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The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions Hj
and HD™ for an independent determination of several fundamental constants is analyzed. While
these molecules had been proposed for metrology of nuclear-to-electron mass ratios, we show that
they are also sensitive to the radii of the proton and deuteron and to the Rydberg constant at the
level of the current discrepancies colloquially known as the proton size puzzle. The required level of
accuracy, in the 10712 range, can be reached both by experiments, using Doppler-free two-photon
spectroscopy schemes, and by theoretical predictions. It is shown how the measurement of several
well-chosen rovibrational transitions may shed new light on the proton-radius puzzle, provide an
alternative accurate determination of the Rydberg constant, and yield new values of the proton-to-
electron and deuteron-to-proton mass ratios with one order of magnitude higher precision.

PACS numbers: 06.20.Jr 31.15.ac

From Bohr’s model of the atom to the advent of quan-
tum electrodynamics (QED), precision spectroscopy of
atomic hydrogen has played a key role in our understand-
ing of matter and its interaction with light. Since the first
measurement of the Lamb shift in 1947 [1, 2], the pre-
dictions of QED have been verified with an increasing
level of accuracy which, together with stringent tests in
other areas of physics, led to assume the validity of this
theory and use it to extract the values of fundamental
physical constants from experimental data [3]. Specifi-
cally, available data on the hydrogen (H) and deuterium
(D) atoms are used to extract the Rydberg constant Roo
and the charge radii of the proton (r,) and deuteron (rq).
Data from electron-proton and electron-deuteron scatter-
ing experiments also contribute in this determination.

Recently, the undisputed status of these results has
been challenged by the measurement of the Lamb shift
in muonic hydrogen [4, 5]. The very precise value of r,
deduced from this experiment is in strong disagreement
with previous determinations. The discrepancy with the
CODATA adjustment [6] amounts to 5.60, or to 4.5¢ if
only the H and D data are taken into account [3]. Sim-
ilar discrepancies on the deuteron radius can be inferred
through the very precise determination of 73 — r2 from
the 1S-2S H/D isotopic shift [7]. Although many efforts
have been undertaken in the last few years, no convincing
solution of the ”proton size puzzle” has been found so far
(see [8] for a review). One of the possible explanations is
that the error bars, both of hydrogen spectroscopy and
scattering experiments [9] were underestimated. New
scattering experiments are in preparation or underway,
including electron-proton [10], electron-deuteron [11] and
muon-proton scattering [12]. In atomic hydrogen, the 1S-
3S(D) [13, 14], 2S-2P [15], and 2S-4P [16] transitions are
under study in order to cross-check and improve previous

results. An independent determination of R, which is
strongly correlated to 7, and 74, is another way to shed
new light on this problem. Experiments on helium atoms
and He™ ions [17-19], as well as highly charged hydrogen-
like ions [20] may ultimately achieve this goal. On a more
general level, the proton size puzzle exemplifies how im-
proved and independent determinations of fundamental
physical constants from different physical systems pro-
vide essential cross checks of our understanding of the
physical world. In this work, we propose a new route
towards an independent determination of the Rydberg
constant, nuclear radii and nucleus-to-electron mass ra-
tios, relying on high-resolution laser spectroscopy of the
hydrogen molecular ions (HMI) H and HD*.

These systems have long been identified as promis-
ing for metrology of the proton-to-electron mass ratio
tpe [21, 22]. Recently, the measurement of a one-photon
rovibrational transition in HD™ led to a determination of
tpe with 2.9 ppb [23]. The current CODATA uncertainty
on [ is indeed the leading source of uncertainty of the
theoretical transition frequencies [24, 25], making it the
correct parameter to constrain from a single measure-
ment. However, similarly to atomic hydrogen, transition
frequencies in HMI also depend on R, and r, with, in
the HD™ case, additional dependencies on rq and on the
deuteron-to-proton mass ratio jigp,. This means that a
combination of n measurements on distinct transitions
(with n = 2,3,4,5) in Hj and/or HD* may allow the
determination of up to n constants out of the set of five
constants { Reo, fpe, fldp; Tp, Td } -

