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LOWER BOUNDS FOR THE DYADIC HILBERT TRANSFORM

PHILIPPE JAMING, ELODIE POZZI, AND BRETT D. WICK

Abstract. In this paper, we seek lower bounds of the dyadic Hilbert transform (Haar shift) of the
form ‖Xf‖L2(K) ≥ C(I,K)‖f‖L2(I) where I and K are two dyadic intervals and f supported in I . If
I ⊂ K such bound exist while in the other cases K ( I and K ∩ I = ∅ such bounds are only available
under additional constraints on the derivative of f . In the later case, we establish a bound of the
form ‖Xf‖L2(K) ≥ C(I,K)|〈f〉I | where 〈f〉I is the mean of f over I . This sheds new light on the
similar problem for the usual Hilbert transform that we exploit.

1. Introduction

The aim of this paper is to establish lower bounds on the dyadic Hilbert transform (Haar shift) in
the spirit of those that are known for the usual Hilbert transform.

The Hilbert transform is one of the most ubiquitous and important operators in harmonic analysis
and its applications along the Fourier transform. It can can be defined on L2(R) as the Fourier

multiplier Ĥf(ξ) = −i sgn(ξ)f̂(ξ) which shows that H : L2(R) → L2(R) is a unitary bijection.
Alternatively, the Hilbert transform is defined via

Hf(x) =
1

π
p. v.

∫

R

f(y)

x− y
dy.

While boundedness of this operator is by now rather well understood, obtaining lower bounds for the
truncated Hilbert transform is still an ongoing task. More precisely, we are looking for bounds of the
form ‖1KHf‖L2(R) & ‖f‖L2(R) (for some set K ( R and f satisfying some additional constraint).

Without additional constraints, such an inequality can of course not hold and a first restriction one
usually imposes is that f is supported in some interval I. Before describing existing literature, let us
first motivate the question.

The most well known application of the Hilbert transform comes from complex analysis. Indeed,
if F is a reasonably decaying holomorphic function on the upper half-plane, then its boundary value
f satisfies Hf = −if . In particular, its real and imaginary parts are connected via Im (f) = Hℜ(f)
and ℜ(f) = −HIm (f). Conversely, if f is a reasonable real valued function, say f ∈ L2(R) with

supp f ⊂ I, I some interval, then f̃ := f + iHf is the boundary value of a holomorphic function in
the upper half-plane. The question we are asking is whether the knowledge of Im (f̃) on some interval

K determines f stably. In other words, we are looking for an inequality of the form
∥∥∥Im (f̃)

∥∥∥
L2(K)

&
∥∥∥ℜ(f̃)

∥∥∥
L2(I)

.
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An other instance of the Hilbert transform is in the inversion formula of the Radon Transform.
Recall from [Na, Chapter II] that the Radon transform of a function f ∈ S(R2) is defined by

Rf(θ, s) =

∫

〈x,θ〉=s
f(x)dx, θ ∈ S1, s ∈ R

while the inversion formula reads

f(x) =
1

4π

∫

S1

Hs[∂sRf(θ, ·)](θ, 〈x, θ〉)dσ(θ)

where the Hilbert transform acts in the s-variable. In practice, Rf(θ, s) can only be measured for
s in a given interval K which may differ from the relevant interval for f . This is a second (and
main) motivation for establishing lower bounds on the Hilbert transform which lead to estimates of
its invertibility as an operator from L2(I) → L2(K).

It turns out that the relative position of the intervals I and K plays a central role here and we
distinguish four cases:

• Covering. When K ) I the inversion is stable and an explicit inversion formula is known [Tr].
• Interior problem. When K ⊂ I, stable reconstruction is no longer possible. This case, known

as the interior problem in tomography has been extensively studied (see e.g. [CNDK, Ka2,
KKW, KCND, YYW]).

• Gap. When I ∩K = ∅, the singular value decomposition of the underlying operator has been
given in [Ka1] and this case was further studied by Alaifari, Pierce and Steinerberger in [APS].
It turns out that oscillations of f imply instabilities of the problem. The main result of [APS]
is that there exists constants c1, c2 depending only on I,K such that, for every f ∈ H1(I),

‖Hf‖L2(K) ≥ c1 exp

(
−c1

‖f ′‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I).

Moreover, the authors conjecture that ‖f ′‖L2(I) may be replaced by ‖f ′‖L1(I).

• Overlap. When I ∩ K 6= ∅ and I ∩ (R \ K) 6= ∅, a pointwise stability estimate has been
shown in [DNCK] while the spectral properties of the underlying operator are the subject of
[AK, ADK].

Most proofs go through spectral theory. More precisely, the strategy of proof is the same as for the
similar problem for the Fourier transform. Recall that in their seminal work on time-band limiting,
Landau, Pollak, Slepian found a differential operator that commutes with the “time-band” limiting
operator (see [Sl] for an overview of the theory and further references). The spectral properties of
this differential operator are relatively easy to study and the spectral properties of the “time-band”
limiting operator then follow. The counter-part of this strategy is that it relies on a “happy accident”
(as termed by Slepian) that does not shed light on the geometric/analytic features at play in the
Hilbert transform. Therefore, no hint towards lower bounds for more general Calderon-Zygmund
operators, nor towards the conjecture in [APS] is obtained through that approach.

Our aim here is precisely to shed new light on lower bounds for the truncated Hilbert transform.
To do so, we follow the current paradigm in harmonic analysis by replacing the Hilbert transform by
its dyadic version (Haar shift) which serves at first as a toy model. We then study the gap, covering

and interior problems for the Haar shift.
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To be more precise, the dyadic Hilbert transform (Haar shift) is defined by

Xf =
∑

I∈D

〈f, hI〉XhI

where D is the set of dyadic intervals, hI is the Haar function associated to I and XhI = 2−1/2(hI+ −
hI−) where I± are the sons of I. One can define a similar transform for generalized dyadic intervals
obtained by dilating and properly translating D. It turns out that the usual Hilbert transform is the
average over a suitable family of generalized dyadic intervals of the corresponding Haar shifts. This
approach has been very successful for upper bounds but it seems much less adapted to lower bounds.
Nevertheless, the Haar shift shares many common features with the continuous Hilbert transform,
and this is why we here establish lower bounds for this transform. We hope those lower bounds give
some insight on the problem of establishing lower bounds for the truncated Hilbert transform.

