Alexandre Muzy
email: alexandre.muzy@cnrs.fr

Matthieu Lerasle

Franck Grammont

Van Toan Dao

David Rc Hill

Parallel and pseudorandom discrete event system specification vs. networks of spiking neurons: Formalization and preliminary implementation results

Keywords: Spiking neuron networks, discrete event system specification, pseudorandomness, parallel simulation, multithreading

Usual Parallel Discrete Event System Specification (P-DEVS) allows specifying systems from modeling to simulation. However, the framework does not incorporate parallel and stochastic simulations. This work intends to extend P-DEVS to parallel simulations and pseudorandom number generators in the context of a spiking neural network. The discrete event specification presented here makes explicit and centralized the parallel computation of events as well as their routing, making further implementations more easy. It is then expected to dispose of a well defined mathematical and computational framework to deal with networks of spiking neurons.

I. INTRODUCTION

Discrete events allow faithfully implementing spike exchanges between biological neurons. Discrete event spiking neurons have been widely implemented in several software environments [START_REF] Brette | Simulation of networks of spiking neurons: A review of tools and strategies[END_REF]. However, as far as we know, there is no attempt to embed these works into a common mathematical framework that would allow further theoretical and practical developments between biology and computer science. To achieve this goal the Parallel Discrete Event System Specification (P-DEVS) [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF], [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] is used here. This framework provides well defined structures for the formal and computational specifications of a general dynamic system structure.

From the neuronal nets perspective, DEVS has been used mainly for: the proposition of original neuron models [START_REF] Zeigler | Discrete event abstraction: an emerging paradigm for modeling complex adaptative system[END_REF], the specification of dynamic structure neurons [START_REF] Vahie | Discrete Event Modeling and Simulation Technologies: A Tapestry of Systems and AI-Based Theories and Methodologies[END_REF], the abstraction of neural nets [START_REF] Zeigler | Statistical simplification of neural nets[END_REF] and for the specification of continuous spike models [START_REF] Mayrhofer | Devs simulation of spiking neural networks[END_REF]. The previous works do not consider explicitly spiking neurons in the context of DEVS parallel and stochastic modeling and simulation. From a parallel and distributed simulation perspective, the completeness of DEVS (germinating from mathematical proofs until simulator architectures) seems to bias researches either to formal aspects [START_REF] Chow | Parallel devs: A parallel, hierarchical, modular, modeling formalism[END_REF] or to simulator structures integrating both parallel and distributed aspects [START_REF] Adegoke | A unifying framework for specifying DEVS parallel and distributed simulation architectures[END_REF]. Furthermore, although the parallel occurrence of discrete events has been formally tackled [START_REF] Chow | Parallel devs: A parallel, hierarchical, modular, modeling formalism[END_REF], there are few solutions dealing exclusively with parallelism at abstract simulator level (as in [START_REF] Wang | Extending the devs formalism for massively parallel simulation[END_REF]) and no work at network level. Modeling spiking neurons often requires stochasticity. The use of stochasticity at simulation level implies using good practices to deal with the parallelization and distribution of random streams [START_REF] Hill | Distribution of random streams for simulation practitioners[END_REF]. While pseudorandom generators have been formalized in [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF], the definition is generalized here and extended to parallel random streams and random graphs. Except in DEVS, discrete events have been used successfully at each level of modeling and simulation of neuronal nets: at modeling level [START_REF] Tonnelier | Event-driven simulations of nonlinear integrate-and-fire neurons[END_REF], [START_REF] Brette | Simulation of networks of spiking neurons: A review of tools and strategies[END_REF], simulation level [START_REF] Hines | Discrete event simulation in the NEURON environment[END_REF], [START_REF] Tang | Parallel architecture and optimization for discrete-event simulation of spike neural networks[END_REF], [START_REF] Brette | Simulation of networks of spiking neurons: A review of tools and strategies[END_REF], [START_REF] Mouraud | A Distributed and Multithreaded Neural Event-Driven simulation framework[END_REF], and at hardware level with, e.g., the new IBM neurosynaptic chips improving both energy consumption [START_REF] Merolla | A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm[END_REF] and computation times [START_REF] Behrends | [END_REF]. The latter hardware developments raise the question of the usage pertinence of general-purpose computers (based on Von Neumann architecture) for the parallel simulation of neural nets.

The inherent nature of a neuronal spiking models leads to a parallel implementation of the simulation. Parallel distributed simulation (PADS) has been extensively studied for various applications domains [START_REF] Rm | Parallel and distributed simulation systems[END_REF]. In this active research field, optimistic time management has been introduced a long time ago by Jefferson's team [START_REF] Jefferson | Time warp operating system[END_REF] with some modern implementations at Georgia Tech (Georgia Tech Time Warp). The approach proposed here retains a conservative approach with a thread programming model.