On the experimental side, the most attractive feature
of this approach is that it only relies on Doppler-free fre-
quency measurements of extremely narrow transitions.
Indeed, rovibrational states supported by the ground
1so electronic curve have long lifetimes of the order of



days [26, 27] in HI and tens of milliseconds [28, 29] in
HD™ . This is a significant advantage with respect to
atomic hydrogen, where only the 1S-2S transition has a
small natural width and can be measured with the high-
est accuracy [30], and a second measurement on a much
wider transition such as 2S-85(D) or 25-12D [31, 32], in-
volving an intricate analysis of systematic effects, is re-
quired for a joint determination of R and 7p.

The first step is to identify rovibrational transitions
suitable for high-resolution spectroscopy. Throughout
the paper, rovibrational states are denoted by (v, L),
where v and L are the vibrational and rotational quan-
tum numbers, and are assumed to be supported by
the ground electronic curve. Up to now, only one-
photon transitions in HD* have been observed [21-23, 33]
with a precision limited to the ppb range by Doppler
broadening. To overcome this, our proposal considers
only Doppler-free two-photon transitions in ensembles of
trapped and sympathetically cooled HMI, which would
allow improving the accuracy by several orders of mag-
nitude. The transitions can be detected by resonance-
enhanced multiphoton dissociation (REMPD), as was
done in previous experiments [22, 23, 33].

In the case of HJ , (v, L) — (v' = v+1, L) two-photon
transitions are the most favorable since the transition
strength rapidly decreases with Av = |[v" — v], as shown
in [34]. The other main requirement is efficient prepara-
tion of the ions in the initial state of the transition, which
can be achieved by resonance-enhanced multiphoton ion-
ization (REMPI) of Hy. Highly selective ion production
was demonstrated for 0 < v < 6 and L = 1,2 [35];
we choose L = 2 as these states have a simpler hyper-
fine structure (two sublevels as compared to five) [36].
The seven selected transitions are listed in Table I; spec-
troscopy of the (0,2) — (1,2) transition is being pursued
at LKB Paris [36, 37].

The fact that one-photon dipole transitions are weakly
allowed opens up different avenues for spectroscopy of
HD*. It has been proposed to probe a two-photon tran-
sition with quasi-degenerate counterpropagating pho-
tons [38], where the lasers are tuned close to resonance
with an intermediate rovibrational level in order to en-
hance the transition probability. In this case, the residual
first-order Doppler broadening is suppressed by the two-
photon Lamb-Dicke effect. State-selected ion production
is not required: HD* ions can be obtained by electron-
impact ionization of HD, after which they will relax to
v = 0 within a few hundreds of milliseconds, ensuring
sufficient population in the states (0, L) with L < 5 at
300 K; moreover the REMPD signal is enhanced by the
interaction with blackbody radiation, which continuously
recycles ions from other rotational states into the desired
state [23, 38]. Four transitions from v = 0 with an in-
termediate level (v, L") lying sufficiently close to the
midpoint energy (E(,, 1)+ E(.,1/))/2 have been identified
(see [39]) and are listed in Table II. An experiment to
measure the (0,3) — (4,2) — (9, 3) transition frequency
is currently underway at VU University Amsterdam.

Name|(v, L)|(v/, L) |\ (um)| su,. |10° s,
H2(0)] (0,2) | (1,2) | 9.1661 [-0.4657] -1.240
H2(1)| (1,2) | (2.2) |9.7321 |-0.4346 | -1.216
H2(2)| (2,2) | (3,2) | 10.350 |-0.4013| -1.194
H2(3)| (3.2) | (4,2) |11.031 |-0.3652|-1.173
H2(4)| (4,2) | (5.2) |11.787 |-0.3252| -1.153
H2(5)| (5,2) | (6,2) |12.636 [-0.2801 | -1.133
H2(6)| (6,2) | (7,2) |13.603 [-0.2279 | -1.114

H H(1S-2S) 0.00054 [-0.8502

TABLE I: Selected ro-vibrational transitions (v, L) — (v, L")
in HJ . The lower and upper rovibrational levels and the tran-
sition wavelength are given in the first three columns. The
relative sensitivities of the transition frequency on ppe and rp
(defined by Eq. (2)) are given in the last two columns. The
sensitivities of the 1S-2S transition in H, obtained from the
results compiled in [3], are given in the last line.

