉 has a polyhomogeneous expansion in s with sλ appearing in the
asymptotic expansion.

For that purpose, we fix a critical point a of index r and 0 ≤ k ≤ n. We work with the
adapted coordinates (x, y) introduced in paragraph 3.5. We let 0 ≤ θ1(x) ≤ 1 (resp. θ2(y))
be a smooth function which is compactly supported in (−δa, δa)r (resp. (−δa, δa)n−r) which
is equal to 1 in a neighborhood of 0. We fix a multi-index (α, β) = (α1, . . . , αr, βr+1, . . . βn),
and two sets

I ⊂ {1, . . . , r}, and J ⊂ {r + 1, . . . , n},

such that |J | − |I| = k − r. In these cooordinates, we define

ψ1(x, y, dx, dy) = θ1(x)θ2(y)δ
(α)
0 (x)yβ (∧i/∈Idxi) ∧ (∧i∈Jdyi) ,

and

ψ2(x, y, dx, dy) = θ1(x)θ2(y) (∧i∈Idxi) ∧ (∧i/∈Jdyi) .
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Note that ψ1 (more precisely its image in D′,k(M)) belongs to the anisotropic Sobolev space
Hm
k (M) provided that we choose N0 large enough in the definition of the order function

m(x, ξ). We can then write, for every 0 < s ≤ 1,

(18) 〈(ϕln s
f )∗ψ1, ψ2〉 = ±sλα,β,I,J

〈
δ0(x)y

β, θ1(x)θ2(y)(∂
αθ1)((s

|χi(a)|xi)i)θ2((s
|χi(a)|yi)i)

〉
.

where

λα,β,I,J :=
r∑

i=1

αi|χi(a)|+
n∑

i=r+1

βi|χi(a)|+
∑

1≤i≤r:i∈I

|χi(a)|+
∑

r+1≤i≤n:i∈J

|χi(a)|.

Writing the Taylor expansion of (18), one finds that

〈(ϕln s
f )∗ψ1, ψ2〉 = ±sλα,β,I,Jθ1(0)θ2(0)

〈
δ
(α)
0 (x)yβ, θ1(x)θ2(y)

〉
(1 + o(1)).

Hence, if we choose θ1 and θ2 such that the leading term is not zero in this asymptotic
expansion, we find that −λα,β,I,J belongs to Rk(f, g). We shall come back to this construc-
tion in section 7 where we will construct a family of linearly independent eigenmodes for
each eigenspace.

6. Description of the kernel

In the previous section, we found the Pollicott-Ruelle spectrum of any degree 0 ≤ k ≤ n.
Yet, we did not discuss the multiplicity or the existence of Jordan blocks in the spectrum.
We will now consider this question in sections 6 and 7. The argument presented in these
two sections is a refinment of the argument of section 5 and it relies on a Theorem of
Schwartz [60] which describes the distributions carried by a smooth submanifold inside M .
The general case is slightly involved combinatorially, and we will first expose the proof
under the simplifying assumption that λ = 0. The case λ 6= 0 will follow similar lines and
it will be discussed in section 7. Precisely, we will show that there is no Jordan blocks in
the kernel (Proposition 6.1) and that there exists a “canonical” basis of the kernel which
is carried by the closure of the unstable manifolds W u(a) (Proposition 6.7 and 6.8).

6.1. Jordan blocks. Let us first show the absence of Jordan blocks in the kernel:

Proposition 6.1. Suppose that (f, g) is a smooth Morse pair which induces a Morse-
Smale gradient flow. Let 0 ≤ k ≤ n. Then, when acting on a convenient5 anisotropic space
Hm
k (M), one has

Ker(L(k)
Vf
) = Ker((L(k)

Vf
)2).

In other words, there is no Jordan blocks in the kernel.

We start with the following Lemma:

5It means that there is a discrete spectrum for Re(λ) < C if C > 0.
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Lemma 6.2. Let 1 ≤ j ≤ K. Then, there exists an open neighborhood Vaj of aj such that,
for every i < j with r(ai) ≥ r(aj), one has

W u(ai) ∩ Vaj = ∅.

Proof. Let 1 ≤ j ≤ K. Let i < j satisfying r(ai) ≥ r(aj). The closure of W u(ai) is
a compact subset. In order to prove this Lemma, we suppose by contradiction that aj
belongs to W u(ai). It means that there exists a sequence (xp)p≥1 in W u(ai) such that xp
converges to aj as p → +∞. Without loss of generality, we can suppose that there exists
a unique b in Crit(f) such that, for every p ≥ 1, xp ∈ W s(b). Using the conventions
of Remark 3.7 for our fixed sequence (xp)p≥1, there exists a sequence of critical points
ai = b0, b1, . . . , bl = b and a finite sequence of points um in W u(bm) ∩W s(bm+1) such that

∀ǫ1 > 0, ∃p0, ∀p ≥ p0, d (O(xp),∪0≤m≤l−1O(bm)) < ǫ1,

where O(x) denotes the orbit of x under the flow ϕtf . In particular, as xp → aj , this implies
that aj = bm for some 0 < m ≤ l. By the Morse-Smale transversality assumption, this
implies that r(aj) > r(ai) = r(b0) which gives the contradiction. �

We can now give the proof of Proposition 6.1. Suppose by contradiction that there exists
a Jordan block associated to the eigenvalue 0 for a certain degree of currents k. Then, it
means that there exists u0 6= 0 and u1 6= 0 in our anisotropic Sobolev space of currents
Hm
k (M) such that

L(k)
Vf
u0 = 0 and L(k)

Vf
u1 = u0.

Integrating these expressions, we find that, for all t in R,

(ϕtf)
∗u0 = u0 and (ϕtf)

∗u1 = u1 + tu0.

As in our computation of the spectrum, we let t = ln s with 0 < s ≤ 1,

(19) (ϕln s
f )∗u1 − u1 = (ln s)u0.

As above, we order our critical points a1 < a2 < . . . < aK using the fact that the critical
values of f are distinct.

We now use this Lemma to get the expected contradiction. We fix j ≥ 0. We suppose
that u0 is vanishing in a neighborhood of any critical point (ai)i≤j and that it does not van-
ish in a neighborhood of aj+1. According to Lemma 5.3, we can deduce that supp(u0)∩Vaj+1

is included in W u(aj+1). Arguing as in paragraph 5.2.2 (i.e. via the pull-back Theorem of
Hörmander), we can verify that 〈(ϕln s

f )∗u0, ψ〉 = 〈u0, ψ〉 has a bounded asymptotic expan-
sion in s for ψ a smooth test form compactly supported in Vaj+1

. Moreover, we can choose
ψ such that the right hand side of the equality does not vanish. Hence, the leading order
of this expansion must be of degree 0. This implies that aj+1 is a critical point of index
r(aj+1) = k.

We would now like to prove that, near aj+1, u1 is also supported in W u(aj+1). We fix V
an open subset of Vaj+1

which does not intersect W u(aj+1). From Lemma 6.2, one knows
that, for every x in V , there exists i ≤ j such that ai = limt→−∞ ϕtf(x) and r(ai) < r(aj+1).
Hence, we would conclude that supp(u1) ∩ Vaj+1

is included in W u(aj+1) if we could show
that, for every i ≤ j with r(ai) < k, u1 identically vanishes in an open neighborhood of ai.
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Let i0 ≤ j be an index with r(ai0) < k. Then, either supp(u1) ∩ Vai0 is included in

W u(ai0), or, as LVfu1 = u0 = 0 on f−1(< f(aj+1)), we can deduce by propagation that
there exists a critical point a of smaller index such that u1 does not vanish in a neighborhood
of a. Hence, without loss of generality, we can suppose that supp(u1) ∩ Vai0 is included in
W u(ai0). As LVfu1 = 0 in Vai0 , we can argue one more time as in paragraph 5.2.2. From
that, we deduce that

〈(ϕln s
f )∗u1, ψ〉 = 〈u1, ψ〉

has a bounded asymptotic expansion in s for every choice of ψ compactly supported in
Vai0 . Using the fact that r(ai0) < k, we conclude that the left hand side must go to 0 as

s→ 0+. Thus, one has 〈u1, ψ〉 = 0 as expected from which we deduce that supp(u1)∩Vaj+1

is included in W u(aj+1).
Thanks to the fact that supp(u1) ∩ Vaj+1

is included in W u(aj+1) and to the fact that
u1 belongs to our family of anisotropic spaces, we can argue one more time as in para-
graph 5.2.2. We find then that 〈(ϕln s

f )∗u1, ψ〉 has a bounded asymptotic expansion as
s → 0+ for any smooth test function ψ supported near aj+1. Using then that u1 verifies
equation (19), we can finally conclude that 〈u0, ψ〉 = 0 for every ψ supported near 0 which
gives the contradiction to the fact that there exists a nontrivial Jordan block in the kernel.

Finally, let us conclude with the following fact which has been implicitely proved above:

Proposition 6.3. Suppose that (f, g) is a smooth Morse pair which induces a Morse-Smale

gradient flow. Let u 6= 0 be an element of Hm
k (M) satisfying L(k)

Vf
u = 0. Let a be the critical

point of f satisfying the following properties:

• u does not vanish in any neighborhood of a,
• for every a′ in Crit(f) satisfying f(a′) < f(a), u identically vanishes near a′.

Then, the Morse index of a equals k.

6.2. Exponential convergence of the correlation function. Before continuing our
description of the kernel, let us draw a simple consequence of the fact that there is no

Jordan blocks in the kernel of L(k)
Vf
. Using the spectral expansion (17), one has, for every

ψ1 ∈ Ωk(M) and every ψ2 in Ωn−k(M),

(20) ∀t ≥ 0, 〈(ϕ−t
f )∗ψ1, ψ2〉 =

∑

i:λ
(k)
i =0

〈u(k)i,0 , ψ2〉〈v
(k)
i,0 , ψ1〉+Oψ1,ψ2(e

−Λ+t),

for some Λ+ > 0 which is independent of ψ1 and ψ2. We now aim at describing more
precisely the elements in the kernel. Note that this asymptotic expansion is valid when
(f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow.

Remark 6.4. We note that, for this property, we could probably use less regularity of the
linearizing chart. In fact, our construction of the order function m only makes use of the
fact that the linearizing chart is C1. Smoothness is only important if we want to determine
exactly all the elements inside Rk(f, g).
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6.3. Background material on currents. In order to describe the elements of the kernel,
we start with some background material on the theory of currents which will also be useful
in section 7. By a celebrated Theorem of Schwartz [60, Th. 37 p. 102] whose adaptation
to the case of currents is straightforward, we first recall that :

Theorem 6.5 (Schwartz). Let u be a current of degree k supported by a smooth submanifold
X embedded in M . Suppose that in a small neighbohood of x ∈ X, one has a system
of coordinate functions (xi, yj)16i6r,r+16j6n where the coordinates (xi)16i6r are transversal
coordinates of X, i.e. the submanifold X is given by the equations {xi = 0, 1 6 i 6 r}.
Then the current u reads locally as a finite sum :

(21) u(x, y) =
∑

α,|I|+|J |=k

uα,I,J(y)∂
α
x δ

Rr

{0}(x)dx
I ∧ dyJ

where (α, I, J) are multi–indices, the uα,I,J are distributions in D′(Rn−r).

If we denote by N∗X the conormal cycle of X , we also have the following property [17,
Lemma 9.2]:

Lemma 6.6. Suppose that the assumptions of the previous Theorem hold and use the same
notations. If WF (u) ⊂ N∗(X), then the current u reads

(22) u(x, y) =
∑

α,|I|+|J |=k

uα,I,J(y)∂
α
x δ

Rr

{0}(x)dx
I ∧ dyJ

where the uα,I,J are smooth functions in C∞(Rn−r).

6.4. Description of the eigenmodes. Let 0 ≤ k ≤ n. In this paragraph, we will

construct a “canonical” basis for the kernel of the operator L(k)
Vf

acting on the anisotropic

space Hm
k (M). We proceed in three steps. First, we show that, near the “smallest”

critical point a of index k, an element in the kernel must be proportional to the current
of integration [W u(a)] on the unstable manifold. Then, we prove that the germ of current

near to 0 can be extended into a current carried by W u(a) that we denote by Ua. Finally,
we show that these currents form indeed a basis of the kernel.

The construction of these currents Ua is known to be a delicate task and, to our knowl-
edge, it was first made by Laudenbach under some tameness assumption on the Morse-
Smale gradient flow [47, 48]. Here, we will show how our microlocal machinery allows to
give an alternative proof of this construction for quite general Morse-Smale gradient flows.