However, P-DEVS cannot be used as is. In the context of networks of spiking neurons, using P-DEVS requires first the development of:

• New (general) formal structures to capture explicitly and unambiguously the parallel and stochastic aspects of spiking neural networks. • New simple and abstract algorithms for the parallelization of discrete event computations and exchanges.

Although this work is still a first step, our goal is to provide a full (hierarchical) formalization from models to implementations. With such a framework, it will be for example possible to compare mathematically different hardware solutions (see e.g. [START_REF] Zeigler | What's the best possible speedup achievable in distributed simulation: Amdahl's law reconstructed[END_REF] for such modeling analysis). Also, from an application perspective, any dynamic system based on (random) graphs (agents, computer networks, gene networks, etc.) is a further potential application of this work.

This study aims at answering the following questions: What are the main computational loops to be parallelized in a DEVS simulator? How to manage rigorously the stochastic aspects of these parallel simulations? What are the corresponding mathematical structures? How these elements can be used to simulate networks of spiking neurons?

More precisely, we propose here:

• A formalization of networks as parallel discrete event system specifications using pseudorandom generators for the generation of stochastic trajectories and network structures, • A simple parallelization technique of events in P-DEVS simulators, • An application of all these concepts to random networks of spiking neurons. The manuscript is organized as follows. In section 2, the formal model, simulator and executor algorithms are presented. In section 3, stochastic, parallel and pseudorandom generator structures are defined. In section 4, a spiking neuronal network model and its discrete event system specification are presented. In section 5, simulation process and results are presented and discussed. Finally, conclusion and perspectives are provided.

II. MODELING AND SIMULATION FRAMEWORK

The architecture for modeling, simulation and execution is an extension of the usual model/simulator separation [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] to hardware interfacing through an executor entity. The architecture consists of: (i) the model, which specifies the elements of the dynamic system for digital computers, (ii) the simulator, which generates the behavior of the model, and (iii) the executor, which runs the simulation computations on each available processor (or core). In the next subsections each element of the architecture is detailed.

A. Model

A discrete event network model is composed of basic (atomic) models. Each model interacts through external input/output discrete events changing the states of basic models. Internal discrete events can be scheduled autonomously by basic models to change internal state. Time advance is achieved by each basic component. Hereafter are provided the definitions of both basic and network models.

Definition 1. A basic Parallel Discrete Event System Specifi- cation (P-DEVS) is a mathematical structure P-DEVS = (X, Y, S, δ ext , δ int , δ con , λ, ta)
Where, X is the set of input events, Y is the set of output events, S is the set of partial states, δ ext : Q × X b → S is the external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} the set of total states with e the elapsed time since the last transition, δ int : S → S is the internal transition function, δ con : S × X b → S is the confluent transition function, where X b is a bag of input events, λ : S → Y b is the output function, where Y b is a bag of output events, and ta : S → R 0,+ ∞ is the time advance function.

The modeler controls/decides the behavior in case of event collisions, when the basic system, at the same simulation time, is concerned by both internal and external events. To do so, the modeler defines the confluent transition function δ con .

Example 2. Simple P-DEVS dynamics

In Figure 1, it is considered that at time t 2 , there is no collision between external event x 0 and the internal event scheduled at time ta(s 1) = t ′ 2 , with t ′ 2 > t 2 , thus leading to an external transition function δ ext (s 1 , e 1 , x 0) = s 2 . At time ta(s 3) = t 4 where there is a collision between external event x 1 , occurring at time t 4 , and the internal event scheduled at the same time thus leading to a confluent transition function: δ con (s 3 , x 1) = s 4 .

B. Simulator

Based on P-DEVS structures, different specifications can be achieved. Then, it should be possible to simulate each of these models re-using the same algorithm. It is the purpose of abstract simulators [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. We generalize these algorithms here to parallel and/or sequential transitions under processor supervision 1 .

Algorithm 1 describes the main simulation loop of a P-DEVS model. The hierarchical structure (i.e., the composition of nested network models finally composed of basic models) is made implicit here by manipulating the set of component names (referring to all the components present in the hierarchy). This is made possible because a P-DEVS network is closed under coupling, i.e., the behavior of a P-DEVS network is equivalent to the behavior of a P-DEVS basic model resultant. In the main-loop algorithm, as in a usual discrete event simulation, simulation time advance is driven by the (last and next) times of occurrence of events. Three component sets allow focusing concisely and efficiently on active components at each time step of the simulation: (i) the imminent set IM M (s) (the set of components that achieve both an output computation and an internal function transition), (ii) the sender set SEN (s) (the set of components that actually send output events to the components they are connected with), and (iii) the receiver set REC(s) (the set of components that receive output events). The Executor is in charge of the execution of: initialization, outputs, routing, and confluent, external and internal transitions; as well as the determination of the set of the next times of event occurrences and the imminent set.