The main result we obtain is the following:

Theorem. Let I,K be two dyadic intervals. Then

(1) Covering. If I ⊂ K then ‖1KXf‖2 ≥
1

2
‖f‖2 for every f ∈ L2(R) with supp f ⊂ I.

(2) Gap If I ∩K = ∅, then no estimate of the form ‖1KXf‖2 & ‖f‖2 holds for every f ∈ L2(R)
with supp f ⊂ I. But

– either I ⊂ [2M−1, 2M ] and K ⊂ [0, 2M−2] for some integer M , then 1KXf = 0 for every

f ∈ L2(R) with supp f ⊂ I
– or for every 0 < η < 1, there exists C = C(I,K, η) such that ‖1KXf‖2 ≥ C‖f‖2 for

every f ∈ L2(R) with supp f ⊂ I such that |I|‖f ′‖L2(I) ≤ 2πη‖f‖L2(I).

(3) Interior problem If K ⊂ I, then no estimate of the form ‖1KXf‖2 & ‖f‖2 holds for every

f ∈ L2(R) with supp f ⊂ I. But ‖1KXf‖2 ≥ ‖1Kf‖2 for every f ∈ L2(R) with supp f ⊂ I.

Note that the fact that we assume that both I,K are dyadic implies that the overlapping case does

not occur here. In the Gap case, we actually show that 1KXf = C(I,K)

∫

I
f(x)dx. Therefore, if

f has zero mean, then its Haar shift is zero outside its support. This is a major difference with the
Hilbert transform which only has extra decay in that case. As a consequence, one can not recover
functions with zero-mean from their Haar shift outside the support. To avoid this situation, we use the
Poincaré-Wirtinger inequality to control the mean of f by its L2-norm when f has small derivative.

In section two we collect basic facts and notation. In sections three, four, and five we deal with
the various cases that arise in our main theorem. In a last section, we come back to the continuous
Hilbert transform and show that, here too, the mean of the function is the dominating part of the
Hilbert transform far enough away from the support.

2. Notations and Computations of Interest

In this paper, all functions will be in L2(R). We write

‖f‖L2 =

(∫

R
|f(x)|2 dx

)1/2

, 〈f, g〉L2 =

∫

R
f(x)g(x) dx.
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For I an interval of finite length |I| and f ∈ L2(R), we write

〈f〉I =
1

|I|

∫

I
f(x) dx

for the mean of f over I.
Let D denote the collection of dyadic intervals on R, namely the intervals of the form D =

{[2kℓ, 2k(ℓ+ 1)) : k, ℓ ∈ Z}. For I = [2kℓ, 2k(ℓ+ 1)), we denote the children of I by I− = [2kℓ, 2k(ℓ+
1/2)) = [2k−12ℓ, 2k−1(2ℓ+1)) ∈ D and I+ = [2k(ℓ+1/2), 2k(ℓ+1)) = [2k−1(2ℓ+1), 2k−1(2ℓ+2)) ∈ D.

The parent of I, denoted Î, is the unique interval in D such that I = Îε(I) with ε(I) ∈ {±1}.

We will frequently use the following computations: If L ∈ D, then

∑

L∈D,L)L

1

|L| =
1

|L|

∞∑

k=1

2−k =
1

|L|

while for L ( K ∈ D
∑

L∈D,L(L⊂K

1

|L| =
1

|L|

(
1− |L|

|K|

)
.

These results follows from the fact that for every k ≥ 1 there is a unique L ) L with |L| = 2k|L|.
For I ∈ D, we denote by hI the corresponding Haar function,

hI =
−1I− + 1I+√

|I|
.

Note that, if K ∈ D is such that K ⊂ I± then hI is constant on K. Then, denoting by c(K) the

center of K, hI(K) = hI
(
c(K)

)
= ε(I,K)√

|I|
where ε(I,K) ∈ {±1}. Also, hI has mean zero so that

〈1I , hI〉L2 = 0 and, more generally, if I ⊂ J , 〈1J , hI〉L2 = 0.
Recall that {hI : I ∈ D} is an orthonormal basis of L2(R). In particular, if f ∈ L2(R) and I ∈ D,

we write f̂(I) = 〈f, hI〉L2 so that

f =
∑

I∈D

f̂(I)hI

and, for f, g ∈ L2(R),

〈f, g〉L2 =
∑

I∈D

f̂(I)ĝ(I).

Further, when f ∈ L2(R) is supported on an interval I ∈ D, then it is simpler to write

(2.1) f = 〈f〉I 1I +
∑

J⊂I

f̂(J)hJ

from which it follows that

(2.2) ‖f‖2L2 = 〈f〉2I |I|+
∑

J⊂I

∣∣∣f̂(J)
∣∣∣
2

since 1I and hJ are orthogonal when J ⊂ I. On the other hand

(2.3) 1I =
∑

L∈D

〈1I , hL〉L2hL =
∑

L)I

〈1I , hL〉L2hL = |I|
∑

L)I

hL(I)hL
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since 〈1I , hL〉L2 =

∫

I
hL(x) dx = 0 when L ⊂ I.

Let X denote the dyadic Hilbert transform (the Haar shift) which is the bounded linear operator
on L2(R) defined by

XhI =
hI+ − hI−√

2
.

Note that XhI is supported on I. It is easily seen that 〈XhI ,XhJ〉L2 = δI,J so that X is a unitary

transform.
We will now make a few simple observations.

(1) If K is any dyadic interval than the function 1KXhL is supported on K ∩ L. In particular,
if L ⊂ K, 1KXhL = XhL.

(2) If L ) K̂, then the function 1KXhL =
ε(K,L)√

|L|
1K where ε(K,L) ∈ {±1}. We will write

1KXhL = XhL(K)1K where again XhL(K) = XhL
(
c(K)

)
.

Indeed, K = K̂ε(K) ( L thus K̂ε(K) ⊂ L± but then

1KXhL = ±1K
hL±√

2
= ±hL±

(K)√
2

1K

which is of the desired form.

(3) If L = K̂, then K = Lε(K) and 1KXhL =
ε(K)hK√

2
.

When f ∈ L2(R) is supported in I ∈ D, from the decomposition (2.1), we obtain

(2.4) 1KXf = 〈f〉I 1KX1I +
∑

J⊂I

f̂(J)1KXhJ .

On the other hand, from the decomposition (2.3), we have that for any I,K ∈ D:

X1I = |I|
∑

L)I

hL(I)XhL

thus

(2.5) 1KX1I = |I|
∑

L)I

hL(I)1KXhL.