6.4.1. Local form near the critical point. Let u 6= 0 be an element in Hm
k (M) such that

L(k)
Vf
u = 0. As above, we order the critical points a1 < . . . aK according to the values of f .

We denote by j the index such that, for every i < j, u vanishes in a neighborhood of ai
and such that u does not vanish near aj . Recall from Lemma 5.3 that such a j exists and
that supp(u) ∩ Vaj is included in W u(aj) for some small enough neighborhood Vaj of aj .
We have also shown in Proposition 6.3 that aj must be of index k.
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Using the above results, we deduce that, in the adapted coordinates of paragraph 3.5,
the current u reads as a finite sum :

(23) u(x, y) =
∑

α,|I|+|J |=k

uα,I,J(y)∂
α
x δ

Rk

{0}(x)dx
I ∧ dyJ

where the uα,I,J are smooth functions in C∞(Rn−k). The fact that uα,I,J is smooth follows
from Lemma 6.6 and from the fact that we can pick N1 arbitrarly large in the definition of
the order function m used to define our anisotropic Sobolev space. Let now ψ be a smooth

test form of degree n− k supported near aj . Using the fact that u satisfies L(k)
Vf
u = 0, one

has, for every 0 < s ≤ 1,

〈u, ψ〉 = 〈ϕln s∗
f u, ψ〉.

Plugging the expression of the flow in these coordinates into the explicit form of u given
by equation (23), one finds that u must be of the following form

u(x, y) = u0(y)δ
Rk

{0}(x)dx1 ∧ dx2 ∧ . . . ∧ dxk,

where u0 is a smooth function. Using one more time the invariance by the flow ϕtf , one can
deduce that u0 is constant in a neighborhood of the origin. Using the result of Corollary
D.4 in appendix D of [18], we recognize that δR

r

{0}(x)dx1 ∧ . . . ∧ dxr is the integral formula

for the current of integration on the germ of submanifold W u(aj) = {xi = 0, 1 6 i 6 r}.
Hence, our last statement means that locally near aj , u = c[W u(aj)] is a multiple of the
current of integration on W u(aj).

6.4.2. Extension of the local form to M . Our next step will be to prove that the current of
integration on the germ of unstable submanifold near any critical point a can be extended
in a natural manner to M .

For that purpose, we still work with the adapted coordinates (x, y) introduced in para-
graph 3.5. According to [18, Cor. D.4], the current of integration on W u(a) is well defined
near a and it can be written locally as

[W u(a)] = δR
r

0 (x)dx1 ∧ dx2 ∧ . . . ∧ dxr.

Using the conventions of paragraph 3.5, we let 0 ≤ θ ≤ 1 be a smooth cutoff function
which is equal to 1 on (−δa/2, δa/2)n and to 0 outside (−δa, δa)n. Thanks to this cutoff
function, we define the following element of D′,k(M):

Ũa := θ(x, y)δR
r

0 (x)dx1 ∧ dx2 ∧ . . . ∧ dxr.

By a straightforward calculation, Ũa satisfies LVf Ũa = 0 on (−δa/4, δa/4)n. One can also

verify that, for every order function satisfying the properties of Lemma 4.1, Ũa belongs to
the space Hm

r (M). Recall that (ϕ−t
f )∗ generates a strongly continuous semigroup associated

to the operator −L(r)
Vf

acting on Hm
r (M). As we have shown that there is no Jordan block

in the kernel and that −L(r)
Vf

has a spectral gap, we can deduce that, in Hm
r (M) (hence in
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D′,r(M)),

(24) lim
t→+∞

ϕ−t∗
f (Ũa) =

∑

i:λ
(r)
i

=0

〈Ũa, v
(r)
i,0 〉u

(r)
i,0 .

We denote by Ua this limit current which satisfies L(r)
Vf
(Ua) = 0. Let us now verify that Ua

is an extension of Ũa|(−δa/4,δa/4)n . For that purpose, we write the double inclusion

Y := {(0, y) : ∀r + 1 ≤ j ≤ n, |yj| 6 δa/4} ⊂ X := supp (Ũa) ⊂W u(a).

Set also Xm = ϕmt0f (X), and Ym = ϕmt0f (Y ) for some fixed t0 > 0. Then, we have the
following sequences of inclusions, for all m ∈ N :

Ym ⊂ Xm ⊂W u(a),

Ym ⊂ Ym+1,

supp ϕ−mt0∗
f

(
Ũa

)
= Xm ⊂W u(a).

These inclusions are simple consequences of the inclusion (Y ⊂ X ⊂ W u(a)) and of the
fact that W u(a) is stable by application of the one-parameter group (ϕtf)t. In particular,
from (24), we have

(25) supp(Ua) ⊂W u(a).

In the local chart (−δa/4, δa/4)n around a, we can write

(ϕ−t0
f )∗(Ũa)(x, y, dx, dy) = θ

(
(e−t0χj(a)xj)j, (e

−t0χj(a)yj)j
)
δR

r

0 (x)dx1 ∧ dx2 ∧ . . . ∧ dxr.

As θ is constant and equal to 1 on (−δa/2, δa/2)n, we have, provided that we pick t0 > 0
small enough,

(ϕ−t0
f )∗(Ũa)(x, y, dx, dy) = θ (x, y) δR

r

0 (x)dx1 ∧ dx2 ∧ . . . ∧ dxr = Ũa(x, y, dx, dy).

To summarize, we have

[W u(a)]|(−δa/4,δa/4)n = Ũa|(−δa/4,δa/4)n =
(
(ϕ−t0

f )∗(Ũa)
)
|(−δa/4,δa/4)n .

From this, we can infer that, for every m ≥ 0,(
ϕ−mt0∗
f Ũa

)
|
ϕ
mt0
f

((−δa/4,δa/4)n)
=
(
ϕ
−(m+1)t0∗
f Ũa

)
|
ϕ
mt0
f

((−δa/4,δa/4)n)
.

Recall that the support of both currents is included in Xm+1. The above equality tells us
that they coincide on the subset Ym. From that, we can deduce that, for every m ≥ 0,(

ϕ−mt0∗
f Ũa

)
|(−δa/4,δa/4)n =

(
ϕ
−(m+1)t0∗
f Ũa

)
|(−δa/4,δa/4)n .

Hence, for every m ≥ 1, one has(
ϕ
−(m+1)t0∗
f Ũa

)
|(−δa/4,δa/4)n = Ũa|(−δa/4,δa/4)n ,

which, by letting m→ +∞ implies that

[W u(a)]|(−δa/4,δa/4)n = Ua|(−δa/4,δa/4)n .
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To summarize, we have proved the following result:

Proposition 6.7. Let (f, g) be a smooth Morse pair which induces a Morse-Smale gradient
flow. Let a be a critical point of index r and let 0 ≤ θ ≤ 1 be a smooth cutoff function
which is compactly supported in a small enough neighborhood Va of a, and equal to 1 in an
open neighborhood of a.

Then, there exists an open neighborhood Ṽa ⊂ Va of a such that the current

Ua :=
∑

i:λ
(r)
i =0

〈θ[W u(a)], v
(r)
i,0 〉u

(r)
i,0

satisfies

• Ua|Ṽa = [W u(a)]|Ṽa,

• supp(Ua) = W u(a),

• L(r)
Vf
(Ua) = 0.

We call these currents Laudenbach’s currents of degree r.

6.4.3. The generation property. Even if the currents depend a priori on the choice of cutoff
function, the following Proposition shows that they are in some sense “canonical”:

Proposition 6.8. Let 0 ≤ k ≤ n. The family of currents

{Ua : a ∈ Crit(f) and ind(a) = k}

forms a basis of the kernel of the operator

L(k)
Vf

: Hm
k (M) → Hm

k (M).

Proof. Let us first show that this family of currents is linearly independent. For that
purpose, we suppose that ∑

a∈Crit(f):ind(a)=k

αaUa = 0.

Let a be the “smallest” point of index k, in the sense that, for every other point a′ 6= a of
index k, f(a′) > f(a). We pick ψ a smooth form which is compactly supported near a and

such that 〈[W u(a)], ψ〉 6= 0. As the support of Ub is contained in W u(b) for any critical
point b of index k, we can deduce (provided that the support of ψ is small enough) that

0 =
∑

a∈crit(f):ind(b)=k

αb〈Ub, ψ〉 = αa〈Ua, ψ〉 = αa〈[W
u(a)], ψ〉.

From this, we deduce that αa = 0. By induction, we can conclude that the family contains
only linearly independent currents.

It remains to verify that this family generates all the kernel. Let u 6= 0 be an element

in Hm
k (M) in the kernel of L(k)

Vf
. From the argument of paragraph 6.4.1, we know that u

must be equal to ca[W
u(a)] in a neighborhood of a where a is the “smallest” critical point

where u does not identically vanish and where ca is a fixed constant. Set now

u1 = u− caUa.
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We know that u1 belongs to Hm
k (M) and that it satisfies L(k)

Vf
u1 = 0. Morever, by con-

struction, we know that u1 vanishes identically near every critical point a′ with a′ ≤ a.
Repeating the process a finite number of times, we finally get that

u =
∑

a∈Crit(f):ind(a)=k

caUa,

for some ca in R.
�

6.4.4. Back to the correlations. We will now describe the implications of these results on
the leading term of the correlation function. For that purpose, we fix Λ > 0 which is
strictly smaller than min{|χj(a)| : 1 ≤ j ≤ n, a ∈ Crit(f)}. As in paragraph 5.3, we write
the spectral decomposition associated with the spectral projector of the eigenvalue λ = 0.
We have shown that there is no Jordan blocks for this eigenvalue (Prop. 6.1), and that we
can choose a basis of eigenmodes (Ua)a indexed by the critical points of index k. Moreover,
all the elements in this basis can be chosen in such a way that the support of Ua is equal
to W u(a). We denote by Sa the corresponding dual basis. Proceeding as in paragraph 5.3,
we have then

∀ψ1 ∈ Hm
k (M), ∀ψ2 ∈ H−m

n−k(M), 〈ϕ−t∗
f ψ1, ψ2〉 =

∑

a:ind(a)=k

〈Ua, ψ2〉〈Sa, ψ1〉+Oψ1,ψ2(e
−Λt),

for every t > 0. Applying the arguments of the previous paragraphs to the operator L(n−k)
V−f

acting on the anisotropic space H−m
n−k(M), we can construct a basis of the kernel that we

denote by (Sa)a indexed by the critical points of index k. Mimicking the above procedure,

we can impose that Sa has support contained in W s(a) and that Sa coincides with [W s(a)]

in a neighborhood of the critical point a. In particular, as W s(a) ∩W u(a) = {a}, we can
use our local adapted coordinates near a to find that 〈Sa, Ua〉 = 1. Consider now a′ 6= a
of index k. If we are able to show that 〈Sa, Ua′〉 = 0 for every such a′, then we will have

that Sa = Sa. To prove this, we just need to observe that W s(a) ∩W u(a′) = ∅. In fact,

according to Remark 3.7 applied to f and −f , we find that, if x belongs toW s(a)∩W u(a′),
then ind(x−) ≥ k and ind(x+) ≤ k, where x ∈ W u(x−) ∩W s(x+). In other words, from
the Morse-Smale assumption, x− = x+.

To summarize, we have shown:

Proposition 6.9. Let (f, g) be a smooth Morse pair which induces a Morse-Smale gradient
flow. Let Λ > 0 be such that

Λ < min{|χj(a)| : 1 ≤ j ≤ n, a ∈ Crit(f)}.

Then, for every 0 ≤ k ≤ n, and, for every a ∈ Crit(f) of index k, there exists

Ua ∈ Hm
k (M) and Sa ∈ H−m

n−k(M)
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whose support are respectively equal to W u(a) and W s(a) and satisfying

∀t ≥ 0, ϕ−t∗
f =

∑

a:ind(a)=k

|Ua〉〈Sa|+OHm
k
→Hm

k
(e−Λt).

This implies in particular Corollary 2.3 from the introduction. We also note that we
recover Theorem 3.3 from [41] via our spectral analysis of gradient flows. Our result
is slightly stronger in two ways: (1) it holds for quite general families of Morse-Smale
gradient flows (not necessarily associated with a locally flat metric); (2) it gives a rate of
convergence in the asymptotic. This kind of decomposition of the transfer operator into a
product of stable and unstable distributions is also at the heart of the spectral analysis of
Anosov vector fields performed by Faure and Tsujii in [30, 29]. As we shall see in section 7,
we can in fact generalize this expansion at any order.