The algorithm sequence consists of: (i) initializations of: the global time of last event t l to 0, executor's variables (cf. Algorithm 2 for Executor procedures), components' states, the set of times of next events T N EXT (s), the global time of next event t n to the minimum time in T N EXT (s); (ii) main simulation loop: imminent components (about to achieve a transition) are collected, their output is executed, outputs are routed to final basic receivers, the set of active components is computed as the union of receivers and imminents, their transition function is executed, finally global times are updated and times of next event of components are collected. The main simulation loop is executed until global time of simulation time t end is reached. Notice that t end can be equal to infinity meaning that all times of next event of components are infinite.

C. Executor

The executor acts as an interface between the simulation and the hardware execution. As described in Algorithm 2, the executor is called within the simulator and implements the execution of T ASKS (i.e., functions over components) attributing each of them to an available lightweight process lwp ∈ LW P (here a thread). If the simulator deals with simulation time t, models and simulator nodes, the executor deals with execution time t exec , lightweight processes and logical cores (or processors). The set T ASKS implements functions init, get-TN, compute-outputs, route and computetransitions (implemented as procedures) for each component d ∈ D. Except the set of initialization functions (tasks) that depends statically on every component d ∈ D, the set of other functions evolves dynamically -from the simulation point of view. On the other hand, from the parallelization point of view, the number of number of lightweight processes n LW P is static. The execution can be sequential (n LW P = 1) or parallel (n LC ≥ n LW P > 1). The algorithm described here remains deliberately abstract. Many implementation choices can be done. An implementation choice is detailed in section V.

In self-init procedure, if the number of lightweight processes n LW P is greater than the number of logical cores, n LC , of the machine, then n LW P = n LC2 . In init-components procedure, the init procedure of every component is called. This procedure initializes the state and time of next event of the component. The run procedure of the executor is generic. The procedure takes a set of specified tasks as argument and returns a result-Set whose content depends on the procedure that is calling (a set of times for get-TN, of imminents for get-imminents, of senders for compute-outputs, etc.) This procedure attributes each task to available lightweight process lwp ∈ LW P , locks T ASKS set, waits a maximum time t max exec for each process to terminate and returns the result set. The get-TN procedure calls in parallel each component procedure getTn and returns T N EXT (s) set. The get-imminents procedure calls in parallel each component procedure testTn, adds the component to the imminent set IM M (s) if its time of next event t n,d is equal to the global time of next event t n , and finally returns IM M (s). The compute-outputs procedure calls in parallel each computeOutput procedure (λ imminent) of each component imminent ∈ IM M (s), adds the component to the sender set SEN (s), and finally returns SEN (s). The route procedure routes in parallel each output event (y sender ∈ Y sender) of each component sender ∈ SEN (s) to the final receiver, and returns the receiver set REC(s). Finally, the compute-transitions procedure calls in parallel each comput-eDelta procedure (δ int,active , δ ext,active , δ con,active) of each component active ∈ ACT IV E(s).

III. STOCHASTIC DISCRETE EVENT SYSTEM

SPECIFICATION

The formal structures reflecting the discreteness of the computations achieved by digital computers are presented here. First, a general generator definition based on sequential machines is presented. Based on this definition, a structure for pseudorandom number generators is proposed and linked to the definition of pseudorandom variables. Using a pseudorandom number generator, a pseudorandom variate generator is used for computing the realizations of pseudorandom variables. A pseudorandom and parallel event execution is specified in P-DEVS. At structural level, large numbers of connections and components in a network are captured using a pseudorandom graph definition. The latter is finally compared to the P-DEVS network structure definition.

A. Pseudorandom variables and number generators

Definition 4. A generator is an autonomous sequential machine G = (S, s 0 , γ), where S is the set of states, s 0 is the initial state and γ : S → S is the state generation function.