The next step is to compute the dependence of the
transition frequencies on fundamental constants. The
energy of rovibrational levels of HMI, calculated in the
framework of QED, may be written as:

E = Roo | Ene(pin)+ &*Fup (@) + Y Al (rn/ag)?| (1)

where « is the fine-structure constant, and ag = a/47 R
is the Bohr radius. The main contribution to E is the
nonrelativistic (Schrédinger) energy Eny(pn), which de-
pends on the mass ratio(s) p, = ppe in Hy, and pu, =
{tpe, tap} in HDT; the sensitivity coefficients OEyy /Oy
were calculated in [41, 42]. The next term corresponds to
relativistic and QED corrections. The function Fqgrp(«)
is a nonanalytic expansion which, beyond powers of «,
also contains logarithmic terms like o In?(a). In princi-
ple, the coefficients of the expansion slightly depend on
the mass ratios p,,, but this dependence may be neglected
here. All coefficients have been calculated up to order o3
(or Rya® for the energy) [24, 25]. The last term is the
nuclear finite-size correction, which comprises a single
term proportional to Tf, in H;r , and an additional term
proportional to r2 in HD* [40]. The coefficients A are
proportional to the squared density of the wave function
at the electron-nucleus coalescence point.

The dependence of a transition frequency f on a fun-
damental constant c is expressed in terms of a sensitivity
coeflicient

co Of

e = I Be (2)

where ¢y is the recommended value of the fundamental
constant ¢ and fp the transition frequency calculation
for ¢ = ¢p (and assuming recommended values for all
other constants involved). All sensitivity coefficients of
the selected transitions are given in Tables I and II. The
sensitivities to R (not shown) are very close to 1 and



Name |(v,L)|(v",L")|(v/, L) | A1 (pm) | A2 (pm)|[Aegr (pm)| Spp. | Spg, 107 50,107 sp,
HD(R)| (0,0)| (4,1) | (0,2) | 1.4040 | 1.4304 | 76.149 |-0.9848|-0.3284] -1.058 | -6.335
HD(2) | (0,1) | (1,0) | (21) | 5.3501 | 5.3857 | 809.34 |-0.4601|-0.1534 -0.619 | -3.701
HD(4) | (0,5) | (24) | (4,5) | 2.8764 | 2.8606 | 518.60 |-0.4179|-0.1394-0.601 | -3.587
HD(9) | (0,3)| (42) | (9.3) | 1.4424 | 1.4453 | 730.58 |-0.3522|-0.1175| -0.588 | -3.500
H-D D(15-25)-H(15-28) -0.9992|1.0013 | 3125 |-18722

TABLE II: Selected ro-vibrational transitions in HD™. The lower, intermediate and upper rovibrational levels are given in the
first three columns. The next two columns display the wavelengths A1, A2 of the nondegenerate two-photon transition, and
the effective wavelength Aeg = [1/A1 — 1/ )\2|_1 for absorption of counterpropagating photons. The last four columns give the

relative sensitivities of the transition frequency on pipe, pap, 7p, and rq4 (defined by Eq. (2)).

Note that the first transition

(0,0) — (0,2) is a stimulated Raman transition with copropagating photons. The sensitivities of the hydrogen-deuterium
isotopic shift of the 1S-2S transition, obtained from [7], are given in the last line.

can be taken as equal to 1 for all practical purposes. The
uncertainty due to « gives a negligible contribution to
the overall uncertainty of the transition frequencies and
will not be considered here.