6.4.5. Solving the cohomohological equation L(k)
Vf
u = ψ. Note that we can use our spectral

decomposition to prove Corollary 2.5. In fact, given any ψ ∈ Ωk(M), one can write

ψ = P
(k)(ψ) + (Id− P

(k))(ψ),

for P(k) associated with the eigenvalue 0 – see e.g. paragraph 8.4.2 below. As we can solve

L(k)
Vf
(u) = (Id− P(k))(ψ) from the spectral properties of L(k)

Vf
, the problem

L(k)
Vf
(u) = ψ

admits a solution in Hm
k (M) if and only if

L(k)
Vf
(u) = P

(k)(ψ) =
∑

a∈Crit(f):ind(a)=k

〈Sa, ψ〉Ua

has a solution in Hm
k (M). As the Ua forms a basis of the kernel of L(k)

Vf
which does

not contain any Jordan block, this is equivalent to the fact that, for every a of index k,
〈Sa, ψ〉 = 0.

7. The case λ 6= 0

In this section, we describe some properties of the eigenmodes when λ 6= 0. The proof
is the same as in the case λ = 0 but the arguments are somewhat more involved due to
the possible multiplicity at every critical point. Precisely, we will one more time show
that there exists a “canonical” basis of eigenmodes which are carried by the closure of the
unstable manifolds W u(a) (Propositions 7.3 and 7.5) and that there are no Jordan blocks
(Proposition 7.6). Before getting into the details of the proof, we start by mentioning the
following analogue of Proposition 6.3 which was implicitely proved in paragraph 5.2.2:

Proposition 7.1. Suppose that (f, g) is a smooth Morse pair generating a Morse-Smale

gradient flow. Let u 6= 0 be an element of Hm
k (M) satisfying L(k)

Vf
u = λu. Let a be the

critical point of f satisfying the following properties:

• u does not vanish in any neighborhood of a,
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• for every a′ in Crit(f) satisfying f(a′) < f(a), u identically vanishes near a′.

Then, −λ belongs to the index set Ik(a).

7.1. Description of the eigenmodes. We now use similar arguments as at was done
in section 6 in order to construct a basis of every eigenspace. Compared with the case
λ = 0, there will be some combinatorial complications due to the possible multiplicity of
the eigenvalue. In this paragraph, we fix 0 ≤ k ≤ n and λ an eigenvalue of the operator

L(k)
Vf

: Hm
k (M) → Hm

k (M).

Recall from Proposition 5.1 that λ must be of the form

λ =
∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)|,

where

• a is a critical point of index r,
• for every 1 ≤ j ≤ n, αj is a nonnegative integer,
• I ⊂ {1, . . . , r} and J ⊂ {r + 1, . . . , n} such that |J | − |I| = k − r.

We shall now proceed as in the case of the kernel. First, we determine the local form of
an eigenmode near critical points. Then, we show how to extend these local models into
currents defined on M . Finally, we show that these currents form a basis of the eigenspace
associated to λ.

Remark 7.2. The case λ = 0 was already treated in the previous paragraph. Thus, we will
always suppose λ 6= 0 in this paragraph.

7.1.1. Local form near the “smallest” critical point. Let u 6= 0 be an element in Hm
k (M)

such that L(k)
Vf
u = λu. As before, we denote by j the index such that, for every i < j,

u vanishes in a neighborhood of ai and such that u does not vanish near aj . Recall that
supp(u)∩Vaj is included in W u(aj) for some small enough neighborhood Vaj of aj . Thanks
to Proposition 7.1, −λ belongs to Ik(aj). In order to alleviate notations, we will write
aj = a in the following.

Using Schwartz’s Theorem and Lemma 6.6 one more time, we deduce that, in the adapted
coordinates of paragraph 3.5, the current u reads as a finite sum :

(26) u(x, y, dx, dy) =
∑

α′,|I′|+|J ′|=k

uα′,I′,J ′(y)∂α
′

x δ
Rr

{0}(x)dx
I′ ∧ dyJ

′

where the uα′,I′,J ′ are smooth functions in C∞(Rn−r). A direct calculation shows us that,
in a small enough neighborhood of a, one has, for every 0 < s ≤ 1,

(ϕln s∗
f u)(x, y, dx, dy) =

∑

α′,|I′|+|J ′|=k

uα′,I′,J ′((sχj(a)yj)j)∂
α′

x δ
Rr

{0}(x)s
λ̃I′,J′,α′dxI

′

∧ dyJ
′

,

where

λ̃I′,J ′,α′ :=

r∑

j=1

(α′
j + 1)|χj(a)| −

∑

j∈I′

|χj(a)|+
∑

j∈J ′

|χj(a)|.
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On the other hand, as u satisfies L(k)
Vf
u = λu, we know that, for every smooth test form ψ

of degree n− k and for every 0 < s ≤ 1,

〈ϕln s∗
f u, ψ〉 = sλ〈u, ψ〉.

Combining this equality to the local form of u, we find

sλ〈u, ψ〉 =
∑

α′,|I′|+|J ′|=k

sλ̃I′,J′,α′

〈
∂α

′

x δ
Rr

{0}(x), uα′,I′,J ′((sχj(a)yj)j)dx
I′ ∧ dyJ

′

∧ ψ(x, y, dx, dy)
〉
.

Write now the Taylor expansion of uα′,I′,J ′ (which is C∞). From that, we find that

uα′,I′,J ′(y) = cα′,I′,J ′y
α′
r+1

r+1 . . . yα
′
n

n ,

where cα′,I′,J ′ is some fixed constant, α′
j belongs to N for every r + 1 ≤ j ≤ n and

λ̃I′,J ′,α′ +

n∑

j=r+1

α′
j |χj(a)| = λ.

Equivalently, one has

λ =

r∑

j=1

(α′
j + 1)|χj(a)|+

n∑

j=r+1

α′
j |χj(a)| −

∑

j∈I′

|χj(a)|+
∑

j∈J ′

|χj(a)|.

To summarize, this shows that the current u reads in the adapted cooordinates near a:

(27) u(x, y, dx, dy) =
∑

α,I,J :(∗)

cα,I,J (y∂x)
α δR

r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) ,

where cα,I,J are some fixed constant and where (∗) means that (α, I, J) satisfies

• for every 1 ≤ j ≤ n, αj ∈ N,
• I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n},
• |J | − |I| = k − r,
• λ =

∑
j∈I∪J(αj + 1)|χj(a)|+

∑
j∈(I∪J)c αj |χj(a)|,

7.1.2. Extension of the local form to M . Mimicking what was done in the case of the
kernel, we will now show how the local form obtained in (27) can be extended into a
natural eigencurrent carried by the closure of W u(a). In this paragraph, we only suppose
that (f, g) is a smooth Morse pair inducing a Morse-Smale gradient flow. In particular, we
do not suppose the Lyapunov exponents to be rationally independent.

For a fixed triple (α, I, J) satisfying the conditions (∗), we define

(28) Ũα,I,J
a (x, y, dx, dy) := θ(x, y) (y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) ,

where θ is the same smooth function as in paragraph 6.4.2. By construction, one can verify
that

L(k)
Vf
Ũα,I,J
a = λŨα,I,J

a
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on the open neighborhood (−δa/4, δa/4)n. Moreover, this current belong to the anisotropic
space Hm

k (M) provided that we pick N0 large enough (compared with |α|) in the definition
of the order function m. Using the conventions of (16), we then set

Uα,I,J
a =

∑

i:λ
(k)
i =λ

〈Ũα,I,J
a , v

(k)
i,0 〉u

(k)
i,0 ,

which obviously satisfies the eigenvalue equation:

L(k)
Vf
Uα,I,J
a = λUα,I,J

a

Let us now describe some properties of this current. First, we let ψ be a smooth n−k form
carried outsideW u(a). For such a form and for every 0 < s ≤ 1, one has 〈ϕ− ln s∗

f Ũα,I,J
a , ψ〉 =

0. Hence, every term in the asymptotic expansion 17 must vanish. In particular, one has
〈Uα,I,J

a , ψ〉 = 0 for every smooth test form supported outside W u(a). Equivalently, one has

supp
(
Uα,I,J
a

)
⊂W u(a).

By invariance under the gradient flow, the support is in fact equal to W u(a). Like in the

case of the kernel, we would like to verify that Ũα,I,J
a and Uα,I,J

a coincide in a neighborhood
of the critical point a. For that purpose, we let ψ(x, y, dx, dy) be a some smooth test
form carried in the neighborhood with adapted coordinates. Mimicking the calculation of
paragraph 5.4, one finds that, for every 0 < s ≤ 1,

〈ϕln s∗
f Ũα,I,J

a , ψ〉 = sλ(1 + o(1))
〈
(y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) , ψ
〉
.

Using one more time the spectral expansion of the correlation function (17), one can identify
the term of order sλ in the asymptotic. In particular, this implies that

〈Uα,I,J
a , ψ〉 =

∑

i:λ
(k)
i =λ

〈Ũα,I,J
a , v

(k)
i,0 〉〈u

(k)
i,0 , ψ〉 =

〈
(y∂x)

α δR
r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) , ψ
〉
,

for every smooth test form ψ compactly supported in a small enough neighborhood of a.
To summarize, we have shown the following:

Proposition 7.3. Suppose that (f, g) is a smooth Morse pair generating a Morse-Smale
gradient flow. Let a be a critical point of index r, let 0 ≤ k ≤ n and let 0 ≤ θ ≤ 1 be a
smooth cutoff function which is compactly supported in a small enough neighborhood Va of
a, and equal to 1 in an open neighborhood of a. Let I be a subset of {1, . . . , r} and J be
a subset of {r + 1, . . . , n} satisfying |J | − |I| = k − r. Let α be an element in Nn. Set
[W u(a)]α,I,J to be the image in the adapted coordinate chart of

(y∂x)
α δR

r

{0}(x) (∧j /∈Idxj) ∧ (∧j∈Jdyj) .

Then, there exists an open neighborhood Ṽa ⊂ Va of a such that the current

Uα,I,J
a :=

∑

i:λ
(r)
i =0

〈θ[W u(a)]α,I,J , v
(r)
i,0 〉u

(r)
i,0

satisfies
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• Uα,I,J
a |Ṽa = [W u(a)]α,I,J |Ṽa,

• supp(Uα,I,J
a ) = W u(a),

• L(k)
Vf
(Uα,I,J

a ) = λUα,I,J
a with

λ =
∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)|.

This Proposition gives a family of natural currents generalizing Laudenbach’s currents
which were only defined for the eigenvalue 0. Note that they are well defined as soon
as (f, g) is a smooth Morse pair generating a Morse-Smale gradient flow. Up to the
linearization chart, their expression is more or less explicit. For every λ in Ik(a), we
define the “multiplicity” of λ as

(29) mk(λ) := |{(a, α, I, J) satisfying (∗)}| ,

where (∗) means that (a, α, I, J) satisfies

• a belongs to Crit(f),
• for every 1 ≤ j ≤ n, αj ∈ N,
• I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n},
• |J | − |I| = k − r,
• λ =

∑
j∈I∪J(αj + 1)|χj(a)|+

∑
j∈(I∪J)c αj |χj(a)|.

Remark 7.4. In order to compute the Weyl’s law for our operators, it will be convenient to
rewrite things in a slightly different manner. More precisely, for any given α in Nn, we set

mk,a(α) := |{(I × J ⊂ {1, . . . , r} × {r + 1, . . . , n} : |J | − |I| = k − r, and ∀j ∈ I ∪ J, αj ≥ 1}| ,

where r is the index of a. With these conventions, any α.|χ(a)| appears with multiplicity∑
a∈Crit(f)mk,a(α) in Rk(f, g).

7.1.3. The generation Theorem. We conclude this section by showing that the currents we

have just constructed generate a basis of Ker(L(k)
Vf

+ λ), i.e.

Proposition 7.5. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient
flow. Let 0 ≤ k ≤ n and let λ 6= 0 be an element in Rk(f, g). The family of currents



U

α,I,J
a :

∑

j∈I∪J

(αj + 1)|χj(a)|+
∑

j∈(I∪J)c

αj |χj(a)| = −λ





forms a basis of the kernel of the operator

L(k)
Vf

+ λ : Hm
k (M) → Hm

k (M).

In particular, the kernel of this operator is of dimension mk(λ).

Proof. The proof is almost the same as in the case λ = 0, and we briefly adapt it in this
context.
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Let us first show that it generates the kernel of L(k)
Vf

+λ. This follows from the discussion

from paragraph 7.1.1. If we take u in Hm
k (M) satisfying L(k)

Vf
u = −λu, then (27) gives us

a family of constants cα,I,J . We then set ũ = u −
∑

α,I,J cα,I,JU
α,I,J
a . One still has that

L(k)
Vf
ũ = −λũ. From paragraph 7.1.1, we also know that ũ vanishes near any critical point

b satisfying f(b) ≤ f(a). Suppose that there exists a critical point b such that ũ does not
identically vanishes near b. Denote by b the point which satisfies this property with f(b)
minimal. We can apply the argument of paragraph 7.1.1 to the new eigenmode ũ near b.
By induction, we decompose u as a linear combination of Uα,I,J

a where (a, α, I, J) runs over
the parameters satisfying the condition (∗). This shows the generating property.

