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Abstract
We introduce SoundGuides, a user adaptable tool for au-
ditory feedback on movement. The system is based on a
interactive machine learning approach, where both ges-
tures and sounds are first conjointly designed and conjointly
learned by the system. The system can then automatically
adapt the auditory feedback to any new user, taking into
account the particular way each user performs a given ges-
ture. SoundGuides is suitable for the design of continuous
auditory feedback aimed at guiding users’ movements and
helping them to perform a specific movement consistently
over time. Applications span from movement-based in-
teraction techniques to auditory-guided rehabilitation. We
first describe our system and report a study that demon-
strates a ‘stabilizing effect’ of our adaptive auditory feed-
back method.
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Introduction
Movement is central in so called embodied interaction tech-
niques, which interest is growing in Human-Computer Inter-
action (HCI). As previously reported in the HCI community,
the use of movement-based interfaces often requires learn-
ing, memorization and expertise [1, 2, 4]. Therefore, when
designing interaction with movement-based interfaces, one
must carefully consider how users adapt or learn to perform
new gestures. Designing continuous feedback informing
users in real-time on the quality of their performance has
the potential to support such a learning process. We focus
here on continuous auditory feedback, which is particularly
suitable for interaction paradigms where the feedback can-
not be given visually. Moreover, several works point our the
potential of auditory continuous feedback for either learning
or improving gesture performance [6, 9, 18, 20].

Nonetheless, continuous and in particular gesture-synchronized
feedback have been only partially studied in the HCI com-
munity. First, programming such continuous feedback re-
mains generally challenging, especially when relationships
between specific — and potentially complex — gestures
and customized auditory feedback are sought. Second,
beyond simplistic movement-sound relationships, users of-
ten have difficulties to comprehend the auditory feedback,
which generally result in difficult user adaptation.

In this paper, we describe a system allowing designers to
easily synchronize movement parameters to sound syn-
thesis, without any programming. Most importantly, the
proposed approach, we call SoundGuides, allows for di-
rectly adapting the auditory feedback to the idiosyncrasies
of a new user performing the gesture. We describe in this
note the SoundGuides system, available as open-software,
along with its implementation with a common movement
tracking system. We also report a study that highlights a
‘stabilizing effect’ of our adaptive auditory feedback method.

Related Work
Gesture Learning with Visual Feedback
As tangible and gestural interfaces become ubiquitous,
users must constantly adapt to new interaction techniques
that require learning and mastering new gestures. Although
studies support that user-defined gestures are easier to
recall and execute [15, 24], they can be challenging due
to misconceptions of the recognizer’s abilities [17]. For
robust recognition, predefined gesture sets are the most
widespread, which led to the development of a thread of
HCI concerned with providing users with novel means to
learn such gesture sets.

Several methods use onscreen visual display to guide ges-
ture interaction. Octopocus is a dynamic guide combining
feedforward and feedback mechanism for helping users to
“learn, execute and remember gesture sets” [4]. Dynamic
guides significantly reduce the input time with surface ges-
tures or strokes compared to help menus and hierarchical
marking menus [2, 4].

Most approaches focus on multi-touch gestures on two-
dimensional surfaces devices where visual feedback can be
co-located and situated. We consider in this note the case
of three-dimensional mid-air gestures that have become
essential in full-body interaction, for example with large dis-
plays [16]. In this case, situated visual feedback is difficult
to implement and might add a heavy cognitive load. As an
alternative, we investigate the use of sound as a feedback
modality, and propose to study how continuous auditory
feedback can support gesture performance.

Motor Learning with Auditory Feedback
While vision has long been the primary feedback modality
in motor control studies, a recent thread of sensori-motor
learning research investigates audition as an extrinsic feed-



back modality. Auditory perception has a lower cognitive
load and faster response than visual feedback [3], yet it
can carry rich information content. Using interactive audi-
tory feedback for movement learning has many applications
such as HCI [18], motor rehabilitation [20], or sport where it
aims to improve performance and accuracy [9].
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Figure 1: Principle of
SoundGuides: (1) Designers
elaborate a set of prototype
gestures with customized
synchronous sound; (2) end users
record their own gestures so that
the system adapts the auditory
feedback.