We can now prove the following

Lemma 2.1. For I ∈ D, 1IX1I =
√

|I|hI .
Proof. Let K = I±. We want to prove that

1I±X1I = ±1I± .

From the formula (2.5), we deduce that

1KX1I = |I|


∑

L)I

hL(I)XhL(K)


 1K .
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since L ) K̂ for any I ( L. Observe that the sign of hL(I)XhL(K), I ( L, only depends on the

position of K regarding I− or I+. Indeed, if we have K = I− and I ⊂ L− then hL(I)XhL(K) =
−1

|L|
with hL(I) =

−1√
|L|

= −XhL(K) since K = I− ⊂ (L−)−. On the other hand, if K = I− and I ⊂ L+

then hL(I)XhL(K) =
−1

|L| with hL(I) =
1√
|L|

= −XhL(K) since K ⊂ I− ⊂ (L+)−. Similar

arguments lead to hL(I)XhL(K) =
1

|L| when K = I+ and I ⊂ L− and when K = I+ and I ⊂ L+.

Thus, we obtain

1KX1I = ε(K, I) |I|


∑

L)I

1

|L|


1K

= ε(K, I) |I|
[

∞∑

k=1

1

2k|I|

]
1K

= ε(K, I)1K

as announced. �

Our aim is to obtain lower bounds of ‖1KXf‖2 when f ∈ L2(R) is supported in I ∈ D. This
requires an understanding of 1KX1I in the three cases K ⊂ I, I ⊂ K and K ∩ I = ∅.

3. First case: I ⊂ K

This is the “easy” and most favorable case:

Theorem 3.1. Let I ⊂ K ∈ D. Then, for every f ∈ L2(R) supported in I,

‖1KXf‖2L2 ≥ κ(I,K)‖f‖2L2

where

κ(I,K) =

{
1
4 if K = I

1− 3
4

|I|
|K| if K ) I.

Proof. According to (2.5) we have

1KXf = 〈f〉I 1KX1I +
∑

J⊂I

f̂(J)1KXhJ(3.1)

= 〈f〉I 1KX1I +
∑

J⊂I

f̂(J)XhJ .

Indeed, notice that in (3.1), J ⊂ I ⊂ K so that XhJ is supported in J ⊂ K and 1KXhJ = XhJ .
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Now we further have that:

‖1KXf‖2L2 = 〈1KXf,1KXf〉L2

=

〈
〈f〉I 1KX1I +

∑

J⊂I

f̂(J)XhJ , 〈f〉I 1KX1I +
∑

J⊂I

f̂(J)XhJ

〉

L2

= 〈f〉2I ‖1KX1I‖2L2 +

〈
X

(∑

J⊂I

f̂(J)hJ

)
,X

(∑

J⊂I

f̂(J)hJ

)〉

L2

+2 〈f〉I
∑

J⊂I

〈X1I ,XhJ〉L2 f̂(J).(3.2)

But, as X is unitary, 〈X1I ,XhJ〉L2 = 〈1I , hJ 〉L2 = 0 since J ⊂ I. Further, using again that X is
unitary and that the {hJ}’s are orthonormal,

〈
X

(∑

J⊂I

f̂(J)hJ

)
,X

(∑

J⊂I

f̂(J)hJ

)〉

L2

=

〈∑

J⊂I

f̂(J)hJ ,
∑

J⊂I

f̂(J)hJ

〉

L2

=
∑

J⊂I

|f̂(J)|2.

Therefore (3.2) reduces to

‖1KXf‖2L2 = 〈f〉2I ‖1KX1I‖2L2 +
∑

J⊂I

|f̂(J)|2.

As ‖1KX1I‖2L2 ≤ ‖X1I‖2L2 = |I|, we get

(3.3) ‖1KXf‖2L2 ≥ ‖1KX1I‖2L2

|I|

(
〈f〉2I |I|+

∑

J⊂I

|f̂(J)|2
)

=
‖1KX1I‖2L2

|I| ‖f‖2L2 .

It remains to estimate ‖1KX1I‖2L2 from below. Recall form (2.5) that

1

|I|1KX1I =
∑

L)I

hL(I)1KXhL =


∑

L)K̂

+
∑

L=K̂

+
∑

K⊃L)I


hL(I)1KXhL

=


∑

L)K̂

hL(I)XhL(K)


1K +

ε(K)hK̂(I)√
2

hK +
∑

K⊃L)I

hL(I)XhL(3.4)

with the three observations made on 1KXhL. Now notice that the three terms in (3.4) are orthogonal.
Indeed, if L ⊂ K then hK and XhL are supported in K and have mean 0. Therefore, they are
orthogonal to 1K . Further,

√
2XhL = hL+ − hL−

and L± ( K thus hL±
is orthogonal to hK .

Moreover, ∣∣∣∣
ε(K)hK̂(I)√

2

∣∣∣∣ =
1√
2|K̂|

=
1

2
√

|K|
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and, as X is unitary, the XhL’s are orthonormal. Therefore

‖1KX1I‖2L2

|I| = |I||K|


∑

L)K̂

hL(I)XhL(K)




2

+
|I|
4|K| + |I|

∑

K⊃L)I

|hL(I)|2

≥ |I|
4|K| + |I|

∑

K⊃L)I

1

|L|

≥ κ(I,K) =

{
1
4 if K = I

1− 3
4

|I|
|K| if K ) I

which completes the proof. �

4. Second case: I ∩K = ∅
Suppose that K, I ∈ D are such that K ∩ I = ∅. First observe that

1KXf = 〈f〉I 1KX1I +
∑

J⊂I

f̂(J)1KXhJ

= 〈f〉I 1KX1I

with the last equality following since XhJ is supported on J ⊂ I and that I∩K = ∅ and so J∩K = ∅
as well. Thus, we have that

‖1KXf‖2L2 =
‖1KX1I‖2L2

|I| 〈f〉2I |I| .

