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Introduction

The local volatility is an extension of the Black-Scholes constant volatility model [START_REF] Black | The pricing of options and corporate liabilities[END_REF], it permits to explain the volatility of the shares observed in markets. It assumes the volatility parameter is a deterministic function of both underlying asset price and time. Dupire [START_REF] Dupire | Pricing with smile[END_REF] established that the local volatility function can be uniquely derived from European Option prices given the existence of European options with all strikes and maturities.

In this work we propose to solve calibration problem using the modified Tikhonov regularization proposed in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF][START_REF] Lagnado R | Technique for calibrating Derivative Security pricing models :Numerical solution of an inverse problem[END_REF]. the novelty of the present paper stands in the use of the Morozov's Discrepancy Principle to overcome the tuning of the regularization parameter. The problem is stated as an inequality-constrained minimization problem, an uzawa procedure is used to replace it by a sequence of unconstrained problems dealt with in the modified Thikonov regularization procedure in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF].

In section 2 of the abstract, we present the mathematical formulation of the calibration problem. In section 3, we propose a method to determine the regularized local volatility. Finally, in section 4 implementation issues and numerical results are given.

Description of the calibration problem

The local volatility model, as defined in Lagnado and Osher [START_REF] Lagnado R | Technique for calibrating Derivative Security pricing models :Numerical solution of an inverse problem[END_REF], assumes that the prices S of an underlying asset follows a general diffusion process :

dS S = µdt + σ(S, t)dW t [1]
where µ is the risk-neutral asset return rate, W t is a standard Brownian motion process, and the local volatility σ is a deterministic function that may depend on both the asset price S and the time. Let V (S 0 , 0, K, T, σ(S, t)) denote the theoretical price of an European option with strike K and maturity T.

The calibration of the local volatility function to the market is to find a local volatility function σ(S, t) such that the theoretical option price computed using this volatility function is between the corresponding bid and ask prices for any option, i.e.,

V b ij ≤ V (S 0 , 0, K ij , T j , σ(S, T )) ≤ V a ij
V a ij and V b ij denote the bid and ask prices respectively for an option with strike and maturity. This problem is usually solved by solving the following optimization problem :

arg min σ { V (S 0 , 0, K ij , T j , σ(S, T )) -V ij 2 2 } [2]
where V ij denote the market price of option. The theoretical option price V (S 0 , 0, K ij , T j , σ(S, T )) satisfies the following Logarithmic Dupire equation :

∂U ∂T (y, T ) = -qU (y, T ) -(r -q + 1 2 σ 2 (y, T )) ∂U ∂y (y, T ) + 1 2 σ 2 (y, T ) ∂ 2 U ∂y 2 (y, T ) [3]
where r is the risk-free continuously compounded interest rate and q is the continuous dividend yield of the asset.

With the boundary condition follows :

U (y, t 0 ) = max(S 0 -e y , 0) f or y min ≤ y ≤ y max ; [4] lim y→-∞ U (y, T ) = S 0 e -q(T -t0) f or t 0 ≤ T ≤ T max ; [5] lim y→+∞ U (y, T ) = 0 f or t 0 ≤ T. [6]
As for most inverse problems, it is ill-posed in the sense that small changes in the option prices may lead to big changes in the volatility function. When noises are included in option prices, which is usually the case in reality, the reconstructed volatility function will be unstable and blow up. In order to overcome the ill-posedness nature of the calibration problem, we propose a Tikhonov regularization in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF]. We seek for σ solution of minimization problem

arg min σ {λ V (S 0 , 0, K ij , T j , σ(S, T )) -V ij 2 2 + ∇σ 2 2 } [7]

Alternative strategy for selection Tikhonov regularization parameter

In order to avoid an expensive calculation of the regularization parameter in problem 7as considered in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF], we use a relaxed version of Morozov's discrepancy principle. Problem 7 may be understood as a constrained minimization problem, say

arg min σ ∇σ 2 2 [8]
subject to the relaxed constraint (see [START_REF] Kirsh | An Introduction to the Mathematical Theory of Inverse Problems[END_REF]),

V (S 0 , 0, K ij , T j , σ(S, T )) -V ij 2 = τ δ [9]
where the parameter 0 < τ < 1 weighs the available information on the noise δ.