The accuracy with which fundamental constants can
be determined from the measurement of several rovibra-
tional transitions depends on the uncertainty of those
measurements, and of the related theoretical predictions
from Eq. (1). It is thus essential to give a realistic assess-
ment of the accuracy that may be reached both in theory
and experiments. Concerning theory, all correction terms
of order Roa® have been calculated recently, leading to
predictions of transition frequencies with 3 — 4 x 10!
relative uncertainty [24, 25]). Based on current progress
in the theoretical description, we estimate that the ac-
curacy may be improved further by about one order of
magnitude in the foreseeable future, and we will assume
a theoretical uncertainty of 3 x 1072 for all transitions.
This involves evaluating the following corrections: (i)
two-loop self-energy at order Ro.a®, (ii) nonlogarithmic
one-loop self-energy correction of order Ro,a®, and (iii)
recoil corrections of order Rooa(m/M), which are dis-
cussed in [43-45] for the hydrogen atom case. Concerning
the experimental accuracy on two-photon transition fre-
quencies, we estimate that it may realistically reach a
level of 1 x 10712 [38]. Indeed, the uncertainty associ-
ated with the various systematic frequency shifts (linear
and quadratic Zeeman shifts, AC and DC Stark shifts,
quadrupole shift, second-order Doppler shift) can be re-
duced well below this level (see e.g. the uncertainty bud-
get in [23]). All frequency measurements can be done
with sufficient accuracy using optical frequency comb
lasers [46, 47] referenced to commercially available ce-
sium atomic clocks for traceability to the SI second.

We are now ready to estimate the uncertainty of n fun-
damental constants ¢ ... ¢, extracted from the measure-
ment of n transition frequencies fi ... f,,. Here, we follow
the approach of the CODATA least-squares adjustment
(see the Appendices E and F in [48]). Linearizing the
expressions of the transition frequencies obtained from
Eq. (1) around the recommended values co; . . . ¢op, of the

fundamental constants leads to the matrix relation

Y = AX (3)

where X and Y are column vectors with n elements
x1...Tn (resp. y1...yn) given by x; = (¢;j — coj)/co;
(vesp. yi = (fi — foi)/ foi, foi being the frequency cal-
culated for ¢; = ¢g;), and A is a n x n matrix filled by
the elements a;; = sij (relative sensitivity of frequency ¢
on the constant ¢;, as defined by Eq. (2)). Least-squares

minimization gives us the best solution X of Eq. (3), for
which the covariance matrix is [48]

G=(A"V'A), (4)
and where V is the correlation matrix of the input data
Y. To construct this correlation matrix, we add the
experimental and theoretical uncertainties quadratically.
The experimental uncertainties of different transitions
are assumed to be uncorrelated. However, theoretical
uncertainties due to uncalculated terms are strongly cor-
related since these terms are primarily in the form of
an unknown common constant multiplied by the square
of the wave function at the electron-nucleus coalescence
point [3]. Here, we assume perfect correlations.

At this point, it is instructive to compare the rel-
ative uncertainties of individual transitions frequencies
originating from each fundamental constant separately
(correlations between constants are not considered for
this evaluation). Taking the CODATA2014 uncertain-
ties, one obtains for the (0,2) — (1,2) transition in HJ:
(Ay(Roo), Ay(ppe), Ay(ry)) = (0.59,4.4,0.87) x 10711
This confirms that p,., being the main source of un-
certainty, is the parameter to be constrained from a
measurement, as previously observed [21, 23, 33]. How-
ever, in the context of the proton-radius puzzle, it makes
sense to set Ar, equal to the difference between the
muonic hydrogen and CODATA values, and increase
AR by the same factor as it is nearly perfectly cor-
related with r, (see the second line of Table III for
the values of the uncertainties). Then the contribu-

tions from the different constants are of the same or-
der: (Ay(Reo), Ay(tipe), Ay(rp)) = (3.3,4.4,4.8)x 10711,



which shows that at least two other rovibrational tran-
sition frequency measurements are required to extract
information on each constant separately. The situation
is similar in HD*; for the (0,3) — (9,3) transition
one gets (Ay(Roo), Ay(ppe), Ay(pap), Ay(rp), Ay(ra)) =
(0.59,3.3,1.1,0.41,0.42) x 107! with the CODATA un-
certainties, and (3.3,3.3,1.1,2.3,2.6) x 107! when con-
sidering the discrepancies between nuclear radii.