Let us now briefly verify that these elements are independent. Suppose that one can
write ∑

(a,α,I,J)satisfying (∗)

γa,α,I,JU
α,I,J
a = 0

We write this relation near the smallest critical point a and we use that the germs of current
are (from proposition 7.3) linearly independent near this critical point. This implies that
γa,α,I,J = 0 for every (α, I, J) associated with a. By induction on the critical points, we
get γa,α,I,J = 0 for every (a, α, I, J) satisfying (∗).

�

7.2. Jordan blocks. We now show the absence of Jordan blocks. In other words, the
algebraic multiplicity is always equal to the geometric multiplicity.

Proposition 7.6. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient
flow. Let 0 ≤ k ≤ n. Then, when acting on a convenient anisotropic space Hm

k (M), one
has, for every λ ∈ Rk(f, g),

Ker((L(k)
Vf

+ λ)) = Ker((L(k)
Vf

+ λ)2).

Proof. Once again, the proof is very similar to the case of the kernel. Suppose by contra-
diction that there exists a Jordan block associated to the eigenvalue λ > 0 for a certain
degree k. Once again, it means that there exists u0 6= 0 and u1 6= 0 in our anisotropic
Sobolev space of currents Hm

k (M) such that

L(k)
Vf
u0 = λu0 and L(k)

Vf
u1 = λu1 + u0.

Integrating these expressions, we find that, for all t in R−,

(ϕtf)
∗u0 = eλtu0 and (ϕtf)

∗u1 = eλtu1 + tu0.

As in our computation of the spectrum, we let t = ln s with 0 < s ≤ 1,

(30) (ϕln s
f )∗u1 − sλu1 = (ln s)u0.

Following the proof of paragraph 5.2.2, we denote by j + 1 the index point such that, for
every i ≤ j, u0 vanishes in a neighborhood of ai and such that u0 does not vanish near aj+1.
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This implies that supp(u0) ∩ Vaj+1
is included in W u(aj+1) and that λ is of the following

form:

λ =
n∑

i=1

αi|χi(aj+1)|.

As L(k)
Vf
u1 = λu1 + u0, we know that L(k)

Vf
u1 = λu1 on the open set f−1(f(aj+1)). Arguing

as in the proof of basis, we can find parameters (ca,α,I,J) such that

ũ1 = u1 −
∑

a,α,I,J :f(a)<f(aj+1)

ca,α,I,JU
α,I,J
a

vanishes on the open set f−1(f(aj+1)). Moreover, ũ1 still satisfies the generalized eigenvalue
equation:

(ϕln s
f )∗u1 − sλu1 = (ln s)u0.

According to Remark 5.5, we are then able to infer that 〈(ϕln s
f )∗ũ1, ψ〉 has a (bounded)

polyhomogeneous expansion in s as s → 0+ for every smooth test form ψ supported near
aj+1. From our assumption on j, one can find ψ such that 〈u0, ψ〉 6= 0 which gives the
expected contradiction.

�

7.3. Back to correlations. Mimicking the arguments of paragraph 6.4.4, we obtain a full
asymptotic for the correlation function:

Proposition 7.7. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient
flow. Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) and for every α in Nn, there exist6

• (Uα,j
a,k )j=1,...,mk,a(α) in D′,k(M) whose supports is equal to W u(a),

• (Sα,ja,n−k)j=1,...,mk,a(α) in D′,n−k(M) whose supports is equal to W s(a),

such that, for every Λ > 0 and for every t ≥ 0,

ϕ−t∗
f =

∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|<Λ

e−α.|χ(a)|t
mk,a(α)∑

j=1

|Uα,j
a,k 〉〈S

α,j
a,n−k|+OΩk→D′,k(e−Λt).

In particular, this implies Theorem 2.2 from the introduction.

7.3.1. The duality map Uα,j
a,k 7→ Sα,ja,k as a generalized Fourier transform. The duality map

Uα,j
a,k 7→ Sα,ja,k has in fact a nice interpretation in terms of Fourier transform in the linearizing

chart near the critical point a. Recall that the Fourier transform can be defined on the space
of tempered currents on Rn [60, p. 396]. This notion of Fourier transform coincides with
the Fourier (sometimes called super Fourier) transform appearing in the theory of Berezin
integrals [38, Ch. 7] – see section 5 of [18] for a brief reminder on Berezin integrals. In
fact, a tempered distribution u(z, dz) can be identified with an element in the Grassmann

6See Remark 7.4 for the precise definition of mk,a(α).
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algebra S ′(Rn)[dz1, . . . , dzn]. Using the conventions of [18], one can define the Fourier

transform as follows:

∀u ∈ S ′(Rn)[dz1, . . . , dzn], F(u)(z, dz) :=
1

(2π)
n
2

∫

R(n|n)

u(p, P )e−i(p.z+P.dz)dpdP.

Thanks to Proposition 7.3, we know exactly the local form of the current Uα,j
a,k near the

critical point a, and we can check that the map Uα,j
a,k 7→ Sα,ja,k is locally near a equal to F

up to some normalizing constant depending only on n and k.

7.4. Asymptotic formulas. In order to conclude this section, we will give some nice
asymptotic formulas that can be easily derived from our description of the spectrum.

7.4.1. Weyl asymptotics. Due to the fact that we obtained an explicit expression for the
spectrum of the transfer operator, we can easily obtain some Weyl’s formula. More pre-
cisely,

Proposition 7.8 (Weyl Law). Let 0 ≤ k ≤ n and let (f, g) be a smooth Morse pair
generating a Morse-Smale gradient flow. Then, one has

|{λ ∈ Rk(f, g) : |λ| ≤ Λ}| =
Λn

k!(n− k)!

∑

a∈Crit(f)

1∏n
j=1 |χj(a)|

+O(Λn−1), as Λ → +∞,

where the elements in Rk(f, g) are counted with their algebraic multiplicities.

Proof. From Remark 7.4 and Propositions 7.5 and 7.6, one knows that

|{λ ∈ Rk(f, g) : |λ| ≤ Λ}| =
∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|≤Λ

mk,a(α).

Hence, we can fix a critical point a and compute
∑

α∈Nn:α.|χ(a)|≤Λmk,a(α). We write
∑

α∈Nn:α.|χ(a)|≤Λ

mk,a(α) = |{α ∈ N
n; I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n} : α.|χ(a)| ≤ Λ and (∗∗)}| ,

where r is the index of a and where (∗∗) means that |J |−|I| = k−r and ∀j ∈ I∪J, αj ≥ 1.
We start by fixing a pair (I, J) where I ⊂ {1, . . . , r} and J ⊂ {r+1, . . . , n} subject to the
condition |J | − |I| = k − r. We then want to compute

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| .

One can verify that

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| = |{α ∈ N

n : α.|χ(a)| ≤ Λ}|+O(Λn−1).

Then, one has

|{α ∈ N
n : α.|χ(a)| ≤ Λ}| = Vol ({x ∈ (R+)

n : |χ(a)|.x ≤ Λ}) +O(Λn−1),

which is the volume of a simplical domain. Hence, one has

|{α ∈ N
n : ∀j ∈ I ∪ J, αj ≥ 1 and α.|χ(a)| ≤ Λ}| =

Λn

n!|
∏n

j=1 χj(a)|
+O(Λn−1).
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This is valid for any I ⊂ {1, . . . , r}, J ⊂ {r + 1, . . . , n} subject to the condition |J | −
|I| = k − r. One can remark that the number of such I × J is equal to the number of
I ′ × J ⊂ {1, . . . , r} × {r+ 1, . . . , n} subject to the condition |J |+ |I ′| = k. This is exactly

equal to

(
n
k

)
. This concludes the proof of the Proposition. �

7.4.2. Trace formulas. In this paragraph, we discuss briefly some trace formulas related to
our problem. For every 0 ≤ k ≤ n and every λ ≥ 0, we set

Ck(f, λ) := Ker(L(k)
Vf

− λ),

where we mean the kernel of the operator in an appropriate anisotropic Sobolev space as
above. We define then the spaces of even (bosonic) and odd (fermionic) eigenstates:

Ceven(f, λ) :=
⊕

k≡0(mod2)

Ck(f, λ), and Codd(f, λ) :=
⊕

k≡1(mod2)

Ck(f, λ)

The fermion number operator (−1)F acts on

C(f, λ) = Ceven(f, λ)⊕ Codd(f, λ)

with eigenvalue ±1 depending on the parity of the state. Let now θ : R → C. We define
the super7-trace as follows:

Str
(
θ
(
LVf
))

= Tr
(
(−1)F θ

(
LVf
))

= Tr
(
θ
(
LVf
)
⌉Ceven(f,λ)

)
− Tr

(
θ
(
LVf
)
⌉Codd(f,λ)

)

:=
∑

λ∈∪n
k=0Rk(f,g)

θ(λ)
(
dimCeven(f, λ)− dimCodd(f, λ)

)
.

This allows to define a notion of super-trace as soon as the last quantity is well-defined.
In order to avoid too many complications that would be beyond the scope of this article,
we take this as a definition of the trace in our framework. We note that this is related to
the notion of flat trace – see e.g. [24, Sect. 2.4].

The operators d and iVf both commute with LVf . Hence, Q = (d + iVf ) defines an
operator

Qλ : C
even(f, λ)⊕ Codd(f, λ) 7→ Codd(f, λ)⊕ Ceven(f, λ).

which exchanges chiralities. We observe that, for every λ > 0, Qλ is an isomorphism since
Q2
λ = LVf = λId. In particular, for every λ > 0, one has

dimCeven(f, λ) = dimCodd(f, λ).

Combined with Proposition 6.8, this implies

Str
(
θ
(
LVf
))

= θ(0)
n∑

k=0

(−1)k|{a ∈ Crit(f) : ind(a) = k}| = θ(0)
∑

a∈Crit(f)

(−1)ind(a).

7The prefix super just emphasizes the fact that we are considering functions of odd (dzi) and even (zi)
variables.
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By the classical Morse inequalities, the right-hand side of this equality is equal to θ(0)χ(M),
where χ(M) is the Euler characteristic of M . We shall prove this property in section 8.

Let us now specialize this result when we take θ(λ) = e−λt1[0,Λ](λ) some fixed Λ > 0.
In that case, we recover the following version of the Atiyah–Bott–Lefschetz fixed point
Theorem [3]:

Proposition 7.9. Let (f, g) be a smooth Morse pair generating a Morse-Smale gradient
flow. Then, one has, for every Λ > 0, and for every t > 0,

(31)

n∑

k=0

(−1)k Tr
(
Π

(k)
Λ ϕ−t∗

f Π
(k)
Λ

)
=

∑

x=ϕ−t
f

(x)

det(Id−dxϕ
−t
f )

| det(Id−dxϕ
−t
f )|

,

where Π
(k)
Λ is the spectral projector defined in paragraph 5.3 and Tr is the standard trace.

In the terminology of [3], the left-hand side of (31) is called the Lefschetz number of

ϕ−t∗
f (more precisely of Π

(k)
Λ ϕ−t∗

f Π
(k)
Λ ). As was already mentionned, we will verify in the

next section that the right-hand side is equal to the Euler characteristic of M .

8. Topological considerations

Studying Morse functions have deep connections with the topology of the manifold, and
we will now describe some topological consequences of our spectral analysis of the operator

L(∗)
Vf
. In all this section, we still suppose that (f, g) is a smooth Morse pair inducing a Morse-

Smale gradient flow.. The results presented here are in fact related to the interpretation
of Morse theory given by Harvey and Lawson in [41] – see also [48, Ch. 6]. The main
novelty here is the spectral interpretation of these results. We also refer to [29, Sect. 3.3.2]
for related cohomological arguments in connection with the meromorphic extension of zeta
functions.

8.1. de Rham cohomology. We start with a brief reminder on de Rham cohomology [57,
60]. Recall that, for every k ≥ 0, the coboundary operator d sends any element in Ωk(M)
to an element in Ωk+1(M), and that it satisfies d ◦ d = 0. In particular, one can define a
cohomological complex (Ω∗(M), d) associated with d:

0 → Ω0(M) → Ω1(M) → . . .→ Ωn(M) → 0.

