
HAL Id: hal-01316924
https://hal.science/hal-01316924v1

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel and pseudorandom discrete event system
specification vs. networks of spiking neurons:

Formalization and preliminary implementation results
Alexandre Muzy, Matthieu Lerasle, Franck Grammont, van Toan Dao, David

R.C. Hill

To cite this version:
Alexandre Muzy, Matthieu Lerasle, Franck Grammont, van Toan Dao, David R.C. Hill. Parallel and
pseudorandom discrete event system specification vs. networks of spiking neurons: Formalization
and preliminary implementation results. The 2016 International Conference on High Performance
Computing & Simulation (HPCS 2016), International Workshop on Parallel Computations for Neural
Networks (PCNN 2016), Jul 2016, Innsbruck, Austria. �hal-01316924�

https://hal.science/hal-01316924v1
https://hal.archives-ouvertes.fr

Parallel and pseudorandom discrete event system
specification vs. networks of spiking neurons:
Formalization and preliminary implementation

results
Alexandre Muzy

CNRS I3S UMR 7271
06903 Sophia-Antipolis Cedex, France.

Email: alexandre.muzy@cnrs.fr

Matthieu Lerasle, Franck Grammont
Univ. Nice Sophia Antipolis

CNRS LJAD UMR 7351
06100 Nice, France.

Van Toan Dao, David RC Hill
ISIMA/LIMOS UMR CNRS 6158

Blaise Pascal University
BP. 10125, 63173 AUBIERE Cedex, France.

Abstract—Usual Parallel Discrete Event System Specification
(P-DEVS) allows specifying systems from modeling to simulation.
However, the framework does not incorporate parallel and
stochastic simulations. This work intends to extend P-DEVS
to parallel simulations and pseudorandom number generators
in the context of a spiking neural network. The discrete event
specification presented here makes explicit and centralized the
parallel computation of events as well as their routing, making
further implementations more easy. It is then expected to dispose
of a well defined mathematical and computational framework to
deal with networks of spiking neurons.

Index Terms—Spiking neuron networks, discrete event sys-
tem specification, pseudorandomness, parallel simulation, mul-
tithreading.

I. INTRODUCTION

Discrete events allow faithfully implementing spike ex-
changes between biological neurons. Discrete event spiking
neurons have been widely implemented in several software
environments [5]. However, as far as we know, there is no
attempt to embed these works into a common mathematical
framework that would allow further theoretical and practical
developments between biology and computer science. To
achieve this goal the Parallel Discrete Event System Specifica-
tion (P-DEVS) [3], [23] is used here. This framework provides
well defined structures for the formal and computational
specifications of a general dynamic system structure.

From the neuronal nets perspective, DEVS has been used
mainly for: the proposition of original neuron models [21], the
specification of dynamic structure neurons [19], the abstraction
of neural nets [22] and for the specification of continuous spike
models [13]. The previous works do not consider explicitly
spiking neurons in the context of DEVS parallel and stochastic
modeling and simulation. From a parallel and distributed sim-

ulation perspective, the completeness of DEVS (germinating
from mathematical proofs until simulator architectures) seems
to bias researches either to formal aspects [7] or to simulator
structures integrating both parallel and distributed aspects
[1]. Furthermore, although the parallel occurrence of discrete
events has been formally tackled [7], there are few solutions

dealing exclusively with parallelism at abstract simulator level
(as in [20]) and no work at network level. Modeling spiking
neurons often requires stochasticity. The use of stochasticity
at simulation level implies using good practices to deal with
the parallelization and distribution of random streams [9].
While pseudorandom generators have been formalized in [23],
the definition is generalized here and extended to parallel
random streams and random graphs. Except in DEVS, discrete
events have been used successfully at each level of modeling
and simulation of neuronal nets: at modeling level [18],
[5], simulation level [10], [17], [5], [15], and at hardware
level with, e.g., the new IBM neurosynaptic chips improving
both energy consumption [14] and computation times [4].
The latter hardware developments raise the question of the
usage pertinence of general-purpose computers (based on Von
Neumann architecture) for the parallel simulation of neural
nets.

The inherent nature of a neuronal spiking models leads to a
parallel implementation of the simulation. Parallel distributed
simulation (PADS) has been extensively studied for various
applications domains [16]. In this active research field, opti-
mistic time management has been introduced a long time ago
by Jefferson’s team [11] with some modern implementations
at Georgia Tech (Georgia Tech Time Warp). The approach
proposed here retains a conservative approach with a thread

programming model.
However, P-DEVS cannot be used as is. In the context of

networks of spiking neurons, using P-DEVS requires first the
development of:

◦ New (general) formal structures to capture explicitly
and unambiguously the parallel and stochastic aspects of
spiking neural networks.

◦ New simple and abstract algorithms for the parallelization
of discrete event computations and exchanges.

Although this work is still a first step, our goal is to provide a
full (hierarchical) formalization from models to implementa-
tions. With such a framework, it will be for example possible

to compare mathematically different hardware solutions (see
e.g. [24] for such modeling analysis). Also, from an appli-
cation perspective, any dynamic system based on (random)
graphs (agents, computer networks, gene networks, etc.) is a
further potential application of this work.

This study aims at answering the following questions: What
are the main computational loops to be parallelized in a DEVS
simulator? How to manage rigorously the stochastic aspects
of these parallel simulations? What are the corresponding
mathematical structures? How these elements can be used to
simulate networks of spiking neurons?

More precisely, we propose here:

◦ A formalization of networks as parallel discrete event
system specifications using pseudorandom generators for
the generation of stochastic trajectories and network
structures,

◦ A simple parallelization technique of events in P-DEVS
simulators,

◦ An application of all these concepts to random networks
of spiking neurons.