Remark. From this, it is obvious that a lower bound of the form ‖1KXf‖2L2 ≥ C ‖f‖2L2 = 〈f〉2I |I|+∑
J⊂I

∣∣∣f̂(I)
∣∣∣
2

cannot hold without further assumptions on f . For instance, if f has mean 0 then

1KXf = 0. One may also restrict attention to non-negative functions in which case the mean would

not be zero. However,
∑

J⊂I

∣∣∣f̂(I)
∣∣∣
2

may still be arbitrarily large compared to 〈f〉2I |I| so that we would

still not obtain a bound of the form ‖1KXf‖2L2 ≥ C ‖f‖2L2 .
One way to overcome this is to ask for a restriction on the oscillations of f . For example, by

Poincaré-Wirtinger we have that:

‖f − 〈f〉I 1I‖L2(I) ≤
|I|
2π

∥∥f ′
∥∥
L2(I)

.

So now if we suppose that the norm of the derivative is controlled relative to the norm of the function:

∥∥f ′
∥∥
L2(I)

≤ η
2π ‖f‖L2(I)

|I| , 0 ≤ η < 1,

then we will have that:

‖f‖L2(I) ≤ ‖f − 〈f〉I 1I‖L2(I) + |I| 12 |〈f〉I |

≤ η ‖f‖L2(I) + |I| 12 |〈f〉I | ,
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which upon rearrangement will give

|I| 〈f〉2I ≥ (1− η)2 ‖f‖2L2(I)

One can replace the Poincaré-Wirtinger inequality by versions where one tests the Lp norm of the
derivative and the L2 norm of the function.

We now turn to computing a lower bound of
‖1KX1I‖

2
L2

|I| . First, X1I is supported in I so that

1KX1I = 0 if K ⊂ R± and I ⊂ R∓. We will therefore assume that I,K ⊂ R+, the case I,K ⊂ R−

then follows from the fact that X is “odd”, thus 1KX1I = −1−KX1−I .
Let K ∧ I denote the minimal dyadic interval that contains both K and I. Note that I,K 6= K∧ I,

so that I,K ⊂ (K ∧ I)±. Moreover, if I ⊂ (K ∧ I)± then K ⊂ (K ∧ I)∓. Let us now split the identity
(2.5) into three parts

1KX1I

|I| =
∑

L)I

hL(I)1KXhL

=


 ∑

L)K∧I

+
∑

L=K∧I

+
∑

K∧I)L)I


hL(I)1KXhL

=


 ∑

L)K∧I

hL(I)XhL(K)


1K + hK∧I(I)1KXhK∧I +

∑

K∧I)L)I

hL(I)1KXhL(4.1)

since we have that 1KXhL takes a constant value as described above when L ) K ∧ I and evaluating
the sums over the regions in question.

Let us now notice that L ∩K = ∅ when I ( L ( K ∧ I. Indeed, suppose this were not the case.
It is not possible that L ⊂ K since I ⊂ L ⊂ K, which contradicts that I ∩ K = ∅. Thus we have
that I,K ⊂ L and hence K ∧ I ⊂ L, contradicting that L ( K ∧ I, and so L ∩K = ∅ as claimed. It
follows that the third term in (4.1) vanishes so that

1KX1I

|I| =


 ∑

L)K∧I

hL(I)XhL(K)


1K + hK∧I(I)1KXhK∧I

=






 ∑

L)K∧I

hL(I)XhL(K)


1K + ε(K)

hK∧I(I)hK√
2

if K ∧ I = K̂

[ ∑

L⊃K∧I

hL(I)XhL(K)

]
1K if K ∧ I ) K̂

which follows from the properties of 1KXhL given above.
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Thus, we have that:

‖1KX1I‖2L2

|I| =





|I| |K|

∣∣∣∣∣∣
∑

L)K∧I

hL(I)XhL(K)

∣∣∣∣∣∣

2

+
|I|

2 |K ∧ I| if K ∧ I = K̂

|I| |K|
∣∣∣∣∣
∑

L⊃K∧I

hL(I)XhL(K)

∣∣∣∣∣

2

if K ∧ I ) K̂.

Remark. At this stage, we can observe that, when K ∧ I ( K̂,

‖1KX1I‖2L2

|I| ≤ 1

4
.

Indeed, we have that

‖1KX1I‖2L2

|I| ≤ |I| |K|


 ∑

L)K∧I

|hL(I)| |XhL(K)|




2

= |I| |K|


 ∑

L)K∧I

1√
|L|

1√
|L|




2

= |I| |K|


 ∑

L)K∧I

1

|L|




2

=
|I| |K|
|K ∧ I|2

≤ 1

4
.

Here the last inequality follows since I,K ( K ∧ I, so |I| , |K| ≤ 1
2 |K ∧ I|.

If K ∧ I = K̂, there is an extra term and we get
|I|

2|K ∧ I| ≤
1

4
from which we deduce that

‖1KX1I‖2L2

|I| ≤ 1

2
.

Note that, if K ∧ I = K̂, then we write K = K− ∪ K+ so that K± ∧ I = K̂ and 1KX1I =
1K−

X1I + 1K+X1I is an orthogonal decomposition.

To give an estimation of
∣∣∑

L⊃K∧I hL(I)XhL(K)
∣∣2 when K ∧ I ) K̂, we use the following lemma.

Lemma 4.1. Let L(0) = L := K ∧ I and for k ≥ 1, L(k) = L̂(k−1). Let ε(K) be equal to 1 if K ⊂ L+

and −1 if K ⊂ L−. Then, we have

(i) hL(I)XhL(K) =





−1
|L| if K ⊂ (L+)+
1
|L| if K ⊂ (L+)−,
−1
|L| if K ⊂ (L−)+,
1
|L| if K ⊂ (L−)−,

(ii) hL(1)(I)XhL(1)(K) = ε(K)
2|L| ,
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(iii) and for k ≥ 2, hL(k)(I)XhL(k)(K) =

{
1

2k|L|
if L(k−2) = L(k−1)

+

− 1
2k|L|

if L(k−2) = L(k−1)
− .

Proof. It is enough to deal with the case K ⊂ L+ (i.e. ε(K) = 1). Since I ∩ K = ∅ and by the
definition of L, we have I ⊂ L− and hL(I) =

−1√
|L|

. Now, there are only two cases to consider for K:

either K ⊂ (L+)+ and XhL(K) = 1√
|L|

or K ⊂ (L+)− and XhL(K) = −1√
|L|

. It follows that

hL(I)XhL(K) =

{
− 1

|L| if K ⊂ (L+)+
1
|L| if K ⊂ (L+)−.