T N EXT (s) = {t n,d | d ∈ D}: set of times of next events IM M (s) = {d ∈ D | t n,d = t n }: set of imminents for next output/internal transition SEN (s) = {d ∈ D | λ d (s d) = ∅}: set of senders REC(s) = {d ∈ D | i ∈ I d ∧ i ∈ IM M (s) ∧ x b d = ∅ ∧ Z i,d (x b d) = ∅}: set of receivers n LW P : number of lightweight processes Begin t l ← 0 Executor.self-init(n LW P) Executor.init-components(D) T N EXT (s) ← Executor.get-TN(D) t n ← min(T N EXT (s)) while t n < t end do IM M (s) ← Executor.get-imminents(D, t n) SEN (s) ← Executor.compute-outputs(IM M (s), t n) REC(s) ← Executor.route(SEN (s)) ACT IV E(s) ← IM M (s) ∪ REC(s) Executor.compute-transitions(ACT IV E(s), t n) t l ← t n T N EXT (s) ← Executor.get-TN(D)
t n ← min(T N EXT (s)) end while End Definition 5. A pseudorandom number generator (RNG) (cf. [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF], p.132, whose definition is extended here) is defined as RN G = (S P , s P0 , γ P), with S P = R the generator state set with R ⊂ R [0,1] the finite set of pseudorandom numbers (with each pseudorandom number a realization of a uniformly distributed random variable, i.e., r ∼ U(0, 1)), γ P : R → R the pseudorandom number generation map, and s P0 = r 0 the initial status (or seed for old generators). A stream (i.e., a sequence) of independent and identically distributed (i.i.d.) pseudorandom numbers of length period l, noted (r i) l-1 i=0 = r 0 , r 1 , . . . , r l-1 , for i = 0, 1, . . . , l -1, is defined by γ P (r i) = r i+1 and with γ P (r l+i) = r i . Definition 6. A pseudorandom variate generator (RVG) is defined as RV G = (RN G, S V , s V0 , γ V), with S V = V the generator variate set, V ⊂ R the finite set of pseudorandom variates (with each random variate v ∈ V being a realization of a random variable with inverse non-uniform cumulative function distribution γ V), γ V : R → V the pseudorandom variate generation map, and s V0 the initial pseudorandom variate. A stream of pseudorandom variates follows exactly the sequence of the pseudorandom numbers generated by RN G and is of equal length l, i.e., for (r i) l-1 i=0 = r 0 , r 1 , . . . , r l-1 , there exists

(v i) l-1 i=0 = v 0 , v 1 , . . . , v l-1 . Definition 7. A pseudorandom variable consists of the map γ V : R → V of a pseudorandom variate generator RV G = (RN G, S V , s V0 , γ V), where R ⊂ R [0,1]
is a finite set of uniformly distributed pseudorandom numbers. Every time a random variate v i ∈ V of the pseudorandom variable γ V (r i) is obtained, the next pseudorandom number is generated through r i+1 = γ P (r i).

B. Pseudorandom Parallel Discrete Event System Specification

As previously defined, randomness is simulated at the computer level using a pseudorandom number generator modeled as a deterministic sequential machine. Corresponding pseudorandom variables are maps taking the generated pseudorandom numbers in argument and generating corresponding pseudorandom variates. At formal P-DEVS level, the set of pseudorandom variates V can be embedded as part of the partial state. Where, X and Y defined previously, S ⊇ V is the set of sets of global pseudorandom variates V = Π n i=1 V i with n the number of pseudorandom variables. Each set V i contains the pseudorandom variates of a stream Definition 6), thus defining a pseudorandom variable γ V i : R i → V i . At each transition function execution the next state is computed deterministically based on a global pseudorandom variate v ∈ V and a partial state s ∈ S, i.e., δ int (s, v) = s ′ , δ ext (q, x, v) = s ′ , and δ con (s, x, v) = s ′3 . 3 The same reasoning can be done based on each pseudorandom number r i ∈ R i , such that the set of sets of (global) pseudorandom numbers is R = Π n i=1 R i , with n the number of pseudorandom numbers. Then, at each transition function execution the next state of P-DEVS R is computed based on each global pseudorandom number r ∈ R, i.e., δ int,R (s, r) = s ′ , δext(q, x, r) = s ′ , and δcon(s, x, r) = s ′ .

(v i) l-1 i=0 = v 0 , v 1 , . . . , v l-1 generated by a corresponding pseudorandom variate generator RV G i = (RN G i , S Vi , s Vi,0 , γ Vi) (cf.
) set T ASKS = {(d, testT n()) | d ∈ D} IM M (s) ← run(T ASKS) return IM M (s) end function function COMPUTE-OUTPUTS(IM M (s), t n) set T ASKS = {(imminent, computeOutput(t n)) | imminent ∈ IM M (s)} SEN (s) ← run(T ASKS) return SEN (s) end function function ROUTE(SEN (s)) T ASKS = {(sender, route()) | sender ∈ SEN (s)} REC(s) ← run(T ASKS) return REC(s) end function procedure COMPUTE-TRANSITIONS(ACT IV E(s), t n) T ASKS = {(active, computeDelta(t n)) | active ∈ ACT IV E(s)} run(T ASKS) end procedure End
The use of pseudorandom numbers in deterministic sequential DEVS models has been discussed in the context of probability spaces [START_REF] Castro | A formal framework for stochastic discrete event system specification modeling and simulation[END_REF]. This work pinpointed cases where the previous definition may show inconsistencies as well as convergence issues (when elements are not measurable or corresponding sets infinite). However, our goal here is not to redefine a new formalism at continuous system specification level but rather to specify the deterministic foundations of the stochastic simulations achieved at computer level and how this can be modeled in P-DEVS as a first step. This does not prevent to achieve further mathematical extensions, as done in [START_REF] Castro | A formal framework for stochastic discrete event system specification modeling and simulation[END_REF].