This complex is also called the de Rham complex. An element ω in Ω∗(M) such that
dω = 0 is called a cocycle while an element ω which is equal to dα for some α ∈ Ω∗(M)
is called a coboundary. We define then

Zk(M) = Ker(d) ∩ Ωk(M), and Bk(M) = Im(d) ∩ Ωk(M).

Obviously, Bk(M) ⊂ Zk(M), and the quotient space Hk(M) = Zk(M)/Bk(M) is called
the k-th de Rham cohomology.

According to [60, p. 344-345], the coboundary operator d can be extended into a map
acting on the space of currents. This allows to define another cohomological complex
(D′,∗(M), d):

0 → D′,0(M) → D′,1(M) → . . .→ D′,n(M) → 0,
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where we recall that D′,k(M) is the topological dual of Ωn−k(M). One can similarly define
the k-th cohomology of that complex. A remarkable result of de Rham is that these two
cohomologies coincide [57, Ch. 4] – see also [60, p.355] for a generalization of this result.

Theorem 8.1 (de Rham). Let u be an element in D′,k(M) satisfying du = 0.

(1) There exists ω in Ωk(M) such that u− ω belongs to Im(d) ∩ D′,k(M).
(2) If u = dv with (u, v) in Ωk(M) × D′,k−1(M), then there exists ω in Ωk−1(M) such

that u = dω.

In the following, we will only make use of the second part of the Theorem.

8.2. Finite dimensional complexes. Proving that the k-th cohomology is finite dimen-
sional requires more work – see e.g. [57, Ch. 4]. Before deducing that result from our
spectral analysis of LVf , we start with some general considerations on finite dimensional
cohomological complexes. Consider a cohomological complex (C∗, d) associated with the
coboundary operator:

0 → C0 → C1 → . . .→ Cn → 0,

where for every 0 ≤ k ≤ n, Ck is a finite dimensional subspace of D′,k(M).

Remark 8.2. A famous example of such complexes appears in Hodge theory where one

considers Ck(∆) = Ker(∆
(k)
g ) where ∆

(k)
g is the Laplace-Beltrami operator acting on

L2(M,Λk(T ∗M)). From the ellipticity of the Laplace-Beltrami operator on that space,
one can the deduce the fact that Ck(∆) is a finite dimensional space inside Ωk(M).

Consider now the complexes induced by the operator LVf . For that purpose, we pick N0

and N1 large enough in the definition of the order function m(x, ξ), and we define

Ck(f) := Ker
(
L(k)
Vf

)

which is a finite dimensional space. Recall one more time from [28, Th. 1.5] that these
spaces are intrinsic. As d commutes with the Lie derivative LVf , one can verify that, if

L(k)
Vf
u = 0, then L(k+1)

Vf
(du) = 0 with du belonging to Hm

k+1(M). Hence, the coboundary

operator d induces a finite dimensional cohomological complex (C∗(f), d)

0 → C0(f) → C1(f) → . . .→ Cn(f) → 0.

We can now apply Proposition 6.8 and we find that dim(Ck(f)) is in fact equal to the
number ck(f) of critical point of f which are of index k.

8.3. Morse type inequalities. Consider a finite dimensional complex (C∗, d). We briefly
recall how to obtain Morse type inequalities in that abstract framework arguing as in [48,
Ch. 6]. For that purpose, we define

Zk(C∗) = Ker(d) ∩ Ck, and Bk(C∗) = Im(d) ∩ Ck.

As above, we define the quotient space (or the k-th cohomology of the complex):

H
k(C∗) := Zk(C∗)/Bk(C∗).
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We denote by βk(C
∗) <∞ the dimension of that quotient space. We also introduce

bk(C
∗) = dim Bk(C∗), ck(C

∗) = dim Ck, and zk(C
∗) = dim Zk(C∗).

We observe that

βk(C
∗) = zk(C

∗)− bk(C
∗) and ck(C

∗) = bk−1(C
∗) + zk(C

∗).

We now write that, for every k ≥ 0,

0 ≤ bk(C
∗) = (ck(C

∗)− βk(C
∗))− (ck−1(C

∗)− βk−1(C
∗)) + . . .

From this expression, we can deduce the following Morse type inequalities associated
with the complex (C∗, d):

(32) ∀0 ≤ k ≤ n,

k∑

j=0

(−1)k−jcj(C
∗) ≥

k∑

j=0

(−1)k−jβj(C
∗),

and

(33)
n∑

j=0

(−1)n−jcj(C
∗) =

n∑

j=0

(−1)n−jβj(C
∗).

In the case where we pick C∗ = C∗(f), inequalities (32) and (33) are exactly the Morse
inequalities for the complex C∗(f) which is nothing else but the Morse complex (also called
Thom-Smale-Witten complex).

8.4. The Morse complex is isomorphic to the de Rham complex. Let 0 ≤ k ≤ n.
We would like now to give a spectral proof of the fact that the k-th cohomology of the
Morse complex is isomorphic to the de Rham cohomology of degree k. A proof of this
result based on the theory of currents can be found in [48, Ch. 6] in the case of locally flat
metrics. Here, we give an alternative proof of that result based on our spectral analysis of
the operator LVf . The main idea is just that the Morse complex is the limit as t → +∞
of the de Rham complex evolved under the semi-group ϕ−t∗

f . This observation is also
contained in the works of Harvey and Lawson on finite volume flows [40, 41].

8.4.1. Propagating the de Rham complex in finite time. For every t > 0, we can associate a
complex (ϕ−t∗

f Ω∗(M), d). This complex is homotopic to the de Rham complex (Ω∗(M), d)
via the cochain homotopy equation:

u− ϕ−t∗
f u = dRtu+Rtdu(34)

Rt :=

∫ t

0

iVf ◦ ϕ
−s∗
f ds,(35)

where iVf is the contraction operator by the vector field Vf . This formula can be obtained
as follows:

u− ϕ−t∗
f u =

∫ t

0

LVf ◦ ϕ
−s∗
f uds =

∫ t

0

(d ◦ iVf + iVf ◦ d) ◦ ϕ
−s∗
f uds,
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where the first equality is just the Taylor formula while the second equality follows from

Cartan’s formula [60, p. 351] : L(k)
Vf

= iVf ◦ d + d ◦ iVf . In particular, one can verify

from these relations that the semi-group ϕ−t∗
f induces an isomorphism in cohomology

H (Ω∗(M), d) ≃ H(ϕ−t∗
f Ω∗(M), d). Equivalently, the cohomologies of the two complexes

are isomorphic via the map ϕ−t∗
f . In order to prove that the Morse complex (C∗(f), d)

is isomorphic (in cohomology) to (Ω∗(M), d), we now have to let t tend to +∞ in the
above homotopy equation. This can be done rigorously thanks to the fact that there is a
spectral gap in the spectrum of LVf and thanks to the spectral projector associated with
the eigenvalue 0. This will exactly be the content of the next paragraph. Once the limit
homotopy equation will be settled, we will still have to verify that it induces an isomorphism
in cohomology between the de Rham and Morse complex – see paragraph 8.4.3.

Remark 8.3. Note that, in Hodge theory, the strategy is exactly the same except that we
replace our semigroup ϕ−t∗

f by the heat flow e−t∆g .

8.4.2. Spectral decomposition. Let m(x, ξ) be an order function with N0 and N1 sufficiently
large to ensure that 0 is an isolated eigenvalue with finite algebraic multiplicity (eventually
equal to 0). Introduce the spectral projector associated with the eigenvalue 0:

P
(k) :=

∫

γ

dz

(z − L(k)
Vf
)
: Hm

k (M) → Ck(f),

where γ is a small Jordan path which separates 0 from the rest of the spectrum of L(l)
Vf

acting on Hm
l (M) for every 0 ≤ l ≤ n – see [43, App. A]. This operator commutes with

L(k)
Vf
. According to [26, p.244-246], one knows that

L(k)
Vf

:
(
IdHm

k
− P

(k)
)
Hm
k (M) →

(
IdHm

k
− P

(k)
)
Hm
k (M)

does not contain 0 in its spectrum. In particular, we can write the following decomposition:

IdHm
k
= P

(k) + L(k)
Vf

◦
(
(L(k)

Vf
)−1 ◦

(
IdHm

k
− P

(k)
))
.

By Cartan’s formula [60, p. 351], one knows that L(k)
Vf

= iVf ◦ d+ d ◦ iVf . Hence,

(36) IdHm
k
= P

(k) + (d ◦ iVf + iVf ◦ d) ◦
(
(L(k)

Vf
)−1 ◦

(
IdHm

k
− P

(k)
))
.

Moreover, d commutes with LVf hence with P(k) from the expression of the spectral pro-

jector. Hence, for every u in (Id− P(k))Hm
k (M), du ∈ (Id− P(k+1))Hm

k+1(M), and one has

L−1
Vf

◦ du = L−1
Vf

◦ d ◦ LVf ◦ L
−1
Vf
(u) = d ◦ L−1

Vf
(u). From that, we infer that d also commutes

with L−1
Vf

◦
(
IdHm

k
− P

(k)
)
. Combining this last observation with the fact that d commutes

with P(k) and with (36), we finally find that, for every u in Hm
k (M), one has

(37) u = P
(k)(u) + d ◦R(k)

∞ (u) +R(k+1)
∞ ◦ d(u),
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where R
(n+1)
∞ = 0 and, for every 0 ≤ l ≤ n,

R(l)
∞ := iVf ◦ (L

(l)
Vf
)−1 ◦

(
IdHm

l
− P

(l)
)
.

Remark 8.4. Recall that, from our complete description of the spectrum of LVf , one has,
for every u in Hm

k (M),

P
(k)(u) = lim

t→+∞
ϕ−t∗
f u =

∑

a∈Crit(f): ind(a)=k

〈Sa, u〉Ua ∈ Ck(f).

We note that our cochain homotopy equation should be thought as the limit as t → +∞
of the cochain homotopy equation between the de Rham complex (Ω∗(M), d) and the
propagated complex (ϕ−t∗

f Ω∗(M), d). Even if our interpretation is of spectral nature, the
“limit equation” is due to Harvey–Lawson [41, Th. 2.3].

Remark 8.5. In Hodge theory, the analogue of this decomposition would consist in using the

spectral projector associated with the eigenvalue 0 of ∆
(k)
g = dd∗+d∗d, this projects currents

on harmonic forms. Using the same convention for the spectral projector associated with
0, we would get

u = P
(k)(u) + d ◦R(k)

∞ u+R(k+1)
∞ ◦ d(u),

where, for every 0 ≤ k ≤ n,

R(l)
∞ := d∗ ◦ (∆(l)

g )−1 ◦
(
Id− P

(l)
)
.

As we shall see below, this relation is the key step to prove that the de Rham cohomology
is isomorphic to harmonic forms.

8.4.3. Cohomological consequences. First, we observe that, as the coboundary operator d
commutes with LVf , it also commutes with P(k). In particular, the map P(k) induces a map

from Zk(M) to Zk(C∗(f)). We will now show (using our spectral approach) that it induces
an isomorphism between the quotient spaces:

Proposition 8.6. Let 0 ≤ k ≤ n. The map

P
(k) : Ωk(M) → Ck(f)

induces an isomorphism between the vector spaces Hk(C∗(f), d) and Hk(M).

From that Proposition, we recover the classical fact that Hk(M) is a finite dimensional
space for every 0 ≤ k ≤ n. Its dimension is called the k-th Betti number that we will
denote by bk(M). With the notations of paragraph 8.2, we have bk(M) = βk(C

∗(f)) for
every 0 ≤ k ≤ n. In particular, if we apply (32) and (33) in the case of the complex
(C∗(f), d), we recover the classical Morse inequalities:

Corollary 8.7 (Morse inequalities). Let

ck(f) = |{a ∈ Crit(f) s.t. ind(a) = k}|.
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Then, for all k ∈ {0, . . . , n}, we have:

k∑

j=0

(−1)k−jcj(f) ≥
k∑

j=0

(−1)k−jbj(M),

with equality in the case8 k = n.

Proof of Proposition 8.6. Let us start with injectivity. Let u be a cocycle in Ωk(M) such
that P(k)(u) = 0. We use equality (37), and we find that

u = d ◦R(k)
∞ (u),

which exactly says that u is a coboundary for the complex (D′,∗(M), d). As u is smooth,
we know from de Rham Theorem 8.1 that u is a coboundary in Ωk(M).

Let us now consider the surjectivity. Recall from Proposition 6.8 that Ck(f) is the vector
space generated by the Laudenbach currents (Ua)a where a runs over the critical points of

index k. Combining Lemma 6.2 (applied to −f) with the fact that Sa is carried on W s(a)
and non zero near a (see paragraph 6.4.4), we can find a family of k forms ωa in Ωk(M)
such that

〈Sa, ωa〉 = 1 and ∀a′ 6= a s.t. ind(a) = k, 〈Sa, ωa〉 = 0.