According to Anderson et al. [1], learnability involves two
factors: the cognitive mapping between gestures and ac-
tions (associative learning), and the ability to perform a ges-
ture. Because it is already well-known that auditory feed-
back can help associative learning [14], in this paper we
focus on the potential of auditory feedback for improving the
performance of arbitrary gestures.

Often, direct mapping strategies are used for sonifying
physical quantities. Reviewing 179 publications related
to motion sonification, Dubus et al. [8] highlight that direct
mapping strategies and simple sound synthesis prevail —
many works use pure tones varying in pitch, amplitude and
panning, often directly driven by position or velocity. How-
ever, as noted by Sigrist et al. [23], a major drawback of
direct sonification is the difficulty of specifying the ‘target’
movements in high expertise applications such as sport.
Moreover, the use of basic sound synthesis can be ineffec-
tive in mid- to long-term learning tasks: practicing with un-
pleasant sound feedback can even degrade performance.
We propose to use rich sound textures with a focus on tim-
bral variations. Our system is flexible enough to allow de-
signers and users to easily customize the sounds.

While most approaches to movement auditory feedback
use hard-coded mapping strategies, recent research in HCI
and New Interfaces for Musical Expression (NIME) address
end-user design of mapping strategies through interactive
machine learning. Systems such as the Wekinator [10] al-
low for rapid prototyping of classifiers and regression mod-

els. The SoundGuides system is based on advanced tech-
niques that allow for on continuous recognition and for syn-
chronizing the temporal evolution of gestures in real-time
with sound synthesis [5, 7, 13]. SoundGuides also enables
fast adaptation to the user’s movement from a single exam-
ple.

SoundGuides
SoundGuides is a generic system for providing users with
a continuous sound feedback that adapts to their particular
way of performing a gesture. While most guides for gesture
learning rely upon a fixed feedback strategy, we propose a
flexible system that allows both designers and end users to
craft their own gestures.

Principle
SoundGuides implements a 2-steps process, implying first
the designer and then the user, as described in Figure 1.
From the designer’s perspective, the first step consists in
the elaboration of gestures, each of them being synchro-
nized to sound examples. We particularly encourage the
design of sounds which parameters (e.g. intensity, pitch,
timbre, etc.) evolves consistently with the gesture’s dynam-
ics. Designers can customize the feedback easily by up-
loading their own recordings to the system.

The sound synthesis, based on corpus-based concatena-
tive synthesis [21], has the ability to play and transform any
audio recording in real-time through intuitive control pa-
rameters. In particular, it is possible to selectively choose
which sound characteristics should be modified or kept
constant. The design of the sound examples can be real-
ized using CataRT’s graphical interface that make sound
design easy through the edition of 2D trajectories, as fully
described in [22]. Once the sound and gesture examples
have been chosen, we use an Interactive Machine Learn-



ing approach to learn the mapping between motion pa-
rameters and sound synthesis. For this, the designer typ-
ically records few examples of gestures while listening to
the sounds examples [12]. Importantly, this step can be re-
peated and allows for iterating over the design process.

gesture 1

gesture 2

gesture 3

gesture 4

Figure 2: Graphical representation
of the four gestures used in the
experiment. Black arrow indicate
hand position trajectory, thin grey
arrows indicate palm direction.

Step 2: User Adaptation
While the designer can provide a set of ‘prototype’ ges-
tures with their associated mapping and auditory feedback
strategy, SoundGuides allows end users to directly record
their own version of the prototype gestures. The system
can then adapt to the idiosyncrasies of their performance.
In particular, the machine learning model of the motion-
sound mapping is trained with the user demonstration of the
prototype gesture. This approach allow designers to specify
a gesture set, suited for a particular recognition system of
interaction technique, but it also gives users the possibility
to adapt the feedback to the particularities of their perfor-
mance.