Suppose first that L = L(1)
+ . Then, we have I ⊂ L = L(1)

+ and K ⊂ L+ = (L(1)
+ )+ which implies that

hL(1)(I)XhL(1)(K) = 1
|L(1)|

with hL(1)(I) = XhL(1)(K) = 1√
|L(1)|

. On the other hand, if L = L(1)
−

then we have I ⊂ L = L(1)
− and K ⊂ L+ = (L(1)

− )+. We still obtain that hL(1)(I)XhL(1)(K) = 1
|L(1)|

with hL(1)(I) = XhL(1)(K) = −1√
|L(1)|

.

Let us prove property (iii) for k ≥ 2. Suppose first that L(k−2) = L(k−1)
+ . When L(k−1) = L(k)

+ , we

have that I ⊂ L(k−1) = L(k)
+ andK ⊂ L(k−1)

+ = (L(k)
+ )+ which implies that hL(k)(I)XhL(k)(K) = 1

|L(k)|

with hL(k)(I) = XhL(k)(K) = 1√
|L(k)|

. And, when L(k−1) = L(k)
− , we have that I ⊂ L(k−1) = L(k)

− and

K ⊂ L(k−1)
+ = (L(k)

− )+ which implies that hL(k)(I)XhL(k)(K) = 1
|L(k)|

with hL(k)(I) = XhL(k)(K) =

−1√
|L(k)|

. One can easily deduce the case L(k−2) = L(k−1)
− which leads to hL(k)(I)XhL(k)(K) = −1

|L(k)|
.

�

Let us now prove the first sub-case.

Lemma 4.2. We suppose that K, I ⊂ R+, K ∩ I = ∅. Let L = K ∧ I and assume that L = [0, 2N )
for some N ∈ Z.

(1) Assume that I ⊂ L+ while K ( L−.

(a) If K ⊂ L−− then 1KX1I = 0 thus
‖1KX1I‖2

|I| = 0

(b) If K ⊂ L−+ then 1KX1I = −2|I|
|L| 1K thus

‖1KX1I‖2
|I| = 4

|I||K|
|L|2 .

(2) Assume that I ⊂ L− while K ⊂ L+±. Then 1KX1I = ± |I|
|L|1Kthus

‖1KX1I‖2
|I| =

|I||K|
|L|2 .

Proof. Now let again L(k) be defined by L(0) = L and L(k+1) = L̂(k). Note that, as L = [0, 2N
0
),

L(k) = L(k+1)
− . As K̂ = L± 6= L, we want to estimate

1

|I|1KX1I =

(∑

L⊃L

hL(I)XhL(K)

)
1K =


∑

k≥0

hL(k)(I)XhL(k)(K)


1K .
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Assume first that K ⊂ L−− and I ⊂ L+ . Then, according to the previous lemma,

hL(0)(I)XhL(0)(K) =
1

|L| while hL(k)(I)XhL(k)(K) =
−1

2k|L|
for k ≥ 1. The result follows immediately.

Assume now that K ⊂ L−+ and I ⊂ L+ . Then, according to the previous lemma again,

hL(k)(I)XhL(k)(K) =
−1

2k|L|
for k ≥ 0. The result again follows immediately.

Let us now assume that K ⊂ L+± and I ⊂ L−. Then, according to the previous lemma,

hL(0)(I)XhL(0)(K) =
±1

|L|
while

hL(1)(I)XhL(1)(K) =
1

2|L| and hL(k)(I)XhL(k)(K) =
−1

2k|L| k ≥ 2

and the result again follows immediately. �

Now if I ⊂ D, there exists M0 such that I ⊂ [0, 2M0 ] but I 6⊂ [0, 2M0−1]. In the case I = [0, 2M0 ],
the previous lemma determines X1I on Ic. Otherwise I ⊂ [2M0−1, 2M0 ] and the previous lemma
determines H1I on [0, 2M0−1] and on [2M0 ,+∞).

It remains to consider the case K, I such that K ∩ I = ∅ and K, I ⊂ [2M0−1, 2M0 ]. We keep the

same notation: L = K ∧ I for the first common ancestor of K and I, L(0) = L and L(k) = L̂(k−1) for
k ≥ 1. We further write L∗ = [0, 2M0 ] the first common ancestor of K, I of the form [0, 2M ] so that

K ∧ I ⊂ L∗
+ Let k∗ be defined by L∗ = L(k∗). It follows that 2M0 = |L∗| = 2k

∗ |L| = 2k
∗ |K ∧ I|. Now

1

|I|1KX1I = 1K

∑

L⊃L

hL(I)XhL(K)

= 1K


∑

L)L∗

hL(I)XhL(K) +
∑

L⊂L⊂L∗

hL(I)XhL(K)




= 1K

∑

L⊂L⊂L∗

hL(I)XhL(K).

Indeed, if L = L̂∗ = L(k∗+1) then L(k∗−1) ⊂ L(k∗)
+ so that, according to Lemma 4.1,

hL(I)XhL(K) =
1

2k∗+1|L| .

On the other hand, if L = L(k) for k ≥ k∗ + 2, L(k−2) ⊂ L(k−1)
− so that

hL(I)XhL(K) = − 1

2k∗+1|L| .

Therefore,
∑

L)L∗

hL(I)XhL(K) = 0.
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We now distinguish 2 cases. First assume that L = L∗
+. Then

1

|I|1KX1I = 1K

(
hL∗

+
(I)XhL∗

+
(K) + hL∗(I)XhL∗(K)

)

Applying Lemma 4.1 we get

1

|I|1KX1I =





− 1
2|L|1K if I ⊂ L−,K ⊂ L++

3
2|L|1K if I ⊂ L−,K ⊂ L+−

− 3
2|L|1K if I ⊂ L+,K ⊂ L−+

1
2|L|1K if I ⊂ L−,K ⊂ L−−.

Let us now assume that L ( L∗
+. Then each L with L ⊂ L ⊂ L∗ is of the form L = L(k) with

0 ≤ k ≤ k∗ and for each such k, there is an εk = ±1 such that hL(I)XhL(K) =
εk

2k|L| . But then

∣∣∣∣
1

|I|1KX1I

∣∣∣∣ = 1K

∣∣∣∣∣
k∗∑

k=0

εk
2k|L|

∣∣∣∣∣ =
1K

|L|

(
1 +

k∗∑

k=1

ε0εk
2k

)

≥ 1K

|L|

(
1−

k∗∑

k=1

2−k

)
=

1K

|L|
|K ∧ I|
2M0

so that

‖1KX1I‖2L2

|I| ≥
( |K ∧ I|

2M0

)2 |I||K|
|L|2 .