The manuscript is organized as follows. In section 2, the for-
mal model, simulator and executor algorithms are presented.
In section 3, stochastic, parallel and pseudorandom generator
structures are defined. In section 4, a spiking neuronal network
model and its discrete event system specification are presented.
In section 5, simulation process and results are presented and
discussed. Finally, conclusion and perspectives are provided.

II. MODELING AND SIMULATION FRAMEWORK

The architecture for modeling, simulation and execution is
an extension of the usual model/simulator separation [3] to
hardware interfacing through an executor entity. The architec-
ture consists of: (i) the model, which specifies the elements of
the dynamic system for digital computers, (ii) the simulator,
which generates the behavior of the model, and (iii) the
executor, which runs the simulation computations on each
available processor (or core). In the next subsections each
element of the architecture is detailed.

A. Model

A discrete event network model is composed of basic
(atomic) models. Each model interacts through external in-
put/output discrete events changing the states of basic mod-
els. Internal discrete events can be scheduled autonomously
by basic models to change internal state. Time advance is
achieved by each basic component. Hereafter are provided the
definitions of both basic and network models.

Definition 1. A basic Parallel Discrete Event System Specifi-

cation (P-DEVS) is a mathematical structure

P-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X is the set of input events, Y is the set of output

events, S is the set of partial states, δext : Q×Xb → S is the
external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤
ta(s)} the set of total states with e the elapsed time since the

last transition, δint : S → S is the internal transition function,
δcon : S×Xb→ S is the confluent transition function, where

Xb is a bag of input events, λ : S → Y b is the output function,
where Y b is a bag of output events, and ta : S → R

0,+
∞ is the

time advance function.

The modeler controls/decides the behavior in case of event
collisions, when the basic system, at the same simulation time,
is concerned by both internal and external events. To do so,
the modeler defines the confluent transition function δcon.

Example 2. Simple P-DEVS dynamics
In Figure 1, it is considered that at time t2, there is no

collision between external event x0 and the internal event
scheduled at time ta(s1) = t′2, with t′2 > t2, thus leading to
an external transition function δext(s1, e1, x0) = s2. At time
ta(s3) = t4 where there is a collision between external event
x1, occurring at time t4, and the internal event scheduled at
the same time thus leading to a confluent transition function:
δcon(s3, x1) = s4.

X

t

S

t

Y

t
ta(s0)

s0

s1

s2

s3

s4

s5

y0

y1

y2
y3

y4

y5

t0 t2 t4

e1 ta(s2) ta(s3) ta(s4) ta(s5)

x1x0

Figure 1. Simple P-DEVS trajectories.

Definition 3. A P-DEVS network is a mathematical structure

N = (X,Y,D, {Md}, {Id}, {Zi,d})

Where, X is the set of input events, Y is the set of output

events, D is the set of component names, for each d ∈ D,
Md is a basic or network model, Id is the set of influencers

of d such that Id ⊆ D, d /∈ Id and, for each i ∈ Id, Zi,d

is the i−to−d output translation, defined for: (i) external

input couplings: Zself,d : Xself → Xd, with self the self
network name, (ii) internal couplings: Zi,j : Yi → Xj , and
(iii) external output couplings: Zd,self : Yd → Yself .

B. Simulator

Based on P-DEVS structures, different specifications can
be achieved. Then, it should be possible to simulate each of
these models re-using the same algorithm. It is the purpose
of abstract simulators [3]. We generalize these algorithms
here to parallel and/or sequential transitions under processor

supervision1.
Algorithm 1 describes the main simulation loop of a P-

DEVS model. The hierarchical structure (i.e., the compo-
sition of nested network models finally composed of basic
models) is made implicit here by manipulating the set of
component names (referring to all the components present
in the hierarchy). This is made possible because a P-DEVS
network is closed under coupling, i.e., the behavior of a P-
DEVS network is equivalent to the behavior of a P-DEVS
basic model resultant. In the main-loop algorithm, as in a
usual discrete event simulation, simulation time advance is
driven by the (last and next) times of occurrence of events.
Three component sets allow focusing concisely and efficiently
on active components at each time step of the simulation:
(i) the imminent set IMM(s) (the set of components that
achieve both an output computation and an internal function
transition), (ii) the sender set SEN(s) (the set of components
that actually send output events to the components they are
connected with), and (iii) the receiver set REC(s) (the set
of components that receive output events). The Executor is
in charge of the execution of: initialization, outputs, routing,
and confluent, external and internal transitions; as well as the
determination of the set of the next times of event occurrences
and the imminent set.

The algorithm sequence consists of: (i) initializations of:
the global time of last event tl to 0, executor’s variables (cf.
Algorithm 2 for Executor procedures), components’ states, the
set of times of next events TNEXT (s), the global time of
next event tn to the minimum time in TNEXT (s); (ii) main
simulation loop: imminent components (about to achieve a
transition) are collected, their output is executed, outputs are
routed to final basic receivers, the set of active components
is computed as the union of receivers and imminents, their
transition function is executed, finally global times are updated
and times of next event of components are collected. The main
simulation loop is executed until global time of simulation
time tend is reached. Notice that tend can be equal to infinity
meaning that all times of next event of components are infinite.