Our main results are summarized in Table III, which
is divided into four sections corresponding to different
(hypothetical) outcomes of the proton-radius puzzle. In
each case, we tested all possible combinations of transi-
tions among those of Tables I and IT and chose the one(s)
leading to the most accurate determinations. The general
guideline is to minimize redundancy, i.e. to select tran-
sitions having as diverse sensitivities as possible. For
example, if two measurements in H;r are required, the
best choice is to combine the most different transitions
in Table I, which are v=0—1and v =6 — 7.

We considered the following four (hypothetical) cases:
(1) Puzzle unresolved: using only HMI data. Five tran-
sition measurements in HMI yield a fully independent
determination of R, 7, and 4. As can be seen by com-
paring the third line with the first two, the accuracy of
rp, 74 and R, would approach that of the current CO-
DATA values. Importantly, the results of HMI would
provide enough resolution to shed light on the proton-
radius puzzle as the uncertainties are significantly smaller
than the related discrepancies. In addition, the uncer-
tainty of yp. would be reduced by more than one order
of magnitude over the present CODATA value, while the
uncertainty of ug, would also be significantly improved.
(ii) 15-2S measurements in H and D confirmed: using 1.5-
28 and HMI data. Combined with the H(1S-2S) result,
two measurements in H; determine R, pipe and r,. One
additional measurement in HD*, together with the H-D
isotope shift measurement [7], allows determining also
itdp and rq. Again, the accuracy is good enough to shed
light on the discrepancy, and the uncertainties of p,. and
Hdp are reduced by factors of 6 and 3, respectively.

(iil) Muonic atom experiments confirmed: using muonic
and HMI data. Assuming that r, and rq are precisely de-
termined by muonic atom spectroscopy, three HMI tran-
sition measurements allow determining R, ttpe and figp.
This would improve the uncertainty of both mass ratios
by more than one order of magnitude, and that of the
Rydberg constant by a factor of 1.7.

(iv) Puzzle resolved: using 15-2S, muonic and HMI data.
If muonic atom and hydrogen 1S-2S accuracies are con-

firmed, r,, 7¢ and R, are precisely determined indepen-
dently of HMI data. We then revert to the initial idea of
mass ratio determinations [21, 22]. A single measurement
in HJ improves Hpe Dy a factor of 14, and an additional
measurement in HD™T yields a determination of jiq, with
an eightfold accuracy improvement.

We furthermore point out that an improved value of
Itpe may be combined with the accurate electron atomic
mass determination reported by Sturm et al. [49] to yield
an improved value of the proton relative mass (reducing
the uncertainty from 9 x 10~ to 3 x 10~11). In addition,
combinations of accurate experimental and theoretical
results of HMI spectroscopy can also be exploited to set
greatly improved constraints on "new physics”, such as
the possible existence of a fifth force between hadrons [50]
or of compactified higher dimensions [51].

In conclusion, we have shown that Doppler-free two-
photon spectroscopy of Hy and HD™ is a promising route
to shed new light on the proton-radius puzzle. Depend-
ing on the progress and outcomes of ongoing experiments
(atomic hydrogen spectroscopy, electron and muon scat-
tering off nuclei), it may resolve the presently observed
discrepancy, provide an alternative determination of the
Rydberg constant, and improve the accuracy on the
proton-electron and deuteron-proton mass ratios by one
order of magnitude and beyond the 107! level. We stress
that the proposed approach is very attractive as it relies
on Doppler-free frequency measurements of rovibrational
transitions with extremely small natural linewidths, thus
relaxing the requirement of a very precise understanding
of the experimental lineshape. Similar to the role played
by muonic hydrogen spectroscopy in the proton size puz-
zle, we expect that accurate theory and measurements of
the HMI will provide essential input not only for the de-
termination of fundamental constants, but also for foun-
dational and cross-disciplinary checks of the validity of
fundamental theory and experimental tests thereof, and
for searches for new physics.
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