We can now summarize the results of this section:

Theorem 4.3. Let η > 0. Let I,K ∈ D be such that I ⊂ R+ and let M0 be the smallest integer such

that I ⊂ 2M0 . Let f be such that supp f ⊂ I and |I|‖f ′‖L2 ≤ 2πη‖f‖L2 .

(i) If K ⊂ R− then 1KXf = 0
(ii) If K ⊂ [2M0+k, 2M0+k+1] then

‖1KXf‖2L2 ≥ (1− η)2
|I||K|

22(M0+k)
‖f‖2L2 .

(iii) If I ⊂ [2M0−1, 2M0 ] then

(a) If K ⊂ [0, 2M0−2] then 1KXf = 0
(b) If K ⊂ [2M0−2, 2M0−1] then

‖1KXf‖2L2 ≥ (1− η)2
|I||K|

22(M0−1)
‖f‖2L2 .

(c) K ⊂ [2M0−1, 2M0 ] and K ∩ I = ∅ then

‖1KXf‖2L2 ≥ (1− η)2
|I||K||K ∧ I|2

24M0
‖f‖2L2 .

In all of the above cases, no estimate of the form ‖1KXf‖2L2 ≥ C‖f‖2L2 can hold for all functions

f ∈ L2 with support in I.
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5. Third case: K ( I

For K ( I, we write write ε(K, I) = +1 if K ⊂ I+ and ε(K, I) = −1 if K ⊂ I−. According to
Lemma 2.1, 1KX1I = ε(K, I)1K , in particular, ‖1KX1I‖2L2 = |K|.

From equation (2.4) and Lemma 2.1 we get that

1KXf = 〈f〉I1KX1I +
∑

K(J⊂I

f̂(J)1KXhJ +
∑

J⊂K

f̂(J)1KXhJ

=


〈f〉Iε(K, I) +

∑

K̂(J⊂I

f̂(J)XhJ (K)


 1K +

ε(K)√
2
f̂(K̂)hK +

∑

J⊂K

f̂(J)XhJ .(5.1)

Let us denote by B the subspace span {XhJ , J ⊂ K} and PB the orthogonal projection onto B.

Observe that for J ⊂ K, 〈1KXf,XhJ〉 = 〈Xf,XhJ〉 = f̂(J). Therefore

(5.2) PB(1KXf) =
∑

J⊂K

〈1KXf,XhJ〉XhJ =
∑

J⊂K

f̂(J)XhJ .

Moreover, the hJ ’s being orthonormal and X being unitary,

(5.3) ‖PB(1KXf)‖2L2 =
∑

J⊂K

|f̂(J)|2.

On the other hand, from (5.1) and (5.2), it follows that

(I − PB)(1KXf) =


〈f〉Iε(K, I) +

∑

K̂(J⊂I

f̂(J)XhJ (K)


 1K +

ε(K)√
2
f̂(K̂)hK .

But hK and 1K are orthogonal so that

(5.4) ‖(I − PB)(1KXf)‖2L2 =


〈f〉Iε(K, I) +

∑

K̂(J⊂I

f̂(J)
ε(K,J)√

|J |



2

|K|+

∣∣∣f̂(K̂)
∣∣∣
2

2
.

We can now prove the following:

Theorem 5.1. Let I,K ∈ D be such that K ⊂ I. Then, for every f ∈ L2(R) with supp f ⊂ I,

(5.5) ‖1KXf‖2L2 =


〈f〉Iε(K, I) +

∑

K̂(J⊂I

f̂(J)
ε(K,J)√

|J |



2

|K|+

∣∣∣f̂(K̂)
∣∣∣
2

2
+
∑

J⊂K

∣∣∣f̂(J)
∣∣∣
2
.

In particular,

(i) for every f ∈ L2(R), ‖1KXf‖2L2 ≥ ‖1Kf‖2L2 and ‖1KXf‖2L2 ≥ 1

2
‖1K̂f‖2L2 .

(ii) If I ) K̂, there exists no constant C = C(K, I) such that, for every f ∈ L2(R) with supp f ⊂
I, ‖1KXf‖L2 ≥ C‖f‖L2 .

Proof. As ‖1KXf‖2L2 = ‖PB(1KXf)‖2L2 + ‖(I − PB)(1KXf)‖2L2 , (5.5) is a direct combination of
(5.3) and (5.4). The inequalities (i) are direct consequences of (5.5).
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For the last part of the proposition, let f = −ε(K, I)√
|I|

1I + hI . Then f ∈ L2(R) is supported in

I and f̂(J) = δI,J if J ⊂ I and 〈f〉I = −ε(K, I)√
|I|

. Further (5.5) shows that ‖1KXf‖L2 = 0 while

‖f‖L2 =
√
2. �

6. Back to the continuous case

Let I, J be two disjoint closed intervals and write cI for the center of I and d := dist(I, J) > 0 for
the distance between I, J . Let f ∈ L2(R) with support in I. Then, for x ∈ J ,

Hf(x) =
1

π

∫

I

f(y)

x− y
dy.

Let us start with the following probably well-known lemma for which we did not find a reference
(though slightly less precise versions can be found in any book dealing with the Hilbert transform).

Lemma 6.1. Let I,K be two disjoint closed intervals such that dist(I,K) > |I|. Let ψ ∈ L2(R)
supported in I and such that 〈ψ〉I = 0. Then

(6.1)
‖Hψ‖L2(K)

|K|1/2 ≤ 1

10

|I|2
dist(I,K)3/2(dist(I,K) + |J |)1/2

‖ψ‖L2(I)

|I|1/2 .

The result is slightly more precise, but we will only use it for dist(I,K) ≫ |I|.

Proof. Write d = dist(I,K). Since 〈ψ〉I = 0, for x ∈ K,

Hψ(x) =
1

π

∫

I

(
1

x− y
− 1

x− cI

)
ψ(y)dy

=
1

π

∫

I

y − cI
(x− y)(x− cI)

ψ(y)dy.