C. Executor

The executor acts as an interface between the simulation
and the hardware execution. As described in Algorithm 2,
the executor is called within the simulator and implements
the execution of TASKS (i.e., functions over components)
attributing each of them to an available lightweight process
lwp ∈ LWP (here a thread). If the simulator deals with
simulation time t, models and simulator nodes, the executor
deals with execution time texec, lightweight processes and log-

ical cores (or processors). The set TASKS implements func-
tions init, get-TN, compute-outputs, route and compute-
transitions (implemented as procedures) for each component
d ∈ D. Except the set of initialization functions (tasks) that
depends statically on every component d ∈ D, the set of other

1Corresponding source code has been implemented in GRADES (Graph-
based and RAndom DiscrEte-event Simulator), which is accessible at
https://redmine.i3s.unice.fr/projects/compsys.

functions evolves dynamically - from the simulation point of
view. On the other hand, from the parallelization point of
view, the number of number of lightweight processes nLWP

is static. The execution can be sequential (nLWP = 1) or
parallel (nLC ≥ nLWP > 1). The algorithm described here
remains deliberately abstract. Many implementation choices
can be done. An implementation choice is detailed in section
V.

In self-init procedure, if the number of lightweight processes

nLWP is greater than the number of logical cores, nLC , of the
machine, then nLWP = nLC

2. In init-components procedure,
the init procedure of every component is called. This procedure
initializes the state and time of next event of the component.
The run procedure of the executor is generic. The procedure
takes a set of specified tasks as argument and returns a result-

Set whose content depends on the procedure that is calling (a
set of times for get-TN, of imminents for get-imminents, of
senders for compute-outputs, etc.) This procedure attributes
each task to available lightweight process lwp ∈ LWP ,
locks TASKS set, waits a maximum time tmax

exec for each
process to terminate and returns the result set. The get-TN
procedure calls in parallel each component procedure getTn

and returns TNEXT (s) set. The get-imminents procedure
calls in parallel each component procedure testTn, adds the
component to the imminent set IMM(s) if its time of next
event tn,d is equal to the global time of next event tn, and fi-
nally returns IMM(s). The compute-outputs procedure calls
in parallel each computeOutput procedure (λimminent) of
each component imminent ∈ IMM(s), adds the component
to the sender set SEN(s), and finally returns SEN(s). The
route procedure routes in parallel each output event (ysender ∈
Ysender) of each component sender ∈ SEN(s) to the final
receiver, and returns the receiver set REC(s). Finally, the
compute-transitions procedure calls in parallel each comput-

eDelta procedure (δint,active, δext,active, δcon,active) of each
component active ∈ ACTIV E(s).

III. STOCHASTIC DISCRETE EVENT SYSTEM

SPECIFICATION

The formal structures reflecting the discreteness of the
computations achieved by digital computers are presented
here. First, a general generator definition based on sequential
machines is presented. Based on this definition, a structure
for pseudorandom number generators is proposed and linked
to the definition of pseudorandom variables. Using a pseu-
dorandom number generator, a pseudorandom variate genera-
tor is used for computing the realizations of pseudorandom
variables. A pseudorandom and parallel event execution is
specified in P-DEVS. At structural level, large numbers of
connections and components in a network are captured using a
pseudorandom graph definition. The latter is finally compared
to the P-DEVS network structure definition.

2Otherwise the parallelization will be inefficient. Also it is expected then
that the operating system assigns available cores to available lightweight
processes.

A. Pseudorandom variables and number generators

Definition 4. A generator is an autonomous sequential ma-
chine G = (S, s0, γ), where S is the set of states, s0 is the
initial state and γ : S → S is the state generation function.

Algorithm 1 Main simulation loop of Root Coordinator.
Variables:

tl: Global time of last event
tn: Global time of next event
tend: Global time of simulation end
s = (. . . , (sd, ed), . . .): Global state
TNEXT (s) = {tn,d | d ∈ D}: set of times of next events
IMM(s) = {d ∈ D | tn,d = tn}: set of imminents

for next output/internal transition
SEN(s) = {d ∈ D |λd(sd) 6= ∅}: set of senders
REC(s) = {d ∈ D | i ∈ Id ∧ i ∈ IMM(s) ∧ xb

d 6= ∅
∧Zi,d(x

b
d) 6= ∅}: set of receivers

nLWP : number of lightweight processes
Begin

tl ← 0
Executor.self-init(nLWP)
Executor.init-components(D)
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))
while tn < tend do

IMM(s)← Executor.get-imminents(D, tn)
SEN(s)← Executor.compute-outputs(IMM(s), tn)
REC(s)← Executor.route(SEN(s))
ACTIV E(s)← IMM(s) ∪REC(s)
Executor.compute-transitions(ACTIV E(s), tn)
tl ← tn
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))

end while

End

Definition 5. A pseudorandom number generator (RNG)

(cf. [23], p.132, whose definition is extended here) is defined
as RNG = (SP , sP0

, γP), with SP = R the generator state

set with R ⊂ R[0,1] the finite set of pseudorandom numbers

(with each pseudorandom number a realization of a uniformly
distributed random variable, i.e., r ∼ U(0, 1)), γP : R →
R the pseudorandom number generation map, and sP0

= r0
the initial status (or seed for old generators). A stream (i.e.,

a sequence) of independent and identically distributed (i.i.d.)

pseudorandom numbers of length period l, noted (ri)
l−1
i=0 =

r0, r1, . . . , rl−1, for i = 0, 1, . . . , l−1, is defined by γP (ri) =
ri+1 and with γP (rl+i) = ri .

Definition 6. A pseudorandom variate generator (RVG) is
defined as RV G = (RNG,SV , sV0

, γV), with SV = V the
generator variate set, V ⊂ R the finite set of pseudorandom

variates (with each random variate v ∈ V being a realization
of a random variable with inverse non-uniform cumulative
function distribution γV), γV : R → V the pseudorandom

variate generation map, and sV0
the initial pseudorandom

variate. A stream of pseudorandom variates follows exactly the

sequence of the pseudorandom numbers generated by RNG
and is of equal length l, i.e., for (ri)

l−1
i=0 = r0, r1, . . . , rl−1,

there exists (vi)
l−1
i=0 = v0, v1, . . . , vl−1.