Moreover, we can suppose that, for every critical point a of index k, ωa is compactly
supported in a small neighborhood of a. Let now u be a cocycle in Ck(f). We write
u =

∑
a αaUa where the sum runs of the critical point of index k. We write

ω =
∑

a:ind(a)=k

αaωa ∈ Ωk(M).

We know that P
(k)(ω) = u and that du = 0. Using the fact that d commutes with LVf

(hence with P∗), we deduce that P(k+1)(dω) = 0. Equivalently, one has LVf (dω) = 0, where
dω is compactly supported in a disjoint union of small neighborhoods of the critical points
of index k. Using the invariance by ϕtf , we necessarily have that dω = 0, i.e. ω is a cocycle,
which concludes the proof. �

Remark 8.8. In Hodge theory, the surjectivity is in fact slightly simpler provided we use
some results from elliptic theory. In fact, consider a harmonic form u i.e. such that
∆gu = 0. From the ellipticity of the operator ∆g, we know that u is smooth and thus
belongs to Ω(∗)(M).

Remark 8.9. We note that it would be tempting to consider the complex associated with
a nonzero eigenvalue λ of LVf . Yet, this complex is trivial from the point of view of
cohomology. In fact, if du = 0 and (LVf − λ)u = 0 for some λ 6= 0, then we have that

LVfu = λu.

Combining the Cartan formula to the fact that du = 0, we would get

d ◦ iVfu = λu.

8Recall that in that case, the sum is the Euler characteristic χ(M) of M .
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As λ 6= 0 and as iVf commutes with LVf , we find that u is a coboundary of (C∗(f), d). In
particular, if we fix some (finite or not) subset A containing 0 inside

⋃
0≤k≤nRk(f, g), then

one can define the complex (C∗(f, A), d) such that

∀0 ≤ k ≤ n, Ck(f, A) := span{Uα,j
a,k : a ∈ Crit(f), α.|χ(a)| ∈ A and 1 ≤ j ≤ mk,a(α)}.

From the above observation, one can easily deduce that the complex (C∗(f, A), d) is also
isomorphic to the de Rham complex via the map

P
(k)
A (ψ) :=

∑

a∈Crit(f)

∑

α∈Nn:α.|χ(a)|∈A

mk,a(α)∑

j=1

〈Sα,ja,k , ψ〉U
α,j
a,k .

8.5. Poincaré duality and f 7→ −f . By construction, one knows that the currents
(Sa)a∈Crit(f) is the dual basis to (Ua)a∈Crit(f) for the duality bracket between Hm

k (M) and
H−m
n−k(M) which coincides (in the case of smooth forms) with the standard duality bracket

between D′,∗(M) and Ωn−∗(M). Moreover, from paragraph 6.4.4, it is in fact a basis of the

kernel of the operator L(∗)
V−f

acting on H−m
n−∗(M). We set

Cn−k(−f) := Ker(L(n−k)
V−f

).

We can then define the following complex associated with the coboundary operator d:

0 → C0(−f) → . . .→ Cn−1(−f) → Cn(−f) → 0.

As was already explained, these two complexes are dual to each other via the duality
between Hm

k (M) and H−m
n−k(M), i.e.

∀(u, v) ∈ Ck(f)× Cn−k(−f), 〈u, v〉 = 〈u, v〉Hm
k
(M),H−m

n−k
(M) =

∫

M

u ∧ v.

Introduce now the following Poincaré isomorphism between Ck(f) and the dual of
Cn−k(−f):

P(k)
0 : u ∈ Ck(f) 7→ 〈u, .〉 ∈ Cn−k(−f)′.

We observe that 〈u, v〉 does not depend on the cohomology class of u and v. Hence,

P(k)
0 induces a linear map between H

k(C∗(f), d) and H
n−k(C∗(−f), d)′. We now follow

closely [48, Ch. 6] and verify that this is in fact an isomorphism betweeen the quotient
spaces. Suppose that θ is a linear form on Hn−k(C∗(−f), d). This induces a linear form θ
on Zn−k(C∗(−f), d) which vanishes on Bn−k(C∗(−f), d). By the Hahn-Banach Theorem,
we extend this linear form to Cn−k(−f). From the duality between Ck(f) and Cn−k(−f),
there exists a unique u in Ck(f) such that θ(v) = 〈u, v〉 for every v in Cn−k(−f). As θ
vanishes on the image of d, we find that, for every v in Cn−k−1(−f), 〈u, dv〉 = 0 from which

one can deduce that du = 0. This shows surjectivity of the linear map induced by P(k)
0 .

If we intertwine the role of f and −f , we find a linear surjection from Hn−k(C∗(−f), d)

to Hk(C∗(f), d)′. This implies that all the spaces have the same dimension. Hence, P(k)
0

induces an isomorphism between Hk(C∗(f), d) and Hn−k(C∗(−f), d)′ for every 0 ≤ k ≤ n.
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Combined with Proposition 8.6 applied to both f and −f , this implies the following well
known result:

Proposition 8.10. Let M be a smooth, compact, oriented manifold without boundary.

Then, for every 0 ≤ k ≤ n, P(k)
0 induces an isomorphism between Hk(C∗(f), d) and

Hn−k(C∗(−f), d)′. In particular, bk(M) = bn−k(M) for every 0 ≤ k ≤ n.

Remark 8.11. This discussion could be generalized to the complex (Ck(f, A), d) defined in
Remark 8.9. For that purpose, we should observe that, for every A inside

⋃
0≤k≤nRk(f, g),

C∗(f, A) is a subspace of D′,∗
Γ−

(M) while C∗(f, A) is a subspace of D′,∗
Γ+
(M). The duality

pairing 〈u, v〉 is then given by the duality pairing
∫
M
u∧v between D′,∗

Γ−
(M) and D′,n−∗

Γ+
(M)

which is well defined as Γ−∩Γ+ =M×{0}. Note that it coincides with the duality pairing
between the anisotropic Sobolev spaces when we consider elements inside the complexes
C(±f, A). This would yield a generalized Poincaré isomorphism:

P(k)
A : Uα,j

a,k ∈ Ck(f, A) 7→ 〈Uα,j
a,k , .〉 ∈ Cn−k(−f, A)′.

Yet, from the point of view of the cohomology, it would not give more informations – see
Remark 8.9.

8.6. Koszul complex associated with iVf . As was already alluded in the introduction,
the Cartan formula

LVf = d ◦ iVf + iVf ◦ d,

replaces in our context the formula ∆ = d ◦ d∗+ d∗ ◦ d in Hodge theory. Hence, what plays
the role in the Morse context of the complex (Ω∗(M), d∗) from Hodge theory is the Koszul
complex induced by the contraction operator iVf .

Remark 8.12. We underline that the Cartan formula combined with our spectral decom-
position yields an analogue of the Hodge decomposition in our framework:

u = P
(k)(u) + d

(
iVf ◦ (L

(k)
Vf
)−1 ◦ (Id− P

(k))(u)
)
+ iVf

(
d ◦ (L(k)

Vf
)−1 ◦ (Id− P

(k))(u)
)
.

In other words, any u in Ωk(M) can be decomposed as the sum of an invariant current, of
a coboundary (for d) and of a boundary (for iVf ).

We now consider the Morse-Koszul homological complex (C∗(f), iVf )

0 → Cn(f) → Cn−1(f) → . . .→ C0(f) → 0.

Again, this is a well defined complex as iVf commutes with the Lie derivative LVf . It is
naturally associated with the homological complex (Ω∗(M), iVf ):

0 → Ωn(M) → Ωn−1(M) → . . .→ Ω0(M) → 0.

Recall that the Euler characteristic of a homological complex (C∗, i) is given by

χ(C∗, i) =
n∑

j=0

(−1)jdim (Zj(C
∗, i)/Bj(C

∗, i)) ,
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where

Zj(C
∗, i) := Ker(i) ∩ Cj , and Bj(C

∗, i) := Im(i) ∩ Cj .

We start our discussion on the Morse-Koszul complex with the following property

Proposition 8.13. Let (f, g) be a smooth Morse pair inducing a Morse-Smale gradient
flow. Then, one has

χ(C∗(f), iVf ) = χ(M),

where χ(M) is the Euler characteristic of the manifold.

Proof. Recall that Ck(f) is equal to the vector space generated by the Laudenbach currents
Ua associated with critical points a of index k. According to Proposition 6.7, near a critical
point a of index k, Ua can be written in the adapted coordinates of paragraph 3.5 as

Ua(x, y, dx, dy) = δR
k

0 (x)dx1 ∧ dx2 ∧ . . . dxk.

On the other hand, the vector field Vf can be written in this system of coordinates:

Vf(x, y, ∂x, ∂y) =

r∑

j=1

χj(a)xj∂xj +

n∑

j=r+1

χj(a)yj∂yj .

Hence, locally near a, one has

iVf (Ua)(x, y, dx, dy) =

r∑

j=1

χj(a)xjδ
Rk

0 (x)dx1 ∧ . . . d̂xj . . . ∧ dxr = 0.

As Ua is supported in W u(a), we can deduce that iVf (Ua) is also carried by W u(a). As we
have just shown that it is equal to 0 near a and as LVf (iVf (Ua) = 0, we can deduce that the

support of iVf (Ua) is contained in W u(a)−W u(a). According to Remark 3.7, we can then
deduce that the support of iVf (Ua) is contained in the union of unstable manifold W u(b)
with ind(b) > k. We now use Proposition 7.5 to write

iVf (Ua) =
∑

b′:ind(b′)=k−1

αb′Ub′ .

Using Proposition 6.7 and the fact that iVf (Ua) is carried on a union of unstable manifold
of index > k, we can deduce that αb′ = 0 for every critical point b′ of index k− 1. In other
words, Zk(C

∗(f), iVf ) = Ck(f) and Bk(C
∗(f), iVf ) = {0}. In particular, one has

χ(C∗(f), iVf ) =
n∑

j=0

(−1)jcn−j(f),

from which the result follows thanks to the case of equality in the Morse inequalities. �

Remark 8.14. We note that we have implicitely shown that the k-th homologyHk(C
∗(f), iVf )

is equal to Ck(f).
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As in the case of the Thom-Smale-Witten complex, it would be natural to expect that, as
iVf commutes with P(k), P(∗) induces an isomorphism between the homological complexes
(C∗(f), iVf ) and (Ω∗(M), iVf ). In fact, one has also, for every time t > 0, a chain homotopy

equation between the complexes (Ω∗(M), iVf ) and (ϕ−t∗
f Ω∗(M), iVf ). Precisely, one can

write

u− ϕ−t∗
f u = iVfRtu+RtiVfu(38)

Rt :=

∫ t

0

d ◦ ϕ−s∗
f ds.(39)

Then, we could let t → +∞ and obtain a chain homotopy equation between (C∗(f), iVf )
and (Ω∗(M), iVf ). Precisely, as before, we would write

u = P(u) + iVf ◦R∞(u) +R∞ ◦ iVf (u),

where R∞ := d ◦ L−1
Vf

◦ (Id − P). However, it is not the case anymore that the induced

morphism is a bijection. In fact, it is neither injective nor surjective as the example on
S1 below will show. The reason for that phenomenon is that the Morse-Koszul complex
is sensitive to the regularity of the coefficients. In fact, compared with the case of the
coboundary operator, this complex is not elliptic since the contraction with the vector
field Vf is hyperbolic with degenerate points at Crit(f).

8.6.1. A surprising example with the circle. Let us now discuss the case of a Morse function
on S1 to illustrate the previous observation. Fix f to be a smooth Morse function on S1

and g to be a smooth metric on S1. Note that such a metric necessarily satisfies the
Morse-Smale condition. The fact that we have a smooth adapted coordinate chart near
any critical point follows from the fact that we can apply the Sternberg-Chen Theorem in
such a neighborhood as there is only one Lyapunov exponent. Consider now the Koszul
complex (Ω∗(S1), iVf ) induced by iVf :

0 → Ω1(S1) → Ω0(S1) → 0.

Let ω be a cycle in Ω1(S1), i.e. an element satisfying iVf (ω) = 0. We find that ω(x, dx) = 0
except at the critical points of a but, as ω is smooth, it implies that ω = 0. In particular,
the homology H1(Ω

∗(M), iVf ) is equal to 0 which is not isomorphic to H1(C
∗(f), iVf ) whose

dimension is equal to c1(f) 6= 0 from the proof of Proposition 8.13.
We could also consider the complex (D′,∗(S1), iVf ):

0 → D′,1(S1) → D′,0(S1) → 0.

