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GDL Meets ATL:
A Logic for Game Description
and Strategic Reasoning

Guifei Jiang!+?, Dongmo Zhang', and Laurent Perrussel?

! AIRG, University of Western Sydney, Australia
2 IRIT, University of Toulouse 1, France

Abstract. This paper presents a logical framework that extends the
Game Description Language with coalition operators from Alternating-
time Temporal Logic and prioritised strategy connectives. Our semantics
is built upon the standard state transition model. The new framework
allows us to formalise van Benthem’s game-oriented principles in multi-
player games, and formally derive Weak Determinacy and Zermelo’s The-
orem for two-player games. We demonstrate with a real-world game how
to use our language to specify a game and design a strategy, and how
to use our framework to verify a winning/no-losing strategy. Finally, we
show that the model-checking problem of our logic is in 2EXPTIME with
respect to the size of game structure and the length of formula, which is
no worse than the model-checking problem in ATL*.

1 Introduction

Logical analysis of games has been an important topic across the study of game
theory, mathematics, philosophy and computer science [1-7]. It deals with the
problems of (1). how to specify a game situation, (2). how to represent a game
strategy and, more importantly, (3). how to model strategic reasoning of game
players. A number of logical formalisms have been proposed to tackle these
problems from different perspectives.

To deal with the first problem, Parikh and Pauly proposed a logical frame-
work in which a game is treated as a program so that different games can be
combined by program connectives [5, 8]. Kaneko proposed another approach to
game description by specifying each single game as a propositional logic the-
ory [4]. A more practical approach to specify a game by the so-called Game
Description Language (GDL) [9]. The language is much less expressive than the
above mentioned game logics, but rich enough for describing any finite combi-
natorial games. This language has been used as an official language for General
Game Playing since 2005.

To address the second problem, a number of approaches have been proposed
for representing game strategies [2, 7, 10-12]. The simplest way to represent a
game strategy is to express a strategy as an action so that simple strategies
can be combined into more complicated strategies using PDL connectives [7,



11]. Zhang and Thielscher recently introduced another approach to represent
game strategies [12]. With their framework, a strategy is represented as a logical
formula in GDL. More importantly, strategies can be combined by using a pair
of prioritised logical connectives.

Some recent work has been done to tackle the third problem, mostly based
on either Pauly’s Coalition Logic (CL) or Alur et al's Alternating-time Tempo-
ral Logic (ATL) [1, 8]. Both logics use coalition modalities to specify strategic
abilities of coalitions. However, these logics use existential quantifiers to express
players’ strategic abilities, such as ‘a coalition of players has a strategy to achieve
a game property’, while description of strategies is not part of the logical lan-
guage [13]. There has been some work that extends ATL with explicit expression
of game strategies by adding a strategy term into coalitional operators to mean a
coalition commits to a strategy [3, 14, 15]. However, strategies in their languages
have to be in atomic forms with no internal structures.

None of the above mentioned work can deal with all three problems within
a single logical framework. This is actually a serious problem because without
explicitly specifying game rules, without expressing the strategies under consid-
eration, we are unable to reason about the effects of these strategies. We need
a comprehensive logical language and associated inference mechanism to define,
compare and reason about strategies. In this paper, we propose a logical language
by extending GDL with coalition operators and prioritised connectives [1, 9, 12].
Inherited from GDL, the proposed logical language can describe any finite per-
fect information game. Furthermore, by using Zhang and Thielscher’s prioritised
connectives and ATL-like coalition operators, the language can represent compli-
cated game strategies and specify strategic abilities of players. More importantly,
we provide unified semantics for both GDL- and ATL- formulas, which allows us
to formalize the game-playing principles introduced by van Benthem [7]. These
principles make it possible to formally derive two well-known results for two-
player games: Weak Determinacy and Zermelo’s Theorem. Meanwhile, we use
a generalised Gomuko game to demonstrate how to use our logical formalism
to describe a game strategy and reason about strategies. Finally, we present an
upper bound of the model-checking complexity of our logic.

The rest of this paper is structured as follows. Section 2 establishes the syntax
and semantics of our proposed logical framework. Section 3 deals with the syn-
tactical representation of strategies and demonstrates how to design strategies
and reason about strategies in our framework. Section 4 discusses the model-
checking problem of the logic. Finally we conclude the paper with a discussion
of future work.

2 The Logical Framework

In this section, we will introduce a logical language for specifying game rules and
representing game strategies, and provide semantics of the language based on the
state transition model. We call the framework the logic for Game Description
and strategic Reasoning, denoted by GDR for short.



2.1 The Syntax

The language, denoted by L, consists of the following components. Let N be
a finite set of agents and @ a countable set of propositional atoms. For each
a € N, A% is a finite set of actions that agent a can perform. We assume that
A*NA* =0 ifa#bandlet A= ],y A% A formula ¢ in £ is defined by the
following BNF:

pu=p| @ | @Ap|initial | terminal | does(a) |
wins(a) | turn(a) [O¢ | Ve | [Cle [ [Cle

wherepe @, a e N,ae Aand C C N.