Definition 7. A pseudorandom variable consists of the map

γV : R → V of a pseudorandom variate generator RVG =
(RNG,SV , sV0

, γV), where R ⊂ R[0,1] is a finite set of

uniformly distributed pseudorandom numbers. Every time a
random variate vi ∈ V of the pseudorandom variable γV (ri)
is obtained, the next pseudorandom number is generated
through ri+1 = γP (ri).

Example 8. For a pseudorandom variable following an expo-
nential law γexp ∼ Exp(λ), each realization (pseudorandom
variate) is obtained by γexp(r) =

−ln(1−r)
λ

= v (i.e., inverting
the cumulative distribution function of the exponential law).

Example 9. For a pseudorandom variable following a
Bernouilli distribution γB ∼ B(p) of probability p, each
realization (pseudorandom variate) is obtained by γB(r) =

v =

{

1 if r ≤ p

0 otherwise
.

B. Pseudorandom Parallel Discrete Event System Specifica-

tion

As previously defined, randomness is simulated at the
computer level using a pseudorandom number generator mod-
eled as a deterministic sequential machine. Corresponding
pseudorandom variables are maps taking the generated pseu-
dorandom numbers in argument and generating corresponding
pseudorandom variates. At formal P-DEVS level, the set of
pseudorandom variates V can be embedded as part of the
partial state.

Definition 10. A basic Pseudorandom Parallel Discrete Event

System Specification (PP-DEVS) is a structure

PP-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X and Y defined previously, S ⊇ V is the set of

sets of global pseudorandom variates V = Πn
i=1Vi with n the

number of pseudorandom variables. Each set Vi contains the
pseudorandom variates of a stream (vi)

l−1
i=0 = v0, v1, . . . , vl−1

generated by a corresponding pseudorandom variate generator
RVGi = (RNGi, SVi

, sVi,0
, γVi

) (cf. Definition 6), thus
defining a pseudorandom variable γV i

: Ri → Vi. At
each transition function execution the next state is computed
deterministically based on a global pseudorandom variate
v ∈ V and a partial state s ∈ S, i.e., δint(s, v) = s′,
δext(q, x, v) = s′, and δcon(s, x, v) = s′3.

3The same reasoning can be done based on each pseudorandom number
ri ∈ Ri, such that the set of sets of (global) pseudorandom numbers is
R = Πn

i=1
Ri, with n the number of pseudorandom numbers. Then, at

each transition function execution the next state of P-DEVSR is computed
based on each global pseudorandom number r ∈ R, i.e., δint,R(s, r) = s′,
δext(q, x, r) = s′, and δcon(s, x, r) = s′.

Algorithm 2 Variables, procedures and functions of Executor.
Variables:

LWP = {lwp |nLWP ≤ nLC}: set of lightweight pro-
cesses
nLWP : number of lightweight processes
nLC : number of logical cores
TASKS = {fd | d ∈ D}: set of tasks

with fd a function to execute over d ∈ D
tmax
exec: maximum execution time of a process

Begin

procedure SELF-INIT(nLWP)
nLC ← getNbOfLogicalCores()
if nLWP > nLC then

nLWP ← nLC

end if

end procedure

procedure INIT-COMPONENTS(D)
set TASKS = {(d, init(0)) | d ∈ D}
run(TASKS)

end procedure

function RUN(TASKS)
In parallel ∀task ∈ TASKS do

run task on available lwp ∈ LWP
add possibly result to ResSet

end In parallel

lock TASKS
wait tmax

exec for each lwp ∈ LWP to terminate
return ResSet

end function

function GET-TN(D)
TASKS = {(d, getTn()) | d ∈ D}
TNEXT (s)← run(TASKS)
return TNEXT (s)

end function

function GET-IMMINENTS(D, tn)
set TASKS = {(d, testTn()) | d ∈ D}
IMM(s)← run(TASKS)
return IMM(s)

end function

function COMPUTE-OUTPUTS(IMM(s), tn)
set TASKS = {(imminent, computeOutput(tn))

| imminent ∈ IMM(s)}
SEN(s)← run(TASKS)
return SEN(s)

end function

function ROUTE(SEN(s))
TASKS = {(sender, route()) | sender ∈ SEN(s)}
REC(s)← run(TASKS)
return REC(s)

end function

procedure COMPUTE-TRANSITIONS(ACTIV E(s), tn)
TASKS = {(active, computeDelta(tn))

| active ∈ ACTIV E(s)}
run(TASKS)

end procedure

End

The use of pseudorandom numbers in deterministic se-
quential DEVS models has been discussed in the context
of probability spaces [6]. This work pinpointed cases where
the previous definition may show inconsistencies as well as
convergence issues (when elements are not measurable or
corresponding sets infinite). However, our goal here is not to
redefine a new formalism at continuous system specification
level but rather to specify the deterministic foundations of the
stochastic simulations achieved at computer level and how this
can be modeled in P-DEVS as a first step. This does not
prevent to achieve further mathematical extensions, as done
in [6].

C. Pseudorandom graph-based network

A pseudorandom directed graph generator generates a set
of simple directed graphs with the same coupling probability
and the same number of vertices.