SoundGuides is thus a customizable tool for designing
adaptive continuous auditory feedback on movement. Both
gestures and sounds can be edited by designers without
requiring programming.1

Implementation
SoundGuides is implemented as a modular architecture
within Cycling’74 Max and is available as free software. In
particular, the mapping between motion parameters and
sound descriptors is learned using Gaussian Mixture Re-
gression (GMR), a regression method based on Gaussian
Mixture Models. GMR learns a smooth and possibly non-
linear mapping function from the set of sound and gesture

1Supplementary material (including a video demonstration) is avail-
able online: http://julesfrancoise.com/soundguides

examples provided by the user.2 Our system can be easily
adapted to various input devices such as positional track-
ing or inertial sensors. In this paper, we present a concrete
implementation that uses 3D hand tracking.

Evaluation
We evaluated SoundGuides as a user-adaptive tool for pro-
viding continuous auditory feedback. Our hypothesis is that
the adaptive auditory feedback can stabilize the gesture,
even after a short learning phase. By stabilization, we refer
to minimizing gesture variations in both time and space.

We designed 4 gestures and their associated sounds (see
Figure 2). Participants were asked to imitate a set of 3D
gestures from an audio-visual demonstration, and record
several executions of each gesture, either without feedback,
or with a SoundGuides adapted to their own initial perfor-
mance. We evaluate the intra-users gesture variations with
regards to the presence of the continuous auditory feed-
back.

Participants
We recruited 12 participants, gender-balanced, aged from
19 to 47 (mean=26.9, SD=9.2). All participants were right-
handed, the experiment was exclusively performed with the
right hand.

Apparatus
The experiment used the 3D velocity of the hand (carte-
sian coordinates) from the skeleton captured with a Leap
Motion. The interface, developed with Cycling’74 Max and
running on an Apple MacBook Pro, integrated movement
acquisition, mapping, sound synthesis, and the GUI ele-
ments necessary to the experiment.

2More detail of the algorithmic part and its evaluation can be found
in [11]. Our GMR algorithm is part of the open-source library XMM:
https://github.com/Ircam-RnD/xmm.

http://julesfrancoise.com/soundguides
https://github.com/Ircam-RnD/xmm


Tasks
After on a series of pilot studies, we designed four gestures
associated with specific sounds. The sounds were 3 to 4
seconds long, based on wind and water recording. They all
presented continuous variations of the audio parameters
Loudness and Spectral Centroid [19]. We made an audio-
visual recording of one execution of each gesture we call
the ‘reference gestures’, with their associated sound. The
participants were asked to reproduce the reference ges-
tures ‘as accurately as possible’ and to record several rep-
etitions, trying to be ‘as consistent as possible’. To facilitate
the understanding of the gesture’s shape and dynamics,
it was videotaped from the viewpoint of the performer —
to maximize the correspondence between the participants
viewpoint and the reference movement.
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Figure 3: Protocol of one block of
the experiment (F=Sound
Feedback, N=No Feedback). All
participants performed four blocks,
one for each gesture, half of them
in condition F, the other half in
condition N.

Procedure
Feedback was the primary factor with two levels: Feedback
(F) and No Feedback (N). Each participant performed two
gestures with auditory feedback (F) (in specific blocks) and
the two other gestures without any feedback (silence in all
blocks) (N). The six possible associations between gestures
and conditions were balanced across participants, and the
order of presentation of the gestures was randomized, un-
der the constraint that two gestures with the same condition
cannot follow each other.

Figure 3 summarizes the procedure for one gesture. The
first block (D) is the Demonstration: the audio-visual record-
ing is played 10 times without interruption. In the second
block (I), participants must imitate the gesture while watch-
ing the demonstration, again 10 times. At the end of block
I, the recorded gestures are used to adapt the mapping to
the participant’s idiosyncrasies. The experiment continues
with 3 recording blocks containing each a series of 10 ex-
ecutions (R1–R3), with a pause between each execution.

In condition N, all 3 recording blocks are performed without
feedback. In condition F, the movement is sonified in the
first and last recording blocks (R1S, R3S), and no feedback
is provided in the middle recording block (R2). A 30 sec-
onds break is imposed between each block to avoid fatigue.

Analysis
To investigate gesture stability, we must calculate distances
between gestures. The choice of a distance measure fol-
low several constraints specific to our case: sensitive to
both timing variations (time compression/stretching) and
amplitude variation (scaling). Nevertheless, it must remain
invariant to constant time delays. We rule out the euclidean
distance, that does not allow any possible delay or tempo-
ral variation between the target and test gestures, and Dy-
namic Time Warping (DTW) that is, by design, not sensitive
enough to temporal variations.