Besides the standard propositional connectives!, initial and terminal are two
logical constants, specifying the initial state and the terminal states of a game.
does(.), wins(.) and turn(.) are specific propositional variables, called pseudo-
function symbols, introduced in GDL for specifying a game rule. does(a) means
that the action « is taken in this state. wins(a) means it is in a winning state
of player a. turn(a) says it is player a’s turn in the current state. The temporal
formula ()¢ is read as ¢ holds in the next stage of the game. All these language
components are inherited from GDL.

The prioritised disjunctive connective V is borrowed from [12]. The formula
p1Vpo has to be read as “achieve 1 first; if it is impossible, achieve s ”.
Different from [12], we define the prioritised conjunction A by the prioritised
disjunction:

01 A 02 =des (01 N p2)Vip1

It means “achieve both p1 and @s; if they are conflict, only achieve p1”.

The two coalition operators [C] and [C] are taken from ATL. [C]¢ says that
coalition C' has a joint strategy to achieve ¢ at the next state. [C]y says that
coalition C' has a joint strategy for maintaining ¢ forever. From the semantics
we will see that these operators are counterparts of (C)O and (C)0J in ATL.

To help the reader catch the intuition of the language, let us consider a special
family of mnk-games [16].

Ezample 1. (mk-Game) An mk-game is a combinatorial game in which two
players take turns in marking either a nought ‘0’ or a cross ‘x’ on an m x m
board. The player who first gets k& consecutive marks of her own symbol in a
row (horizontally, vertically, or diagonally), will win the game. Obviously, an
mk-game is a generalisation of Tic-Tac-Toe (m = k = 3) and Gomoku (m = 19
and k = 5).

Now we describe the mk-games in our language. Given a player a € {x,0}, let
pi; denote that grid (1,7) is filled with player a’s symbol, and af ; denote the
action that player a fills grid (7, j) with her symbol, where 1 < 7,5 < m. The
game rules can then be specified by the following formulas:

! The other logical connectives V, —, <+ and constants T, L can be defined in the
standard way.



(1) initial — turn(x) A —turn(o) A /\ ) =(p5; Vi)
,)=
m m—k+1k—1 m—k+1 m k—1

(2) wins(a) > (V V. [\Op”m\/( VoV A pL)
m—k+1m—k+1k—1 k—1

=1
—k+1 m

vV '\/1 l/\op?+l,j+l) v(© '\/1 V /\Opg—i-l,j—l)
Jj= — 1= i=k

=1

(3) teminal <> wins(x) Vwins(o) vV A (pi; Vi ;)
1,9=1
(4) does(ay ;) = —(pi; Vps ;) Aturn(a) A ~terminal

(5) Opi; o pi; V does(aj ;)
(6) turn(a) = O-turn(a) A Oturn(—a), where —a represents a’s opponent.

Statement (1) says that all grids are empty in the initial state and player x
has the first turn. (2) and (3) specify the winning states for each player and
terminal states for the game, respectively. (4) specifies the precondition of each
action (legality). (5) is the combination of the frame axioms and effect axioms:
a grid is marked with a player’s symbol in the next state if the player takes the
respective action in the current state or the grid has been filled before. The last
formula specifies turn-taking.

2.2 State Transition Model

In order to provide the semantics for the logic, we use the state transition model
to specify a game in the semantic level [12].

Definition 1 (State Transition Model). A state transition model M is a
tuple (N, W, A,w,T,U,g,t, V), where

— N is a non-empty finite set of players;

— W is a non-empty set of states;

— A= en A" where A is a non-empty finite set of actions for agent a € N.
— w € W is the initial state;

— T C W is the set of terminal states;

—U: Ax W <= W is a partial function specifying the state transitions.

— g : N — 2" is a goal function, specifying the winning states for each player;
— t: W\T +— N is a label function, specifying players’ turns.

— Vi W — 2% is a standard valuation function.

To keep our formalism simple, we assume that all actions are performed asyn-
chronously, and different players have different actions, i.e., 4N A? = () for any
a#beN.

Definition 2 (Complete Path). A sequence wy =5 wy < - "' wy, is a
complete path if

1. wo =w,wy, €T, and w; € W for all 0 <i < m;
2. a; € A for all 0 <i < m;
3. U(w;, ;) = wigq for all 0 < i < m.