Definition 11. A Pseudorandom Generator of Directed

Graphs (RGG) is a structure RGG = (Gn,p, SG, sG0
, γG),

where Gn,p is the set of all pseudorandomly generated directed

graphs such that Gn,p = G{n, P (arrow) = p}, with n

the number of vertices and p ∈ R[0,1] the probability of

choosing an arrow. Each graph G(U,A) ∈ Gn,p is described
by U = {1, 2, . . . , n} the set of vertices and A a set of
(ordered pairs) arrows; SG = A × Vcoupling = U2 × B

with Vcoupling the set of coupling pseudorandom variates

obtained by sampling corresponding (Bernouilli) coupling

pseudorandom variable γcoupling ∼ B(p)4; sG0
= vcoupling,0

is the initial coupling pseudorandom variate; Last map γG :
Gn,p×SG → Gn,p is the directed graph generation map using
the coupling pseudorandom variates Vcoupling to construct a
graph G(U,A) ∈ Gn,p.

Example 12. Simple graph generation
A graph G ∈ Gn,p can be iteratively constructed by

a pseudorandom generator of directed graphs RGG =
(Gn,p, SG, sG0

, γG), with SG, sG0
, Gn,p as defined previously

and γG(Gi, vi) = Gi+1, with G = ∪iGi, G0(U,A = ∅)
(here the initial graph has all vertices but no edges), for
i = 0, 1, . . . , n2 − 1. The length period n2 is due to the
algorithmic testing of edges, i.e., for each vertex, each arrow
to each other vertex is tested.

Example 13. A directed graph G1(U1, A1) ∈ Gn1,p1 can be
connected to another directed graph G2(U2, A2) ∈ G

n2,p2

with probability p, leading to a pseudorandom directed graph
G(U,A) ∈ Gn,p with U = {U1, U2}, A = {A1, A2, A3} and
p the probability of choosing an arrow in A3 from vertices in
U1 to vertices in U2. Algorithmically, graphs G1 and G2 are
generated and finally G is generated coupling G1 and G2 with
probability p.

Once the graph structure has been generated, the graph can
be transformed into a network where to each node corresponds

4Pseudorandom variates in SG are generated by
a pseudorandom variate generator RV Gcoupling =
(RNGcoupling , Vcoupling, vcoupling,0, γcoupling).

a P-DEVS component and to each arrow a coupling.

Definition 14. A Graph-to-P-DEVS Network Transformer

(GNT) is a structure GNT = (G,N, {mi,j}), where G is
a directed graph, N is a P-DEVS network, mi,j is a one-

to-one map (from the elements of G to the elements of
N) defined for: (i) vertices-to-components mu,c : U → D,
(ii) arrows-to-couplings ma,c : U × U → D × D with
D × D = {(a, Za,b(a)) | a ∈ Ib} the influencer-to-influencee
pairs, and (iii) arrows-to-influencers ma,i : U × U → {Ii}
with ma,i(u, u

′) ∈ Iu′ the selection of the influencer of u′.

IV. SPIKING NEURAL NETWORK MODEL

Mathematical modeling of a random spiking neural network
is presented here. The model is specified after using the main
mathematical structures presented in previous sections.

A. Biological neuron

Figure 2 depicts a single biological neuron. Most commonly,
inputs from other neurons are received on dendrites, at the
level of synapses. The circulation of neuronal activity (electric
potentials) is due to the exchange through the neuron mem-

brane of different kinds of ions. Dendrites integrate locally the
variations of electric potentials, either excitatory or inhibitory,
and transmit them to the cell body. There, the genetic material
is located into the nucleus. A new pulse of activity (an action

potential) is generated if the local electric potential reaches
a certain threshold at the level of the axon hillock, the small
zone between the cell body and the very beginning of the
axon. If emitted, action potentials continue their way through
the axon in order to be transmitted to other neurons. Action
potentials, once emitted, are "all or nothing" phenomena: 0, 1.
The propagation speed of action potentials can be increased by
the presence of a myelin sheath, produced by Schwann cells.
This insulating sheath is not continuous along the axon. There
is no myelin at the level of the nodes of Ranvier, where ionic
exchanges can still occur. When action potentials reach the
tip of the axon, they spread over all terminals with the same
amplitude, up to synapses. The neuron can then communicate
with other following neurons. Notice that a focus on electrical
signals (without dealing with chemical signals) is achieved
here.

B. Model

At the model level, the network structure and the behavior
of the neurons are described here. While definitions provided
here are general, they are mapped in next subsection to the
mathematical structures provided in subsections III-B and
III-C.

The structure presented here consists of: an input layer of
independent firing neurons, an intermediate layer embedding
a pseudorandomly generated directed graph of neurons, an
output layer of independent receiving neurons.

Definition 15. The structure (cf. Figure 3)

Let I , B, O be 3 finite sets with respective cardinality n,
M and N . It is always assumed that M ≥ N . Let (pi)i≥0

denote real numbers in [0, 1]. For any (i, j) ∈ B2, assume
that there exists an arrow i → j with probability p0, for any
i ∈ I and j ∈ B, assume that there exists an arrow i → j
with probability p1 and for any i ∈ B and j ∈ O, assume that
there exists an arrow i→ j with probability p2.

Figure 2. Sketch of a neuron (adapted from
http://fr.wikipedia.org/wiki/Neurone).

The dynamics in each layer is provided in next definition.
In input layer, neurons fire randomly while neurons in both
intermediate and output layers follow a deterministic behavior.