C. Pseudorandom graph-based network

A pseudorandom directed graph generator generates a set of simple directed graphs with the same coupling probability and the same number of vertices. Definition 11. A Pseudorandom Generator of Directed Graphs (RGG) is a structure RGG = (G n,p , S G , s G0 , γ G), where G n,p is the set of all pseudorandomly generated directed graphs such that G n,p = G{n, P (arrow) = p}, with n the number of vertices and p ∈ R [0,1] the probability of choosing an arrow. Each graph G(U, A) ∈ G n,p is described by U = {1, 2, . . . , n} the set of vertices and A a set of (ordered pairs) arrows; S G = A × V coupling = U 2 × B with V coupling the set of coupling pseudorandom variates obtained by sampling corresponding (Bernouilli) coupling pseudorandom variable γ coupling ∼ B(p) 4 ; s G0 = v coupling,0 is the initial coupling pseudorandom variate; Last map γ G : G n,p × S G → G n,p is the directed graph generation map using the coupling pseudorandom variates V coupling to construct a graph G(U, A) ∈ G n,p .

Example 12. Simple graph generation

A graph G ∈ G n,p can be iteratively constructed by a pseudorandom generator of directed graphs RGG = (G n,p , S G , s G0 , γ G), with S G , s G0 , G n,p as defined previously and γ

G (G i , v i) = G i+1 , with G = ∪ i G i , G 0 (U, A = ∅)
(here the initial graph has all vertices but no edges), for i = 0, 1, . . . , n 2 -1. The length period n 2 is due to the algorithmic testing of edges, i.e., for each vertex, each arrow to each other vertex is tested.

Example 13. A directed graph G 1 (U 1 , A 1) ∈ G n1,p1 can be connected to another directed graph G 2 (U 2 , A 2) ∈ G n2,p2
with probability p, leading to a pseudorandom directed graph G(U, A) ∈ G n,p with U = {U 1 , U 2 }, A = {A 1 , A 2 , A 3 } and p the probability of choosing an arrow in A 3 from vertices in U 1 to vertices in U 2 . Algorithmically, graphs G 1 and G 2 are generated and finally G is generated coupling G 1 and G 2 with probability p.

Once the graph structure has been generated, the graph can be transformed into a network where to each node corresponds 4

IV. SPIKING NEURAL NETWORK MODEL

Mathematical modeling of a random spiking neural network is presented here. The model is specified after using the main mathematical structures presented in previous sections.

A. Biological neuron

Figure 2 depicts a single biological neuron. Most commonly, inputs from other neurons are received on dendrites, at the level of synapses. The circulation of neuronal activity (electric potentials) is due to the exchange through the neuron membrane of different kinds of ions. Dendrites integrate locally the variations of electric potentials, either excitatory or inhibitory, and transmit them to the cell body. There, the genetic material is located into the nucleus. A new pulse of activity (an action potential) is generated if the local electric potential reaches a certain threshold at the level of the axon hillock, the small zone between the cell body and the very beginning of the axon. If emitted, action potentials continue their way through the axon in order to be transmitted to other neurons. Action potentials, once emitted, are "all or nothing" phenomena: 0, 1. The propagation speed of action potentials can be increased by the presence of a myelin sheath, produced by Schwann cells. This insulating sheath is not continuous along the axon. There is no myelin at the level of the nodes of Ranvier, where ionic exchanges can still occur. When action potentials reach the tip of the axon, they spread over all terminals with the same amplitude, up to synapses. The neuron can then communicate with other following neurons. Notice that a focus on electrical signals (without dealing with chemical signals) is achieved here.

B. Model

At the model level, the network structure and the behavior of the neurons are described here. While definitions provided here are general, they are mapped in next subsection to the mathematical structures provided in subsections III-B and III-C.

The structure presented here consists of: an input layer of independent firing neurons, an intermediate layer embedding a pseudorandomly generated directed graph of neurons, an output layer of independent receiving neurons. Definition 15. The structure (cf. Figure 3) Let I, B, O be 3 finite sets with respective cardinality n, M and N . It is always assumed that M ≥ N . Let (p i) i≥0 denote real numbers in [0, 1]. For any (i, j) ∈ B 2 , assume that there exists an arrow i → j with probability p 0 , for any i ∈ I and j ∈ B, assume that there exists an arrow i → j with probability p 1 and for any i ∈ B and j ∈ O, assume that there exists an arrow i → j with probability p 2 . The dynamics in each layer is provided in next definition. In input layer, neurons fire randomly while neurons in both intermediate and output layers follow a deterministic behavior.