It follows that

|Hψ(x)| ≤ 1

π

1

d|x− cI |

∫

I
|y − cI ||ψ(y)|dy ≤ 1

π

1

d|x− cI |

(∫

I
|y − cI |2 dy

)1/2

‖ψ‖L2(I)

=
1

π

1

d|x− cI |

( |I|3
24

)1/2

‖ψ‖L2(I)

with Cauchy-Schwarz. From this, we deduce that

‖Hψ‖2L2(K) ≤ 1

π2
|I|3
24d2

∫

K

1

(x− cI)2
dx ‖ψ‖2L2(I)

≤ 1

π2
|I|3
12d2

(
1

d+ |I|/2 − 1

d+ |K|+ |I|/2

)
‖ψ‖2L2(I)

=
1

12π2
|I|3|K|

d2(d+ |I|/2)(d + |K|+ |I|/2) ‖ψ‖
2
L2(I).(6.2)

The estimate (6.1) immediately follow. �
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Remark 6.2. Note that one also obtains

|Hψ(x)| ≤ 1

π

1

d|x− cI |

∫

I
|y − cI ||ψ(y)|dy ≤ 1

2π

|I|
d|x− cI |

‖ψ‖L1(I).

From this one obtains

‖Hψ‖L2(K)

|K|1/2 ≤ 1

4

|I|2
dist(I,K)3/2(dist(I,K) + |J |)1/2

‖ψ‖L1(I)

|I| .

Applying Cauchy-Schwarz, one retrieves (6.1) with a slightly worse numerical constant.

Let us now examine the opposite situation:

Lemma 6.3. Let I,K be two disjoint closed intervals such that dist(I,K) > max(|I|, |K|). Then

(6.3)
‖H1I‖L2(K)

|K|1/2 ≥ 1

5

|I|
dist(I,K)1/2(dist(I,K) + |K|)1/2 .

Proof. Write d = dist(I,K). For x ∈ K

|H1I(x)| =
1

π

∣∣∣∣
∫

I

dy

x− y

∣∣∣∣ =
1

π
ln

dist(x, I) + |I|
dist(x, I)

=
1

π
ln

(
1 +

|I|
dist(x, I)

)

≥ ln 2

π

|I|
dist(x, I)

≥ 1

5

|I|
dist(x, I)

since dist(x, I) ≥ d ≥ |I| for x ∈ K. But then

‖H1‖2L2(K) =

( |I|
5

)2 ∫ d+|K|

d

dx

x2
=

( |I|
5

)2 |K|
d(d+ |K|)

as claimed. �

From this, we deduce the following simple result which shows that the Hilbert transform of a
function f supported in I is bounded below by the mean of f on I far away from I, provided this
mean is non-zero.

Proposition 6.4. Let I,K be two disjoint closed intervals. Assume that dist(I,K) > |I| and set

λ(I,K) =
|I|

2 dist(I,K)
and µ(I,K) =

|I|
dist(I,K)1/2(dist(I,K) + |K|)1/2 .

Let f ∈ L2(R) be supported in I and such that 〈f〉I 6= 0.

(6.4)
‖Hf‖L2(K)

|K|1/2 ≥ µ(I,K)

5

[
(
1− λ(I,K)

)
|〈f〉I | − λ(I,K)

‖f‖L2(I)

|I|1/2

]
,

in particular, if dist(I,K) ≥
|I|1/2‖f‖L2(I)

2|〈f〉I |
, then

‖Hf‖L2(K)

|K|1/2 ≥ µ(I,K)

10
|〈f〉I |.
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Further, if for some 0 ≤ η <
dist(I, J)

dist(I, J) + |I| , ‖f
′‖L2(I) ≤ η

2π‖f‖L2(I)

|I| then

(6.5)
‖Hf‖L2(K)

|K|1/2 ≥ µ(I,K)

5

(
1−

(
1 + λ(I,K)

)
η
)‖f‖L2(I)

|I|1/2 .

Proof. Set d = dist(I,K). Let us write f = ϕ + ψ where ϕ = 〈f〉I1I and ψ = f − 〈f〉I1I so that
〈ψ〉I = 0. Then

(6.6) ‖Hf‖L2(K) ≥ ‖Hϕ‖L2(K) − ‖Hψ‖L2(K).

Then, using (6.3) for the first term and (6.1) for the second one, we get

‖Hf‖L2(K)

|K|1/2 ≥ 1

5

|I|
d1/2(d+ |K|)1/2 |〈f〉I | −

1

10

|I|2
d3/2(d+ |K|)1/2

‖ψ‖L2(I)

|I|1/2

≥ 1

5

|I|
d1/2(d+ |K|)1/2

(
|〈f〉I | −

1

2

|I|
d

‖ψ‖L2(I)

|I|1/2

)
.(6.7)

Then, as ‖ψ‖L2(I) = ‖f − 〈f〉I1I‖L2(I) ≤ ‖f‖L2(I) + 〈f〉I |I|1/2, (6.4) follows.

The condition dist(I,K) ≥
|I|3/2‖f‖L2(I)

2
∣∣∫

I f(t)dt
∣∣ ensures that λ ≤ 1/4 (Cauchy-Schwarz) and that

λ
‖f‖L2(I)

|I|1/2
≤ 1

4 |〈f〉I |.
Finally, using the Poincaré-Wirtinger Inequality, if we assume that for some 0 ≤ η < 1, ‖f ′‖L2(I) ≤

η
2π‖f‖L2(I)

|I| then |I|1/2|〈f〉I | ≥ (1− η)‖f‖L2(I) and

‖ψ‖L2(I) = ‖f − 〈f〉I1I‖L2(I) ≤ η‖f‖L2(I)

from which (6.5) follows. �

An alternative to regularity would be to use the BMO-norm defined by

‖f‖BMO = sup
J⊂D

1

|J |

∫

J
|f(x)− 〈f〉J |dx.

Recall that the John-Nirenberg [JN] inequality states that

|{x ∈ I : |f(x)− 〈f〉I | > α}| ≤ C1|I| exp
(
− C2

‖f‖BMO

α

)

we get

‖f − 〈f〉I1I‖2L2(I) = 2

∫ +∞

0
α|{x ∈ I : |f(x)− 〈f〉I | > α}|dα

≤ 2C1

C2
2

‖f‖2BMO|I|.(6.8)

The optimal constant C2 = 2/e has been given by Korenovskii [Ko1] (see also [Ko2]) and the op-

timal C1 =
1

2
e4/e has been given by Lerner [Le]. In particular, 2C1C

−2
2 ≤ 9 and we simplify the
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above inequality to ‖f − 〈f〉I1I‖L2(I) ≤ 3‖f‖BMO|I|1/2. But, from the triangular inequality, we get

‖f‖L2(I) ≤ (|〈f〉I |+ 3‖f‖BMO)|I|1/2. In particular, if ‖f‖BMO <
1

3

‖f‖L2(I)

|I|1/2 then

|〈f〉I | ≥
‖f‖L2(I)

|I|1/2 − 3‖f‖BMO > 0.