Definition 16. The dynamics

Assume that the activities (Xt(i))i∈I,t∈N of the sites in I
and time t are i.i.d. B(p3). Let a be a positive real number.
For all (i, j, t) ∈ (B ∪ O)2 × N, we choose i.i.d. thresholds
τi ∼ N (m,S2), i.i.d. wi,j = 1 with probability 1 − p4 and
−a with probability p4. Then, the membrane potential Pi(t)
of a neuron i, initially null is updated thanks to the following
rule

Pi(t) = (rAi(t− 1) +
∑

i∼j

wi,jAj(t− 1))(1−Ai(t− 1))

Where, r ∈ (0, 1) is the activity remaining from time t − 1,
∑

i∼j wi,jAj(t−1) is the activity received from other neurons

at time t− 1, (1−Ai(t− 1)) reflects a refractory period of 1
(if the neuron fired at time t− 1 it cannot fire at time t), and
the activity of a neuron i is provided by

Ai(t) =

{

1 if Pi(t− 1) ≥ τi
0 otherwise

I B O

p1

p2

p0

Figure 3. Structure of the neuron model.

C. Specification in PP-DEVS

The structure of Definition 15 can be set by a pseudorandom
generator of directed graphs (RGG) (cf. Definition 11). The
coupling of the different layers is based on Example 13 with
each layer being a directed graph (with both input and output
layers having no internal connections). The resulting coupled
graph is finally mapped to a P-DEVS network through a
Graph-to-P-DEVS Network Transformer (GNT) (cf. Definition
14).

From a dynamical point of view, each neuron i ∈ I of
Definition 16 is specified as a PP-DEVS reduced to internal
transitions as

Mi = (Yi, Si, δint,i, λi, tai)

Where, Yi = {∅, 1}, with null event ∅ (resp. 1) if the neuron
is non-firing (resp. firing), Si = Vfiring = B with Vfiring

the set of firing pseudorandom variates, internal transition

function δint,i(s, vfiring) samples the pseudorandom variable
γfiring ∼ B(p3) indicating the activity of the neuron depend-
ing on probability p3, output function λi(vfiring) sends an
unitary event if the neuron is active and time advance function

tai(s) = 1 ensures the discrete time sampling of γfiring .
Neurons in B and O of Definition 16 are P-DEVS models

specified as

Mj = (Xj , Yj , Sj , δext,j , δint,j , δcon,j, λj , taj)

Where, Xj = {∅, 1}n = {∅, 1} × . . . × {∅, 1} (with n the
number of inputs), Yj = {∅, 1}, Sj = {{wk}, c, a, p, phase =
{firing, active, inactive}} with wj the weight of corresponding

input k, c (resp. c′) the sum of received inputs at a time step
t (resp. at a time step t + 1), a (resp. a′) the activity of the

neuron at a time step t (resp. at time step t+ 1), p (resp. p′)
the membrane potential of the neuron at a time step t (resp. at
time step t+1), external transition function δext(q, x) collects
the inputs received at time t, computes the next phase and the
next membrane potential p′ and activity a′, and after call for a
next internal transition at time t+1, internal transition function

δint(s) updates p ← p′ and a ← a′ and reset inputs (c ←
0), if the neuron is in phase active or firing and receives an
input the confluent transition function is called as δcon(s, x) =
δext(δint(s), 0, x), i.e., first update variables and after collect

inputs, and finally time advance function taj(s) = 1 if the
neuron is in phase active or firing and taj(s) = ∞ if the
neuron is in phase inactive.

V. SIMULATION PROCESS AND RESULTS

Model generation and simulation process are introduced first
here. After, the speedup results are presented and discussed.
The goal of this speedup analysis is only an application proof
of the whole hierarchy developed here. Gaining genericity
has usually a cost. It is not our purpose here to prove the
suppremacy of this approach at the parallel implementation
level but rather to prove completness and applicability.

A. Environment infrastructure and graphical outputs

The steps and the elements of the process of generation and
simulation of the model consist of the following sequence:
(i) Initialization of all models, (ii) Graph generation us-
ing a model RGG, (iii) Graph-to-network transformation

(GNT), which generates a PP-DEVS network from the graph,
and (iv) Simulation.

Notice that as defined previously, each object uses one
RNG for each pseudorandom variable. This ensures: (i) the
statistical independence between pseudorandom variables, and
(ii) the reproducibility of pseudorandom simulations [8].

Figure 4 depicts a snapshot of the graph corresponding to
neurons of set B. Notice how dense is the graph connection
making it difficult to differentiate edges.

Figure 4. Graph snapshot of B set.

Simulations have been performed on a Symmetric Mul-
tiprocessing (SMP) machine with 80 physical cores and
160 logical cores, 8 processors Intel(R) Xeon(R) CPU E7-

8870@2.40GHz5, and 1Tb RAM. Figure 5 presents the firing
of neurons for neurons of each set I, O, and B.

5stepping: 2, cpu: 1064 MHz, cache size: 30720 KB.

Figure 5. Firing outputs in sets I, O, and B.

B. Speed-up results

In [25], an interesting perspective is drawn concerning the
usage of clusters with low latency communication capabili-
ties. Our idea here is to assume (even at abstract simulator
level) that all the computations are centralized on a single
computer, a Symmetric Multiprocessing (SMP) machine6. The
latter allows sharing memory and minimizing the latency of
communications. Besides, centralizing all the computations
facilitates the control of their executions and their synchro-
nization at each time step. Different sizes of neural networks
are simulated here for different numbers of threads.

Input parameters are set to values: p0 = p1 = p2 = 0.9,
p3 = 0.5, p4 = 0.2, a = r = 1, each threshold τi ∼
N (m,S2), with m = 250 and S = 1. The whole simulation
has been implemented in Java programming language.