In that case, we find that any element u in D′,1(S1) satisfying iVf (u) = 0 must be supported
on the critical points of a. In particular, near every critical point a of f , it is of the form

u =
∑

k≤N(a)

αa,kδ
(k)
a (x)dx,

where αa,k are constants and N(a) is a finite integer. Using the fact that the vector field
is generated by a Morse function, we can verify that N(a) = 0 for every critical point a
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in order to satisfy iVf (u) = 0. Thus, the first homology H1(D′,∗(f), iVf ) is of dimension
c0(f)+ c1(f) 6= c1(f) as there is at least one critical point of index 0. This first calculation
shows that the Koszul complex is sensitive to the regularity of the coefficients which was
not the case for the De Rham complex.

We have shown the lack of surjectivity between the first homology of (Ω∗(M), iVf ) and
(C∗(f), iVf ). Let us now prove that the morphism between the homology of order 0 cannot
be injective. For that purpose, we need to compute the image of iVf : Ω1(S1) → Ω0(S1).
Let ψ be an element in Ω0(S1) which is of the form iVf (ω) for some ω in Ω1(S1). Fix now
a critical point a of f . In a system of adapted coordinates near a, we find that ψ must be
of the form xψa(x). Hence, if we fix χa a smooth cutoff function near a, then we find that

Im(iVf ) ≃

(
1−

∑

a

χa

)
Ω0(S1)⊕

⊕

a∈Crit(f)

xχa(x)Ω
0(S1).

Thus, the dimension of H0(C
∗(f), iVf ) is equal to c0(f) + c1(f) 6= c0(f).

8.6.2. The classical Koszul complex. As a final remark on the comparison Koszul versus
Morse–Koszul, we generalize the above discussion on S1 to the case of a general manifoldM
by recalling classical results on the Koszul complex associated to a smooth vector bundle
E over a manifold M , in our work the relevant bundle is E = TM . Recall that a Koszul
complex associated with a smooth vector bundle is defined as follows:

Definition 8.15. Let E 7→ M be a smooth vector bundle of rank k over M , E∗ is the
dual bundle and choose a section s ∈ Γ(M ;E) and define the contraction operator is :
Γ(M,Λ•+1E∗) 7→ Γ(M,Λ•E∗). For every open subset U ⊂ M (U can be taken equal to
M), the contraction operator is : Γ(U,Λ

•+1E∗) 7→ Γ(U,Λ•E∗) is C∞(U) linear. The Koszul
complex (Γ(Λ•E∗); is) is a complex of sheaves of C∞ modules :

0 7→ Γ(ΛkE∗) 7→ . . . 7→ Γ(Λ0E∗) = C∞ 7→ 0.

In each degree, ker(is) and Im(is) are sheaves of C
∞ modules. It follows that the homology

H•(Γ(Λ
•E∗); is) defined as the quotient Ker(is|Γ(Λ•E∗))/ Im(is|Γ(Λ•+1E∗)) are sheaves of C

∞

modules.

We next give well–known properties of the Koszul complex in the algebraic setting [35,
see Proposition 1.4 p. 52], but formulated in the smooth case :

Proposition 8.16. If s ∈ Γ(U,E) does not vanish on U then the complex (Γ(U,Λ•E∗); is)
is acyclic i.e. Hi(Γ(U,Λ

•E∗); is) = 0 for all i ∈ {0, . . . , k}.
If the zeros of s ∈ Γ(M,E) are non degenerate then the homology vanishes in all degrees

except in degree 0 where H0(Γ(M,Λ•E∗); is) = Rp where p is the number of zeros of s.

Beware that the number of zeros of s is counted set theoretically. Therefore, the
Koszul complex represents homologically the zeros of our section s.
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Proof. Our first step is to show that for all U , Hi(Γ(U,Λ
•E∗), is) = 0 for all i > 0. If s

has isolated zeros on U , then we choose a moving coframe (e1, . . . , ek) of E∗|U such that
ei(s) = δ1i and we find that for every α =

∑
i1<···<ip

αi1...ipei1 ∧ · · · ∧ eip ∈ Γ(U,ΛpE∗),

isα = 0 is equivalent to the fact that α1i2...ip|U\{s=0} = 0 hence α1i2...ip |U = 0 for all
1 < i2 < · · · < ip since the zeros of s are isolated. The above means that e1 does not appear
in the decomposition of α hence α = is (e1 ∧ α) and ker(is|Γ(U,ΛiE∗)) = Im(is|Γ(U,Λi+1E∗))
for all i > 0.

For i = 0, if s does not vanish on U then it is simple to see that isΓ(U,Λ
1E∗) is onto and

therefore the cohomology vanishes in all degree. Otherwise, thanks to the above property,
we can localize the proof over small open subsets Ua centered around each critical point
a of s and H0(Γ(M,Λ•E∗); is) = ⊕a∈zeros(s)H0(Γ(Ua,Λ

•E∗); is). On Ua using the fact that
the zeros of s are non degenerate, in some coordinates (xi)i where xi(a) = 0, we find
that s =

∑n
i=1 xisi, si ∈ Γ(Ua, E) where si(0) 6= 0, ∀i. Therefore an immediate calculation

reveals that H0(Γ(Ua,Λ
•E∗); is) =

C∞(Ua)
Ia

where Ia is the ideal of functions vanishing on a

hence H0(Γ(Ua,Λ
•E∗); is) ≃ R and H0(Γ(M,Λ•E∗); is) = ⊕a∈zeros(s)R. �

Appendix A. Proof of Lemma 4.1

In this appendix, we give the proof of Lemma 4.1, i.e. construct of the escape function
Gm(x, ξ). Let N0, N1 > 4‖f‖C0 be some large parameters. As was already explained, up to
some minor differences due to the special form of the dynamics, our construction is the one
given in section 2 of [28]. Using the conventions of paragraph 3.4, we recall the following
result [28, Lemma 2.1]:

Lemma A.1. Let V u and V s be small open neighborhoods of Σu and Σs respectively, and
let ǫ > 0. Then, there exist Wu ⊂ V u and Ws ⊂ V s, m̃ in C∞(S∗M, [0, 1]), η > 0 such

that X̃Hf
.m̃ ≥ 0 on S∗M , X̃Hf

.m̃ ≥ η > 0 on S∗M − (Wu ∪ Ws), m̃(x, ξ) > 1 − ǫ for
(x, ξ) ∈ Ws and m̃(x, ξ) < ǫ for (x, ξ) ∈ Wu.

Proof. Let us recall the main lines of the proof of this Lemma which relies only on the
compactness and on the attracting properties of Σu and Σs. First, we have to verify that,
up to shrinking Vu and Vs a little bit, V u ∩ V s = ∅,

(40) ∀t ≥ 0, Φ̃tf (V
s) ⊂ V s, and Φ̃−t

f (V u) ⊂ V u.

This follows from Lemmas 3.6 and 3.8. Once we have this property, we can follow the
proof of [28]. More precisely, we know that

I(x, ξ) := {t ∈ R : Φ̃tf (x, ξ) ∈ S∗M − (V u ∪ V s)},

is a closed, connected interval whose length is uniformly bounded by some constant τ > 0.
We then set T > 0 such that τ/(2T ) < ǫ satisfying

Wu := Φ̃−T
f (S∗M − V s) ⊂ V u, Ws := Φ̃−T

f (S∗M − V u) ⊂ V s.
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Once these parameters are fixed, one just has to verify that, if m0 ∈ C∞(S∗M, [0, 1]) is
equal to 1 on V s and to 0 on V u, then the function

mT (x, ξ) :=
1

2T

∫ T

−T

m0 ◦ Φ̃
t
f (x, ξ)dt

satisfies the assumption of the Lemma – see [28] for details. �

We now use this Lemma with V u, V s and ǫ > 0 small enough (to be precised). Thus,
we have a function m̃(x, ξ) defined on S∗M . We introduce a smooth function m1 defined
on T ∗M which satisfies

m1(x, ξ) = N1m̃

(
x,

ξ

‖ξ‖x

)
−N0

(
1− m̃

(
x,

ξ

‖ξ‖x

))
, for ‖ξ‖x ≥ 1,

and

m1(x, ξ) = 0, for ‖ξ‖x ≤
1

2
.

We set the order function of our escape function to be

m(x, ξ) = −f(x) +m1(x, ξ).

Set now

Γ̃∓ :=

{
(x, ξ) ∈ T ∗M : ξ 6= 0 and

ξ

‖ξ‖x
∈ Ws/u

}
.

From the definition of m, Γ̃− (resp. Γ̃+) is a small conical neighborhood of Γ− (resp. of
Γ+). Moreover, for every (x, ξ) in Γ̃− (resp. Γ̃+) satisfying ‖ξ‖x ≥ 1, one has

m(x, ξ) ≤ −N0(1− ǫ) +N1ǫ+ ‖f‖C0 (resp. ≥ N1(1− ǫ)−N0ǫ− ‖f‖C0).

If we choose ǫ small enough, then the first items of Lemma 4.1 are proved. We now set the
following escape function:

Gm(x, ξ) = m(x, ξ) log(1 + ‖ξ‖2x),

and we have to compute the derivative XHf
.Gm of Gm along the Hamiltonian vector field

XHf
associated with Hf . Note that

(41) XHf
.Gm(x, ξ) = log(1 + ‖ξ‖2x)XHf

.m(x, ξ) +m(x, ξ)
XHf

.‖ξ‖2x
1 + ‖ξ‖2x

.

Let r > 0 be a small parameter. We shall estimate the derivative of Gm along the Hamil-
tonian function in T ∗B(a, r) for every critical points and in the complementary of this
set.

Let us start with the case where (x, ξ) belongs to T ∗Mreg where Mreg is the complemen-
tary set of ∪a∈CritfB(a, r/2). In that case, we fix R0 > 1. Then, there exists Cg depending
only on the Riemannian metric and on f such that, for every (x, ξ) in T ∗M satisfying
‖ξ‖x ≥ R0,

XHf
.Gm(x, ξ) ≤ −XHf

.f(x) log(1 +R2
0) + Cg (N0 +N1 + ‖f‖C0) ,
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as XHf
.m1 ≤ 0 for ‖ξ‖ > 1 according to Lemma A.1. As x is far from the critical points

of f , one knows from (3) that there exists a constant c(r) > 0 (depending only on r > 0)
such that XHf

.f(x) ≥ c(r). In particular, one has

XHf
.Gm(x, ξ) ≤ −c(r) log(1 +R2

0) + Cg (N0 +N1 + ‖f‖C0) ≤ −min{N0, N1},

where the last equality holds if we choose R0 > 1 large enough (in a way that depends on
r, N0 and N1).

It now remains to analyse the behaviour in a “neighborhood” of a critical point a in
Critf . In that case, we can as in [28] make use of the (local) hyperbolic structure of the
flow. We fix (x, ξ) in T ∗M such that ‖ξ‖x ≥ 1 and x in B(a, r), and we use (3) to write

XHf
.Gm(x, ξ) ≤ XHf

.m1(x, ξ) log(1 + ‖ξ‖2x) +m(x, ξ)
XHf

.‖ξ‖2x
1 + ‖ξ‖2x

.

We now distinguish three cases:

• Suppose that we could show that, if (x, ξ) belongs to Γ̃− and ‖ξ‖ > 1, then, one
can find a constant9 c− > 0 depending only on f and g such that

(42) XHf
.(‖ξ‖2x) > c−‖ξ‖

2
x.

In particular, one could infer

XHf
.Gm(x, ξ) ≤ −

N0

2
c−,

where we used Lemma A.1 to bound XHf
.m1(x, ξ).

• Suppose that we could show that, if (x, ξ) belongs to Γ̃+ and ‖ξ‖ > 1, then, one
can find a constant c+ > 0 depending only on f and g such that

(43) XHf
.(‖ξ‖2x) < −c+‖ξ‖

2
x.

In particular, one could infer

XHf
.Gm(x, ξ) ≤ −

N1

2
c+,

where we used again Lemma A.1 to bound XHf
.m1(x, ξ).

• If (x, ξ) does not belong to Γ̃− ∪ Γ̃+, then
ξ

‖ξ‖
belongs to S∗M − (Wu ∪Ws), and,

by Lemma A.1, one finds

XHf
.Gm(x, ξ) ≤ −η(N0 +N1) log(1 + ‖ξ‖2) + Cg (N0 +N1 + ‖f‖C0) .

Thus, if we choose R0 > 1 large enough (in a way that depends on N0, N1), then
one can ensure that XHf

.Gm(x, ξ) ≤ −min{N0, N1} whenever ‖ξ‖ ≥ R0 on this
set.