Further, if we use (6.8) with (6.7) we obtain the following:

Corollary 6.5. Let I,K be two disjoint closed intervals. Set

λ(I,K) =
|I|

2 dist(I,K)
and µ(I,K) =

|I|
dist(I,K)1/2(dist(I,K) + |K|)1/2 .

Let f ∈ L2(R) be supported in I and such that 0 < ‖f‖BMO <
1

3

‖f‖L2(I)

|I|1/2 . Then

(6.9)
‖Hf‖L2(K)

|K|1/2 ≥ µ(I,K)

5

(
|〈f〉I | − 3λ(I,K) ‖f‖BMO

)
.

and, if dist(I,K) > 2

(
‖f‖L2(I)

3|I|1/2‖f‖BMO
− 1

)
|I|,

(6.10)
‖Hf‖L2(K)

|K|1/2 ≥ µ(I,K)

15

(
1

3

‖f‖L2(I)

|I|1/2 −
(
1 + λ(I,K)

)
‖f‖BMO

)
.

Remark 6.6. The condition on the BMO-norm and on dist(I,K) are here to ensure that the right
hand-side of (6.9)-(6.10) are non-negative.

Remark 6.7. When f is non-negative, things are actually easier: let k be a non-negative function and
let K be the convolution operator with k : Kf(y) =

∫
f(x)k(y−x)dx. Then, for f with supp f ⊂ I,

f ≥ 0, Cauchy-Schwarz and Fubini give

|J |1/2
(∫

J
|Kf(y)|2 dy

)1/2

≥
∫

J
Kf(y)dy =

∫

I

∫

J
f(x)k(y − x)dx dy

≥ inf
x∈I

∫

J
k(x− y)dy

∫

I
f(x)dx.

For instance, for the Hilbert transform, if I and J are disjoint, we can take k(t) = 1/t from which

we get inf
x∈I

∫

J
k(x− y)dy ≥ |I|

dist(I,K)
. One then gets

‖Hf‖L2(J) ≥
|I|

|J |1/2 dist(I,K)

∫

I
f(x)dx.

Finally, for non-negative smooth functions, there is a nice lower estimate in [LS, Lemma 3]:
∫

I
f(x)dx ≥ c1|I|1/2 exp

(
−c2

‖f ′‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I).

However, for this proof, non-negativity is essential and this inequality is false for functions that
change sign.
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In the end, we obtain:

Proposition 6.8. Let f be a non-negative C1-function supported in I. Then

‖Hf‖L2(J) ≥
|I|3/2

|J |1/2 dist(I,K)
exp

(
−c2

‖f ′‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I).

Finally, let us show that the result can not really be improved as Lemma 6.1 gives the right order
of growth of the Hilbert transform of functions with vanishing mean.

Lemma 6.9. Let K be a closed interval and let I be a dyadic intervals, disjoint from K. Then

(6.11)
‖HhI‖L2(K)

|K|1/2 ≥ 1

5

|I|3/2(dist(I,K) + |K|)
(
dist(I,K) + |I|/2

)3/2(
dist(I,K) + |I|/2 + |K|

)3/2 .

Proof. Write d = dist(I,K) and ℓ = |I|/2 and h̃I = |I|1/2hI = 1I+ − 1I− . For sake of simplicity, we
will assume that K is on the right of I, that is, if x ∈ K then x > rI := max I. We can then write
x = rI + d+ t with t > 0 while y ∈ I+ (resp. y ∈ I−) can be written y = rI − s (resp. y = rI − ℓ− s)
with s ∈ [0, ℓ). Therefore

Hh̃I(x) = Hh̃I(rI + d+ t) =
1

π

∫ ℓ

0

(
1

d+ t+ s
− 1

d+ ℓ+ t+ s

)
ds

=
1

π

∫ ℓ

0

ℓ

(d+ t+ s)(d+ ℓ+ t+ s)
ds ≥ 1

π

∫ ℓ

0

ℓ

(d+ t+ ℓ/2 + s)2
ds

since (d+ t+ s)(d+ ℓ+ t+ s) = (d+ t+ ℓ/2 + s)2 − ℓ2/4. Therefore

Hh̃I(x) ≥ 1

π

[
ℓ

d+ t+ ℓ/2
− ℓ

d+ t+ 3ℓ/2

]
=

1

π

ℓ2

(d+ t+ ℓ/2)(d + t+ 3ℓ/2)
.

≥ 1

π

ℓ2

(d+ t+ ℓ)2
.

since (d+ t+ ℓ/2)(d + t+ 3ℓ/2) = (d+ t+ ℓ)2 − ℓ2/4.1

Finally,

∥∥∥Hh̃I(x)
∥∥∥
2

L2(K)
=

∫ |J |

0
|Hh̃I(rI + d+ t)|2 dt ≥

∫ |K|

0

1

π2
ℓ4

(d+ t+ ℓ)4
dt

=
3ℓ4

π2

(
1

(d+ ℓ)3
− 1

(d+ |K|+ ℓ)3

)

=
3ℓ4

π2
|K|
(
(d+ |K|+ ℓ)2 + (d+ |K|+ ℓ)(d+ |K|) + (d+ |K|)2

)

(d+ ℓ)3(d+ |K|+ ℓ)3

≥ 9

π2
ℓ4|K|(d+ |K|)2

(d+ ℓ)3(d+ |K|+ ℓ)3

from which the first part of the lemma follows. �

1Note that HhI does not change sign on K so that the HhI and HhI′ are not orthogonal in L2(K) if K is disjoint
from I, I ′.
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Note also that these bounds are almost tight since, with the notations of the previous proof

HhI(x) ≤
1

π

∫ 2ℓ

0

ℓ

(d+ t+ s)2
ds =

2

π

ℓ2

(d+ t)(d+ t+ 2ℓ)
≤ 2

π

ℓ2

(d+ t)2

thus
‖HhI(x)‖L2(K)

|K|1/2 ≤ 1

2π

|I|2
dist(I,K)

(
dist(I,K) + |K|

) .

This last inequality is a marginal improvement over (6.1).
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