The sequential execution time of methods tmethods has been
considered as the sum of the execution times for methods:
initialization (tinit), output (tout), routing (trout), and transi-

6Simulations have been performed on a Symmetric Multiprocessing (SMP)
machine with 80 physical cores and 160 logical cores, 8 processors Intel(R)
Xeon(R) CPU E7-8870@2.40GHz (stepping: 2, cpu: 1064MHz, cache size:
30720KB.), and 1Tb RAM. Each Java class main has been executed in com-
mand line using the exec-maven-plugin-1.2.1. Execution times correspond
to the total (processor) time information provided by Maven. Finally, although
when running the simulations the machine was possibly executing other
simulations (launched by other users), the number of available threads has
been verified at each simulation time and 30 replications of each simulation
have been achieved showing a good confidence interval of the results obtained.

tions (ttrans) (cf. Algorithm 1), for different sizes of networks.
Considering ttotal as the total parallelizable execution time,
and tseq as the sequential execution time that cannot be

parallelized, it has been noticed that most of the execution
times of a simulation is due to the execution of these methods,
i.e., ttotal

tmethods
= 93.2% for 140 neurons, increasing quickly to

99.3% for 240 neurons. This shows the high parallelizability
of P-DEVS simulations. Besides, it has also been noticed that
most of the execution time is due to the execution of atomic
output and transition functions, i.e., ttotal

ttrans+tout
= 91.51% for

140 neurons increasing quickly to 99.08% for 240 neurons.

Figure 6 presents the speedup obtained for different sizes
of networks according to different numbers of threads (im-
plemented in a pool7). Each replication has been replicated
30 times leading to a total number of 19 × 30 × 4 = 2280
simulations. It can be seen that in each simulation, the speedup
reaches a maximum which remains constant (cf. Figure 6.c and
Figure 6 .d) or decreases (cf. Figure 6.a and Figure 6.b).

Each best average speedup obtained in Figure 6 is presented
in Figure 7. The optimal number of pool threads is: 20 for 140
neurons, 60 for 240 neurons, 100 for 340 neurons and 50 for
440 neurons. Increasing the number of neurons the average
best speedup decreases and a practical maximum speedup of
23.5 is achieved.

Finally, to investigate the parallelizability of our simula-
tion model, let’s consider Amdahl’s law [2] as S(n) =

1
τseq+

1

n
(1−τseq)

with the maximum theoretical speed up S(n)

(considering no parallelization overhead) for a number of

threads n, and the fraction of total execution time as strictly

sequential as τseq =
tseq
ttotal

. Having n = 80 physical cores on
the SMP machine used, for 140 neurons, the theoretical maxi-
mum speedup is S(80) = 14.3 (while the practical speedup is
5.14) and for 240 neurons, the theoretical maximum speedup is
S(80) = 53 (while the practical maximum speedup is 22.2).
Practical maximum speedup is less than half of theoretical
maximum speedup, suggesting great further potential speedup.

7Notice that for each simulation the Java Virtual Machine added also 16
threads for garbage collection and specific to the libraries used in the simulator.

(a)

(b)

(c)

(d)

Figure 6. Comparison of execution time results for an increasing number of
pool threads and: (a) 140 neurons, (b) 240 neurons, (c) 340 neurons, and (d)
440 neurons.

The cap speedup obtained (while increasing the number of
threads) can be explained by JVM intrinsic limitations. In [12],
different very basic experiments have been implemented in
parallel for different numbers of threads (quicksort, calculation
of π value by Monte Carlo method, Fast Fourier transform,
discrete cosine transform, etc.) Platform consisted of an Intel
Xeon Phi Coprocessor 5100 accelerator with a memory size of

8GB DDR5, an L2 cache size of 30MB, 60 cores, and a base
processor frequency of 1.1GHz. For quicksort and Monte Carlo
experiments, the speedup obtained shows the same cap with no
improvement respectively above 30 and 60 threads. For other
experiments, the results are even worse showing a decrease
of the speedup above 60 threads. Furthermore, JVM opacity
makes difficult further investigations of both load balancing
and memory access (to test a possible memory bandwidth
issue). For example, when writing these lines we were not able
to find any good quality profiling software for analysing Java
parallel simulation results. This is why, although we believe
that better speedup results can be obtained, we recommend
further investigations to use another programming language
(e.g., C++).

Figure 7. Best average execution-time speedup for each total number of
neurons.

VI. CONCLUSION AND PERSPECTIVES

This article presented a first formal bridge between com-
putational discrete event systems and networks of spiking
neurons. Parallel and stochastic aspects (and their relationship)
have been defined explicitly. In P-DEVS a simple way of
parallelizing simulations and a link between P-DEVS and
(pseudo)random graphs/generators/variables have been pro-
posed. Finally all these structures have been applied to a
network of spiking neurons. From a simulation point of view,
it can be seen that most of the sequential execution times
(more than 90%) can be reduced theoretically. In practice, the
simplicity obtained by centralizing most of the computations
at the same place requires a strong optimization at software
level and a suitable solution at hardware level.

In conclusion, although further technical investigations need
to be achieved, it is believed that: the formal structures
provided here allow mathematical reasoning at (computa-
tional) system level and that the simplicity of the parallel
(reproducible8) implementation technique should allow further
(more efficient) parallelization developments, based on our
theoretical maximum speedup results.

8Parallelizing the discrete event execution of a scheduler, at each time
step, and encapsulating each stream of random numbers in corresponding
pseudorandom variable (in their turn encapsulated in atomic models) simply
preserves simulation reproducibility [8]. Furthermore, the technique has also
the advantage to do not require any control over the order of execution of
threads (that is not guaranteed by some programming languages, e.g. Java) to
preserve simulation reproducibility.