We used a constrained correlation distance, defined as
the minimal euclidean distance between two gestures with
varying delays:
d(gref , gtest) = min

τ∈[−∆,∆]

1

Tτ

Tτ∑
t=1

‖gref (t)− gtest(t− τ)‖

where ‖a − b‖ is the euclidean distance between frames a
and b, Tτ is the number of overlapping frames between the
two sequences with delay τ , ∆ is the maximum authorized
delay.

Results
First, we evaluate the inter-user variations for each gesture.
The standard deviation over mean ratio is 0.33, 0.25, 0.24,
0.29 for the four gestures, respectively. This clearly demon-
strates a large variability among users, even for relatively
simple gestures that were asked to be reproduced as ac-
curately as possible. We also note that gesture 1 and 4 are
the ones that exhibit the most variability. This demonstrates
the importance to take into account user variability when



limited learning time is allocated to the users. From now
on, we report only on intra-user variability by normalizing
the distances of user gestures in recording blocks by their
corresponding average distance in the imitation block.

Figure 4: Normalized distance to
the ‘reference gesture’ for each
gesture and each block of the
experiment, across participants
and trials. Stars indicate statistical
significance under p<0.01 and
p<0.001.

Figure 4 details the distances between trials and reference
gestures across participants and trials, for each of the four
gestures. We examine whether the normalized distance de-
pends on the N and F conditions. We tested for statistical
significance using non-parametric Mann-Whitney U tests
for each gesture and each recording block across partici-
pants. Gestures 1 and 4 exhibit clear differences between
feedback conditions. In condition N, the distance to the ref-
erence gesture tends to increase along recording blocks.
On the contrary, the distance remains approximately con-
stant and close to 1 across recording blocks when the ges-
tures are performed with the help of auditory feedback. This
highlights a stabilizing effect of the auditory feedback.

Specifically, for gesture 1, we found a significant difference
in the distances in recording block R3 where the medians
for conditions N and F are respectively 1.52 and 1.13 (The
mean ranks of Group F and Group N were 45 and 64, re-
spectively; U = 912, Z = −3.18, p < 0.001, r = 0.31). For
gesture 4, the distance was found lower in condition F than
in condition N for all three recording blocks, under p < 0.01.
This difference is all the more important in R3, where the
median distance in conditions N and F is respectively 1.39
and 1.02 (The mean ranks of Group F and Group N were
38 and 69, respectively; U = 643, Z = −5.06, p <
0.001, r = 0.48).

For gestures 2 and 3, we found much lower differences
differences over time in both conditions. In this case, the
gesture seems sufficiently stable even without any feed-
back, and the influence of auditory feedback is not signif-
icant. Nevertheless, for gesture 3, we found a significant

difference between the condition F and N (The mean ranks
of Group F and Group N were 43 and 70, respectively;
U = 901, Z = −4.14, p < 0.001, r = 0.38). This might be
explained by an after-effect between R1 (with auditory feed-
back) and R2 (where the auditory feedback is removed).

Discussion and Conclusion
We described SoundGuides, a user-adaptive tool for provid-
ing continuous auditory feedback. The system was evalu-
ated in a task where users can record their own version of
prototypical gestures. The results indicate that the contin-
uous auditory feedback can help users minimize the ges-
tures variations. This was found to be significant when the
gestures are not performed consistently over time without
any feedback. We also found that the efficiency of the au-
ditory feedback highly depends on the gesture itself, which
could be related to the gesture difficulty. More studies are
needed to answer this important but vast question. In par-
ticular, We plan to further correlate the impact of the perfor-
mance difficulty with the effect of the auditory feedback.

Overall, we believe that our results show the promise of
SoundGuides, opening novel opportunities to build movement-
based interfaces. For example, gesture recognition could
be improved by providing users with such auditory feed-
back, since the reproducibility of movement is essential in
such applications. SoundGuides can also find applications
in rehabilitation where movement can be guided by auditory
feedback. In such applications, the adaptation to the user
idiosyncrasies is particularly important since each patient
might suffer from severe movement limitations.
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