The constraint 9 states that the regularized data satisfies

V (S 0 , 0, K ij , T j , σ(S, T )) -V ij 2 < δ
which leads to an inequality-constrained minimization problem. The uzawa method is a way to replace a constrained minimization problem by a sequence of unconstrained ones. Since these unconstrained problems have been addressed in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF], the method seems to be a natural choice to introduce a significant seep-up in the determination of the regularized volatility.

Algorithm and Numerical Result

We give here the algorithm to reconstruct the local volatility function.

Algorithm 1 Uzawa algorithm Require: S ∈ [S min , S max ], t ∈ [0, T max ],
Where T max is the longest time expiration. Require: λ 0 , σ 0 , tol, θ > 0, k = 0, 1. Search for σ k+1 solution of problem :

arg min σ { ∇σ 2 2 + λ k ( V (S 0 , 0, K ij , T j , σ) -V ij 2 2 -δ)} 2.
Compute the updated value of constraint :

g k := ( V (S 0 , 0, K ij , T j , σ k+1 ) - V ij 2 2 -δ) 3. λ k+1 = λ k -θg k 4.
while g k ≥ tol do 5. k=k+1, return to step 1 end while return σ k In step 2 the unconstrained minimization problem is the one addressed in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF]. We recall briefly the procedure adopted there, with the lagrangian

L(σ, λ) = ∇σ 2 2 + λ( V (S 0 , 0, K ij , T j , σ) -V ij 2 2 -δ) Algorithm 2 Compute min σ L(σ, λ) = 0 Require: S ∈ [S min , S max ], t ∈ [0, T max ],
Where T max is the longest time expiration. for m = 0 to M do for n = 0 to N do 1. Solving the Dupire PDE using the finite-difference method to compute the :

U (y, T, σ 0 (S m , t n )) ∂U ∂T (y, T ) = -qU (y, T )-(r -q + 1 2 σ 2 (y, T )) ∂U ∂y (y, T )+ 1 2 σ 2 (y, T ) ∂ 2 U ∂y 2 (y, T )
2. Using the finite-difference method to calculate ∂U (y,t,σ) ∂σ

L(σ) ∂U ∂σ = σ(y, T )( ∂ 2 U ∂y 2 - ∂U ∂y )
end for end for 3. Calculation of :

W 1 ( σ) = N1 i=1 M1 j=1 ∂U ∂σ (y j , T i , σ)(U (y j , T i , σ) -U ij ).

Solution of parabolic equation :

∂ σ ∂θ = ∂ 2 σ ∂S 2 + ∂ 2 σ ∂t 2 -λ k W 1 (σ) return σ and W 1 ( σ)
Numerical test : To test this Algorithm we choose the example used in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF]. We consider the true volatility function σ true (S) = 0.2 + 0.1e -0.2S , we use this function for generate a set of option prices U ij by solving Dupire equation3, the interest rate r = 0.05 we consider T max = 10, and the strike K ∈ [50, 160]. For λ 0 = 30 and θ = 1/2, we illustrate the different results of the proposed Algorithm : At iteration 8, the error σ 8 -σ true = 1.0430e -005, the λ * = 35 and in [START_REF] Aboulaich R | Calibration of Volatility : Coupling between alternative regularization strategy and Dupire's Equation[END_REF] we obtain after 12 iteration with λ fixed at 30 an error σ k -σ true = 0.215 10 -4 .

Conclusion :

The numerical experiment prove the acceleration convergence. Further convergence history of the algorithm will be discussed relatively to the expected behavior.

Tableau 1 .

 1 g i 0.6882 0.2094 0.0745 0.0193 0.0054 0.0016 5.0e-004 8.00e-005 The results of local volatility with λ 0 = 30
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