ACKNOWLEDGEMENTS

Many thanks to Gaëtan Eyheramono and specially to An-
toine Dufaure who achieved a first version of the multithreaded
implementation. This work has been partially funded by a
contract Projets Exploratoires Pluridisciplinaires Bio-Maths-
Info (PEPS-BMI 2012), entitled Neuroconf, and funded by
Centre National de la Recherche Scientifique (CNRS), Institut
national de recherche en informatique et en automatique
(INRIA) and Institut National de la Santé et de la Recherche
Médicale (INSERM).

REFERENCES

[1] ADEGOKE, A., TOGO, H., AND TRAORÉ, M. K. A unifying framework
for specifying DEVS parallel and distributed simulation architectures.
Simulation 89, 11 (2013), 1293–1309.

[2] AMDAHL, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,

1967, Spring Joint Computer Conference (New York, NY, USA, 1967),
AFIPS ’67 (Spring), ACM, pp. 483–485.

[3] B. P. ZEIGLER, T. G. KIM, H. P. Theory of Modeling and Simulation.
Academic Press, 2000.

[4] BEHRENDS, R., DILLON, L. K., FLEMING, S. D., AND STIREWALT,
R. E. K. 1014 . Tech. Rep. RJ10502 (ALM1211-004), IBM Research
Division, Almaden Research Center, 650 Harry Road, San Jose, CA
95120-6099, USA, November 13 2012.

[5] BRETTE, R. Simulation of networks of spiking neurons: A review
of tools and strategies. Journal of Computational Neuroscience 23, 3
(2007), 349–398.

[6] CASTRO, R., KOFMAN, E., AND WAINER, G. A formal framework for
stochastic discrete event system specification modeling and simulation.
Simulation 86, 10 (2010), 587–611.

[7] CHOW, A. C. H., AND ZEIGLER, B. P. Parallel devs: A parallel,
hierarchical, modular, modeling formalism. In Proceedings of the 26th

Conference on Winter Simulation (San Diego, CA, USA, 1994), WSC
’94, Society for Computer Simulation International, pp. 716–722.

[8] HILL, D. Parallel random numbers, simulation, and reproducible
research. Computing in Science Engineering 17, 4 (July 2015), 66–71.

[9] HILL, D. R. C., MAZEL, C., PASSERAT-PALMBACH, J., AND TRAORE,
M. K. Distribution of random streams for simulation practitioners.
Concurrency and Computation: Practice and Experience 25, 10 (2013),
1427–1442.

[10] HINES, M., AND CARNEVALE, N. Discrete event simulation in the
NEURON environment. Neurocomputing 58-60, 0 (2004), 1117–1122.

[11] JEFFERSON, D., BECKMAN, B., WIELAND, F., BLUME, L., AND

DILORETO, M. Time warp operating system. In Proceedings of the

Eleventh ACM Symposium on Operating Systems Principles (New York,
NY, USA, 1987), SOSP ’87, ACM, pp. 77–93.

[12] MALINOWSKI, A. Modern platform for parallel algorithms testing: Java
on intel xeon phi. International Journal of Information Technology and

Computer Science(IJITCS) (2015), 8–14.
[13] MAYRHOFER, R., AFFENZELLER, M., PRÄHOFER, H., HÖFER, G.,

FRIED, A., AND FRIED, E. Devs simulation of spiking neural networks.
In Cybernetics and Systems: Proceedings EMCSR 2002 (2002), vol. 2,
pp. 573–578.

[14] MEROLLA, P., ARTHUR, J., AKOPYAN, F., IMAM, N., MANOHAR, R.,
AND MODHA, D. A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm. In Custom Integrated Circuits

Conference (CICC), 2011 IEEE (Sept 2011), pp. 1–4.
[15] MOURAUD, A., PUZENAT, D., AND PAUGAM-MOISY, H. DAMNED:

A Distributed and Multithreaded Neural Event-Driven simulation frame-
work. Computing Research Repository abs/cs/051 (2005).

[16] RM., F. Parallel and distributed simulation systems. Wiley, New York,
2000.

[17] TANG, Y., ZHANG, B., WU, J., HU, T., ZHOU, J., AND LIU, F. Parallel
architecture and optimization for discrete-event simulation of spike
neural networks. Science China Technological Sciences 56, 2 (2013),
509–517.

[18] TONNELIER, A., BELMABROUK, H., AND MARTINEZ, D. Event-driven
simulations of nonlinear integrate-and-fire neurons. Neural Computation

19, 12 (2007), 3226–3238.

[19] VAHIE, S. Discrete Event Modeling and Simulation Technologies:
A Tapestry of Systems and AI-Based Theories and Methodologies.
Springer-Verlag, 2001, ch. Dynamic Neuronal Ensembles: Neurobiolog-
ically Inspired Discrete Event Neural Networks.

[20] WANG, Y.-H., AND ZEIGLER, B. Extending the devs formalism for
massively parallel simulation. Discrete Event Dynamic Systems 3, 2-3
(1993), 193–218.

[21] ZEIGLER, B. Discrete event abstraction: an emerging paradigm for
modeling complex adaptative system.

[22] ZEIGLER, B. P. Statistical simplification of neural nets. International

Journal of Man-Machine Studies 7, 3 (1975), 371–393.
[23] ZEIGLER, B. P. Theory of Modeling and Simulation. Wiley, 1976.
[24] ZEIGLER, B. P., NUTARO, J. J., AND SEO, C. What’s the best

possible speedup achievable in distributed simulation: Amdahl’s law
reconstructed. In Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium, part of the 2015

Spring Simulation Multiconference, SpringSim ’15, Alexandria, VA,

USA, April 12-15, 2015 (2015), pp. 189–196.
[25] ZENKE, F., AND GERSTNER, W. Limits to high-speed simulations of

spiking neural networks using general-purpose computers. Frontiers in

Neuroinformatics 8, 76 (2014).