Definition 16. The dynamics

Assume that the activities (X t (i)) i∈I,t∈N of the sites in I and time t are i.i.d. B(p 3). Let a be a positive real number. For all (i, j, t) ∈ (B ∪ O) 2 × N, we choose i.i.d. thresholds τ i ∼ N (m, S 2), i.i.d. w i,j = 1 with probability 1p 4 and -a with probability p 4 . Then, the membrane potential P i (t) of a neuron i, initially null is updated thanks to the following rule

P i (t) = (rA i (t -1) + i∼j w i,j A j (t -1))(1 -A i (t -1))
Where, r ∈ (0, 1) is the activity remaining from time t -1, i∼j w i,j A j (t-1) is the activity received from other neurons at time t -1, (1 -A i (t -1)) reflects a refractory period of 1 (if the neuron fired at time t -1 it cannot fire at time t), and the activity of a neuron i is provided by

A i (t) = 1 if P i (t -1) ≥ τ i 0 otherwise I B O p1 p2 p0

C. Specification in PP-DEVS

The structure of Definition 15 can be set by a pseudorandom generator of directed graphs (RGG) (cf. Definition 11). The coupling of the different layers is based on Example 13 with each layer being a directed graph (with both input and output layers having no internal connections). The resulting coupled graph is finally mapped to a P-DEVS network through a Graph-to-P-DEVS Network Transformer (GNT) (cf. Definition 14).

From a dynamical point of view, each neuron i ∈ I of Definition 16 is specified as a PP-DEVS reduced to internal transitions as

M i = (Y i , S i , δ int,i , λ i , ta i)
Where, Y i = {∅, 1}, with null event ∅ (resp. 1) if the neuron is non-firing (resp. firing), S i = V f iring = B with V f iring the set of firing pseudorandom variates, internal transition function δ int,i (s, v f iring) samples the pseudorandom variable γ f iring ∼ B(p 3) indicating the activity of the neuron depending on probability p 3 , output function λ i (v f iring) sends an unitary event if the neuron is active and time advance function ta i (s) = 1 ensures the discrete time sampling of γ f iring .

Neurons in B and O of Definition 16 are P-DEVS models specified as M j = (X j , Y j , S j , δ ext,j , δ int,j , δ con,j , λ j , ta j)

Where, X j = {∅, 1} n = {∅, 1} × . . . × {∅, 1} (with n the number of inputs), Y j = {∅, 1}, S j = {{w k }, c, a, p, phase = {firing, active, inactive}} with w j the weight of corresponding input k, c (resp. c ′) the sum of received inputs at a time step t (resp. at a time step t + 1), a (resp. a ′) the activity of the neuron at a time step t (resp. at time step t + 1), p (resp. p ′) the membrane potential of the neuron at a time step t (resp. at time step t + 1), external transition function δ ext (q, x) collects the inputs received at time t, computes the next phase and the next membrane potential p ′ and activity a ′ , and after call for a next internal transition at time t+1, internal transition function δ int (s) updates p ← p ′ and a ← a ′ and reset inputs (c ← 0), if the neuron is in phase active or firing and receives an input the confluent transition function is called as δ con (s, x) = δ ext (δ int (s), 0, x), i.e., first update variables and after collect inputs, and finally time advance function ta j (s) = 1 if the neuron is in phase active or firing and ta j (s) = ∞ if the neuron is in phase inactive.

V. SIMULATION PROCESS AND RESULTS

Model generation and simulation process are introduced first here. After, the speedup results are presented and discussed. The goal of this speedup analysis is only an application proof of the whole hierarchy developed here. Gaining genericity has usually a cost. It is not our purpose here to prove the suppremacy of this approach at the parallel implementation level but rather to prove completness and applicability.

A. Environment infrastructure and graphical outputs

The steps and the elements of the process of generation and simulation of the model consist of the following sequence: (i) Initialization of all models, (ii) Graph generation using a model RGG, (iii) Graph-to-network transformation (GN T), which generates a PP-DEVS network from the graph, and (iv) Simulation.

Notice that as defined previously, each object uses one RN G for each pseudorandom variable. This ensures: (i) the statistical independence between pseudorandom variables, and (ii) the reproducibility of pseudorandom simulations [START_REF] Hill | Parallel random numbers, simulation, and reproducible research[END_REF].

Figure 4 depicts a snapshot of the graph corresponding to neurons of set B. Notice how dense is the graph connection making it difficult to differentiate edges.

B. Speed-up results

In [START_REF] Zenke | Limits to high-speed simulations of spiking neural networks using general-purpose computers[END_REF], an interesting perspective is drawn concerning the usage of clusters with low latency communication capabilities. Our idea here is to assume (even at abstract simulator level) that all the computations are centralized on a single computer, a Symmetric Multiprocessing (SMP) machine 6 . The latter allows sharing memory and minimizing the latency of communications. Besides, centralizing all the computations facilitates the control of their executions and their synchronization at each time step. Different sizes of neural networks are simulated here for different numbers of threads.

Input parameters are set to values: p 0 = p 1 = p 2 = 0.9, p 3 = 0.5, p 4 = 0.2, a = r = 1, each threshold τ i ∼ N (m, S 2), with m = 250 and S = 1. The whole simulation has been implemented in Java programming language.