9We note that we may have to take V s small enough.
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This concludes the second part of the Lemma except for (42) and (43) that are still to be
proved. The proof is similar in both cases and we will only treat the first case. We note
that the compactness of Σu and Σs will one more time play a crucial role in the proof.

We start with the case where (x, ξ) = (a, ξ) belongs to E∗
s (a). In that case, we can make

use of the fact that we have a smooth linearizing chart – see paragraph 3.5. Recall also
that the linearized vector field Lg(a) is diagonalizable in a basis of eigenvectors which is
orthogonal for the metric g∗(a) – see paragraph 3.3. This implies that, in the adapted
coordinates (z, ζ) around a,

XHf
.(‖ζ‖2z) = 2

r∑

j=1

|χj(a)|ζ
2
j +Of,g(‖ζ‖

2
a),

where the constant in the remainder depends only on f and g and g∗(a) is the induced
Riemannian metric on T ∗

aM . In particular, provided that we take some small enough
constant c− = c−(f, g) depending on g and f , inequality (42) holds in the case where
(x, ξ) = (a, ξ) belongs E∗

s (a). We then define

Ur :=
{
(x, ξ) ∈ ∪y∈B(a,r)T

∗
yM : ‖ξ‖x > 1, and (42) holds with c− = 2c−(f, g)

}
,

which is an open set in T ∗M − (M × {0}). Then, we have to prove that we can choose Vs
small enough to ensure that the neighborhood

Ṽ (r)
s := {(x, ξ) ∈ ∪y∈B(a,r)T

∗
yM : ‖ξ‖ > 1 and (x, ξ/‖ξ‖x) ∈ Vs}

is contained in Ur. We proceed by contradiction, and we suppose that, for every r > 0 small
enough, there exists m0 ≥ 1 such that, for any m ≥ m0 and for any neighborhood Vm of

Σs of size 1/m, one can find (x
(r)
m , ξ

(r)
m ) /∈ Ur belonging to Ṽ

(r)
m . Without loss of generality,

we can suppose that ‖ξ(r)m ‖ ≤ 2. By compactness, we can then extract a subsequence such

that limm→+∞(x
(r)
m , ξ

(r)
m ) = (x(r), ξ(r)). Moreover, as Σs is compact, (x(r), ξ(r)) belongs to

∪y∈B(a,r)(Γ−∩T ∗
yM), and, by construction of the sequence, (42) does not hold at this point

with the constant c− = 2c−(f, g). This holds for any r > 0 small enough. We now extract
a converging subsequence as r → 0+, and we find a point (x, ξ) in E∗

s (a) where we know
that (42) holds with the constant c− = c−(f, g). This gives the expected contradiction as
ξ 6= 0.

Appendix B. Proof of Proposition 4.2

The proof of this Proposition was given in great details in [28, Th. 1.4] for the case
k = 0. The adaptation to the case 0 ≤ k ≤ n is almost identical except that we have to
deal with pseudodifferential operators with values in Λk(T ∗M). The main point is that the
(pseudodifferential) operators under consideration have a diagonal symbol. In fact, given
any local basis (ej)j=1,...Jk of Λk(T ∗M) and any family (uj)j=1,...Jk of smooth functions
C∞(M), one has

L(k)
Vf

(
Jk∑

j=1

ujej

)
=

Jk∑

j=1

LVf (uj)ej +
Jk∑

j=1

L(k)
Vf
(ej)uj,
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where the second part of the sum in the right-hand side is a lower order term (of order
0). This diagonal form allows to adapt the proofs of [28] to this vector bundle framework.
For completeness, we briefly recall the main lines of the proof and just point a (minor)
simplification due to the particular form of our flow. To make the comparison with that
reference simpler, we shall consider the operator −iLVf instead of −LVf .

Remark B.1. As was already mentionned, the case of currents was treated by Dyatlov and
Zworski in [24] via a slightly different approach. Their method could also probably be
adapted to deal with the case of Morse-Smale gradient flows.

The strategy is to consider the equivalent operator

(44) L̂(k)
f := Op(A(k)

m ) ◦ (−iL(k)
Vf
) ◦Op(A(k)

m )−1,

and to begin with, we recall the following result [28, Lemma 3.2]:

Lemma B.2. The operator

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 + iL(k)
Vf

is a pseudodifferential operator in Ψ+0(M) whose symbol in any given system of coordinates
is of the form

P (x, ξ) = i(XHf
.Gm)(x, ξ)Id+O(S0) +Om(S

−1+0).

In this Lemma, the notation O(.) means that the remainder is independent of the order
function m, while the notation Om(.) means that it depends on m. In particular, this

Lemma says that L̂(k)
f is an element in Ψ1(M,Λk(T ∗M)). Then, combining this Remark

to [28, Lemma A.1] which can be adapted directly to the case of operators with values in a

vector bundle, one finds that L̂(k)
f has a unique closed extension as an unbounded operator

on L2(M,Λk(T ∗M)). This shows the first part of the Proposition in the case k = 0.

Remark B.3. The proof of this Lemma was given for k = 0 in [28] and the adaptation to
the case 1 ≤ k ≤ n follows from the diagonal structure of the operators involved. Let us
recall that the key idea is to observe, by linearizing the exponential,

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 ≃ (1 + Op(Gm) + . . .) ◦ (−iL(k)
Vf
) ◦ (1−Op(Gm) + . . .)

= −iL(k)
Vf

+ [Op(GmId),−iL
(k)
Vf
] + . . . ,

which implies via symbolic calculus

Op(A(k)
m ) ◦ (−iL(k)

Vf
) ◦Op(A(k)

m )−1 ≃ −iL(k)
Vf

+ iOp(XHf
.GmId) + . . . .

Then, up to the fact that we have to deal with L2(M,Λk(T ∗M)), the second part of
Proposition 4.2 is exactly the content of Lemma 3.3 of [28] which only makes use of the
properties of the escape function given in Lemma 4.1. We also note that they implicitely
shows that, for every z in C satisfying Imz > C0, one has

(45)

∥∥∥∥
(
L̂(k)
f − z

)−1
∥∥∥∥
L2(M,Λk(T ∗M))→L2(M,Λk(T ∗M))

≤
1

Im(z)− C0

.
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Remark B.4. Combining Proposition 4.2 to the Hille-Yosida Theorem [26, Cor. 3.6, p. 76],
one knows that (by conjugation)

(46) (ϕ−t
f )∗ : Hm

k (M) → Hm
k (M),

generates a strongly continuous semigroup which is defined for every t ≥ 0 and whose norm
is bounded by etC0 .

Finally, the last part of the Proposition is based on results from analytic Fredholm
theory. It is in fact the only place where things differ with [28]. The situation is in fact
slightly simpler here as we shall now briefly explain it. We write

V̂
(k)
f :=

i

2

((
L̂(k)
f

)∗
− L̂(k)

f

)
.

We denote by V
(k)
f (x, ξ) the symbol of this operator. Note that, from [28, Lemma A.1],

(L̂(k)
Vf
)∗ also has a unique closed extension to L2(M,Λk(T ∗M)). Combining Lemma B.2 to

Lemma 4.1, one knows that, for every (x, ξ) in T ∗M ,

V
(k)
f (x, ξ) ≤ (−CN + C)Id+Om(S

−1+0),

for some constant C > 0 which is independent of m and for the constant CN defined in
Lemma 4.1. From the sharp G̊arding inequality, one can deduce that, for every 0 < µ < 1,
there exists a constant Cµ,m > 0 such that, for every u in C∞(M)

〈(V̂(k)
f + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤ Cµ,m‖u‖

2

H
µ−1
2 (M,Λk(T ∗M))

,

where the remainder Om(S
−1+0) has been absorbed in the RHS thanks to the Calderón-

Vaillancourt Theorem. From this inequality, one can deduce that

〈(V̂k)
f + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤

〈
C̃µ,m

(
1−∆(k)

g

)µ−1
2 u, u

〉

L2(M,Λk(T ∗M))

,

where ∆
(k)
g is the Laplace-Beltrami operator acting on k differential forms. We define then

χ̂k := C̃µ,m
(
1−∆(k)

g

)µ−1
2 ∈ Ψµ−1(M,Λk(T ∗M)),

which is a compact operator as µ− 1 < 0. Hence, we can rewrite the last inequality as

〈(V̂(k)
f − χ̂k + CN − C)u, u〉L2(M,Λk(T ∗M)) ≤ 0,

from which one can deduce10 that the resolvent(
L̂(k)
f − iχ̂k − z

)−1

defines a bounded operator from L2(M,Λk(T ∗M)) to itself as soon as Im(z) > −(CN −C).

From the compactness of χ̂k we can deduce that χ̂k

(
L̂(k)
f − iχ̂k − z

)−1

is also a compact

operator which is exactly the content of Lemma 3.4 in [28]. The conclusion then follows
by a classical argument from analytic Fredholm theory given in [28, Lemma 3.5].

10The proof of this fact is similar to the proof of Lemma 3.3 in [28].
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Appendix C. Asymptotic expansions

In this appendix, we review some classical facts on asymptotic expansions.

Definition C.1. Let I be a discrete11 countable subset of R bounded from below. We
call I the index set. Then h ∈ C∞((0, 1],R) has polyhomogeneous asymptotic expansion
indexed by I if

∃(aλ)λ∈I such that ∀Λ ∈ R \ I, ∃C > 0, ∀s ∈ (0, 1]∣∣∣∣∣h(s)−
∑

λ∈I,λ6Λ

aλs
λ

∣∣∣∣∣ 6 Csλ0

where λ0 = inf{λ ∈ I ∩ [Λ,+∞)}.

The key property we use in this article is:

Proposition C.2. If such an asymptotic expansion exists then it is unique.

Proof. Assume that h has two asymptotic expansions
∑

λ∈I aλs
λ and

∑
λ∈J bλs

λ. Note
that, up to taking the union of two index sets, we can make the assumption that both
expansions are with respect to the same set, i.e. I = J . Suppose by contradiction that
there exists λ ∈ I such that aλ 6= bλ, and pick the smallest element enjoying this property.
Let us call this element λ0. Then the approximation property gives for every Λ ∈ R \ I
sufficiently large and as s→ 0+,∣∣∣∣∣

∑

λ∈I,λ6Λ

aλs
λ −

∑

λ∈I,λ6Λ

bλs
λ

∣∣∣∣∣ = o(sΛ).

However |
∑

λ∈I,λ6Λ aλs
λ−
∑

λ∈I,λ6Λ bλs
λ| = |aλ0 − bλ0 |s

λ0(1+ o(1)), which contradicts the
above upper bound. �

Now we have the following

Lemma C.3. Let (λi)
n
i=1 be a collection of n positive real numbers. Let I be the index set

defined as

I :=

{
n∑

j=1

kjλj : ∀1 ≤ j ≤ n, kj ∈ N

}
⊂ R.

Then, for all ψ ∈ C∞(Rn), the function

s ∈ (0, 1] 7−→ ψ(sλ1 , . . . , sλn)

has polyhomogeneous asymptotic expansion indexed by I.

Proof. Use the fact that ψ has a Taylor expansion in s = (s1, . . . , sn) with remainder, in
multi–index notations :

ψ(s) =
∑

|α|6k

sα

α!
∂α
s
ψ(0) +Of ((|s1|+ . . .+ |sn|)

k+1).

11We mean that it has no accumulation point.
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Then, making the substitution si = sλi yields an asymptotic expansion of the form

ψ(sλ1 , . . . , sλn) =
∑

|α|6k

sλ1α1+...+λnαn

α!
∂α
s
ψ(0) +Oψ((s

λ1 + . . .+ sλn)k+1).

If we fix Λ > 0 and k such that (k + 1)mini(λi) > Λ, one can verify from the above
expression that ψ(sλ1 , . . . , sλn) has a polyhomogeneous expansion in I. �

A function h ∈ C∞((0, 1],R) is said to be weakly homogeneous if

∃C > 0, ∃d ∈ R, ∀s ∈ (0, 1], |h(s)| 6 Csd.

Recall that the Mellin transform of h1[0,1] for f weakly homogeneous is then defined as

(47) M
(
h1[0,1]

)
(z) =

∫ 1

0

h(s)sz
ds

s
,

and that it is holomorphic on the half–plane Re(z) > −d. Finally, we note that the
following holds:

Lemma C.4. Under the above conventions, one has:

(1) For w in C, the Mellin transform M(sw1[0,1](s))(z) equals
1

w+z
and thus, it extends

meromorphically with a simple pole at z = −w.
(2) For every polyhomogeneous h where h ∼

∑
λ∈I aλs

λ, the Mellin transform M
(
h1[0,1]

)
(z)

extends meromorphically to the complex plane with simple poles at z ∈ −I.
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