The sequential execution time of methods t methods has been considered as the sum of the execution times for methods: initialization (t init), output (t out), routing (t rout), and transi- 6 Simulations have been performed on a Symmetric Multiprocessing (SMP) machine with 80 physical cores and 160 logical cores, 8 processors Intel(R) Xeon(R) CPU E7-8870@2.40GHz (stepping: 2, cpu: 1064MHz, cache size: 30720KB.), and 1Tb RAM. Each Java class main has been executed in command line using the exec-maven-plugin-1.2.1. Execution times correspond to the total (processor) time information provided by Maven. Finally, although when running the simulations the machine was possibly executing other simulations (launched by other users), the number of available threads has been verified at each simulation time and 30 replications of each simulation have been achieved showing a good confidence interval of the results obtained. tions (t trans) (cf. Algorithm 1), for different sizes of networks. Considering t total as the total parallelizable execution time, and t seq as the sequential execution time that cannot be parallelized, it has been noticed that most of the execution times of a simulation is due to the execution of these methods, i.e., t total t methods = 93.2% for 140 neurons, increasing quickly to 99.3% for 240 neurons. This shows the high parallelizability of P-DEVS simulations. Besides, it has also been noticed that most of the execution time is due to the execution of atomic output and transition functions, i.e., t total ttrans+tout = 91.51% for 140 neurons increasing quickly to 99.08% for 240 neurons.

Figure 6 presents the speedup obtained for different sizes of networks according to different numbers of threads (implemented in a pool 7). Each replication has been replicated 30 times leading to a total number of 19 × 30 × 4 = 2280 simulations. It can be seen that in each simulation, the speedup reaches a maximum which remains constant (cf. Figure 6.c and Figure 6 .d) or decreases (cf. Figure 6.a and Figure 6.b).

Each best average speedup obtained in Figure 6 is presented in Figure 7. The optimal number of pool threads is: 20 for 140 neurons, 60 for 240 neurons, 100 for 340 neurons and 50 for 440 neurons. Increasing the number of neurons the average best speedup decreases and a practical maximum speedup of 23.5 is achieved.

Finally, to investigate the parallelizability of our simulation model, let's consider Amdahl's law [START_REF] Amdahl | Validity of the single processor approach to achieving large scale computing capabilities[END_REF] as S(n) = The cap speedup obtained (while increasing the number of threads) can be explained by JVM intrinsic limitations. In [START_REF] Malinowski | Modern platform for parallel algorithms testing: Java on intel xeon phi[END_REF], different very basic experiments have been implemented in parallel for different numbers of threads (quicksort, calculation of π value by Monte Carlo method, Fast Fourier transform, discrete cosine transform, etc.) Platform consisted of an Intel Xeon Phi Coprocessor 5100 accelerator with a memory size of 8GB DDR5, an L2 cache size of 30MB, 60 cores, and a base processor frequency of 1.1GHz. For quicksort and Monte Carlo experiments, the speedup obtained shows the same cap with no improvement respectively above 30 and 60 threads. For other experiments, the results are even worse showing a decrease of the speedup above 60 threads. Furthermore, JVM opacity makes difficult further investigations of both load balancing and memory access (to test a possible memory bandwidth issue). For example, when writing these lines we were not able to find any good quality profiling software for analysing Java parallel simulation results. This is why, although we believe that better speedup results can be obtained, we recommend further investigations to use another programming language (e.g., C++).

VI. CONCLUSION AND PERSPECTIVES

This article presented a first formal bridge between computational discrete event systems and networks of spiking neurons. Parallel and stochastic aspects (and their relationship) have been defined explicitly. In P-DEVS a simple way of parallelizing simulations and a link between P-DEVS and (pseudo)random graphs/generators/variables have been proposed. Finally all these structures have been applied to a network of spiking neurons. From a simulation point of view, it can be seen that most of the sequential execution times (more than 90%) can be reduced theoretically. In practice, the simplicity obtained by centralizing most of the computations at the same place requires a strong optimization at software level and a suitable solution at hardware level.

In conclusion, although further technical investigations need to be achieved, it is believed that: the formal structures provided here allow mathematical reasoning at (computational) system level and that the simplicity of the parallel (reproducible8) implementation technique should allow further (more efficient) parallelization developments, based on our theoretical maximum speedup results.

Figure 1 .

 1 Figure 1. Simple P-DEVS trajectories.

Example 8 .

 8 For a pseudorandom variable following an exponential law γ exp ∼ Exp(λ), each realization (pseudorandom variate) is obtained by γ exp (r) = -ln(1-r) λ = v (i.e., inverting the cumulative distribution function of the exponential law). Example 9. For a pseudorandom variable following a Bernouilli distribution γ B ∼ B(p) of probability p, each realization (pseudorandom variate) is obtained by γ B (r) = v = 1 if r ≤ p 0 otherwise .

Definition 10 .

 10 A basic Pseudorandom Parallel Discrete Event System Specification (PP-DEVS) is a structure PP-DEVS = (X, Y, S, δ ext , δ int , δ con , λ, ta)

 a P-DEVS component and to each arrow a coupling. Definition 14. A Graph-to-P-DEVS Network Transformer (GNT) is a structure GN T = (G, N, {m i,j }), where G is a directed graph, N is a P-DEVS network, m i,j is a oneto-one map (from the elements of G to the elements of N) defined for: (i) vertices-to-components m u,c : U → D, (ii) arrows-to-couplings m a,c : U × U → D × D with D × D = {(a, Z a,b (a)) | a ∈ I b } the influencer-to-influencee pairs, and (iii) arrows-to-influencers m a,i : U × U → {I i } with m a,i (u, u ′) ∈ I u ′ the selection of the influencer of u ′ .

 Figure 2. Sketch of a neuron (adapted from http://fr.wikipedia.org/wiki/Neurone).

Figure 3 .

 3 Figure 3. Structure of the neuron model.

Figure 4 .

 4 Figure 4. Graph snapshot of B set.Simulations have been performed on a Symmetric Multiprocessing (SMP) machine with 80 physical cores and 160 logical cores, 8 processors Intel(R) Xeon(R) CPU E7-8870@2.40GHz 5 , and 1Tb RAM. Figure 5 presents the firing of neurons for neurons of each set I, O, and B.

 Figure 5 presents the firing of neurons for neurons of each set I, O, and B.

Figure 5 .

 5 Figure 5. Firing outputs in sets I, O, and B.

1 τseq+ 1 nFigure 6 .

 116 Figure 6. Comparison of execution time results for an increasing number of pool threads and: (a) 140 neurons, (b) 240 neurons, (c) 340 neurons, and (d) 440 neurons.

Figure 7 .

 7 Figure 7. Best average execution-time speedup for each total number of neurons.

 Algorithm 1 Main simulation loop of Root Coordinator.

	Variables:
	t l : Global time of last event
	t n : Global time of next event
	t

end : Global time of simulation end s = (. . . , (s d , e d), . . .): Global state

 Algorithm 2 Variables, procedures and functions of Executor. Variables: LW P = {lwp | n LW P ≤ n LC }: set of lightweight processes n LW P : number of lightweight processes n LC : number of logical cores T ASKS = {f d | d ∈ D}: set of tasks with f d a function to execute over d ∈ D

	t max exec : maximum execution time of a process
	Begin
	procedure SELF-INIT(n LW P)
	n LC ← getN bOf LogicalCores()
	if n LW P > n LC then
	n LW P ← n LC
	end if
	end procedure
	procedure INIT-COMPONENTS(D)
	set T ASKS = {(d, init(0)) | d ∈ D}
	run(T ASKS)
	end procedure
	function RUN(T ASKS)
	In parallel ∀task ∈ T ASKS do
	run task on available lwp ∈ LW P
	add possibly result to ResSet
	end In parallel
	lock T ASKS
	wait t max exec for each lwp ∈ LW P to terminate return ResSet
	end function
	function GET-TN(D)
	T ASKS = {(d, getT n()) | d ∈ D}
	T N EXT (s) ← run(T ASKS)
	return T N EXT (s)
	end function
	function GET-IMMINENTS(D, t n

Corresponding source code has been implemented in GRADES (Graphbased and RAndom DiscrEte-event Simulator), which is accessible at https://redmine.i3s.unice.fr/projects/compsys.

Otherwise the parallelization will be inefficient. Also it is expected then that the operating system assigns available cores to available lightweight processes.

stepping: 2, cpu: 1064 MHz, cache size: 30720 KB.

Notice that for each simulation the Java Virtual Machine added also 16 threads for garbage collection and specific to the libraries used in the simulator.

Parallelizing the discrete event execution of a scheduler, at each time step, and encapsulating each stream of random numbers in corresponding pseudorandom variable (in their turn encapsulated in atomic models) simply preserves simulation reproducibility[START_REF] Hill | Parallel random numbers, simulation, and reproducible research[END_REF]. Furthermore, the technique has also the advantage to do not require any control over the order of execution of threads (that is not guaranteed by some programming languages, e.g. Java) to preserve simulation reproducibility.

ACKNOWLEDGEMENTS

Many thanks to Gaëtan Eyheramono and specially to Antoine Dufaure who achieved a first version of the multithreaded implementation. This work has been partially funded by a contract Projets Exploratoires Pluridisciplinaires Bio-Maths-Info (PEPS-BMI 2012), entitled Neuroconf, and funded by Centre National de la Recherche Scientifique (CNRS), Institut national de recherche en informatique et en automatique (INRIA) and Institut National de la Santé et de la Recherche Médicale (INSERM).