Om—1

Given a complete path § = wyg =3 w; = --- Wy, we call the s
wo, -+ ,Wm on 0 reachable states. w; is the state at stage j. Let d[i] b
i-th reachable state on path §, and é[i + 1] be the direct successor of §
§. The set of all reachable states of § is denoted by W?. For each action
also let W = {w € W : t(w) = a} to denote the set of all states in »
it is a’s turn. Further more, we denote the set of all complete paths in a
transition model M as P(M ). Thus the set of all reachable states in M, de:
by WPM) “is | sepany W0 . |

A strategy for a player a is a plan of player a that determines what &
she is to take at each reachable state when it is her turn. Formally, a st
for player a is a total function f, : W N WFPM) s A such that U(w, f
is not undefined for all w € W N WP®M) A joint strategy for a coalitio
combination of its members’ strategies. Formally, a joint strategy for a coa
C C N is a total function fo : J,cc(W* N WPM) 1 A such that fo
fa(w) if w € W*. The set of all joint strategies of coalition C' is denoted b:

Given a complete path § and a non-terminal stage i (0 < ¢ < m) on
o(6,1) denote the action taken at stage i on path §. We say a complete p
complies with player a’s strategy f, if for all w € W N W?, for all i €
0[i] = w, then o(d,7) = fq(w). That is, for any reachable state w on § 7
it is a’s turn, the action taken at w on ¢ is the same as what the strate
specifies. Similarly, a complete path § complies with a joint strategy fc if {
w e WenNW?, for all i € N, if §[i] = w, then o(6,i) = fo(w).

In fact, during game playing, a player often begins to use a strategy
reaching some game state. This means a complete path § may start to cc
with a joint strategy fco after reaching some state. Let P(fc,w) denote tl
of complete paths ¢ reaching the state w at some stage ¢ where the agents
start to use the strategies fo. Formally,

P(fo,w) = {6 € P(M) | 3i d[i] = w and Vj > i 0(6,5) = fe(0[j])}

2.3 The Semantics

Before presenting the semantics for GDR, we need another notation. Let
denote the initial segment of path d up to stage i. Any complete path )
shares the same initial segment with ¢ up to stage i is denoted by ][0, i
Given ¢ € L, let

Plp,6]0,i]) = {6 € P(M) | 6[0,4] T & and M, d',i = ¢}

denote the set of all complete paths that share the same initial segment of
0 up to stage ¢ and satisfy ¢ at stage ¢. We are now in the position to giv
truth conditions for GDR formulas.

Definition 3 (Truth Conditions). Let M = (N,W, A,w,T,L,U,g,t,V) be
a state transition model. Given a complete path  and a stage i on §, we define
the notion that p € L is true at i on 0, denoted by M, 4,1 = ¢, as follows:



M,d,if=p iff pe V(i)

M,é,i = —p iff M,o,i = ¢

M,5,i):Q01/\(,02 Zﬁc Ma(s?i}:@l andMaéui}:(PZ

M, 6,1 = does(a) iff a=0(0,1)

M, é,i = initial  iff Ofi] =w

M, é,i = terminal iff §[i] € T

M, é,i = wins(a) iff dli] € g(a)

M,é,i = turn(a) iff t(0fi]) =a

M,d,i = Oy iff M,d,i+1F ¢

M, 571 |: P1V2 Zﬁ M, 571 ): ¥1, Or (’P(SOI’(S[O?Z]) =0 and M, 5al ’: 902)

M,s,il=[Cle  iff 3fc € Fc V&' € P(fe,d[i]) Vj € N if 6[i] = &'[j],
then M,¢",j+ 1 .

M5i=[Cle  iff 3fc € Fo W' € P(fo,dli]) Vi € N if oli] = 8']j],
then Yk > j, M, ¢ k = .

The interpretation for GDL components is straightforward. The last two state-
ments define the semantical conditions for the coalition operators, which is sim-
ilar to the ones in ATL. [Clp (or [C]) is true if coalition C' has a joint strategy
to make ¢ true in the next stage (or maintain ¢ from now on) for all possible
complete paths in the set P(fc,d[i]) Note that index j denotes the stage when
complete path ¢’ reaches the state 0[i]. It is possible that i # j, since two paths
may reach the same state at different stages. To show the interpretation of the
prioritised disjunction V, let’s consider the following example.

Assume that a path ¢ in a state transition model M diverges at stage ¢ due
to executing different actions as illustrated below:

02

\

01

Consider a formula does(a) Vdoes(3), which says “do action «; if « is not doable,
do B”. We check whether it is true at stage ¢ on path 4. Since § takes action (3
instead of «v at i, we have M, d,i = ~does(a) A does(3). However, this does not
mean « is not doable at 4. In fact, it can be done through 61 (M, 01,1 = does(a))
and 07 shares the same initial segment of 0 up to stage i (i.e., 01 € P(p1,0[0,1])).
Thus « is doable at i. According to the semantics, M, d,i = does(a)Vdoes(f).
This is because § picks up § even though « is doable at state i.

It is worth noting that when i = m, we have M, §, m [~ does(«) for all a € A,
M,6,m = Qg and M, d, m = [Clp for all ¢ € L. Given a state transition model
M and a formula ¢ € L, we say ¢ is globally true through a complete path 9,
denoted by M, = p, if M,0,i = ¢ for all i on 4. ¢ is valid in model M, written
as M | ¢, if M,§ = ¢ for all complete paths § € P(M). Furthermore, = ¢
means that ¢ is valid in all state transition models.



3 Strategic Reasoning

We now show how to use our logical framework to reason about game strategies.
We first formalise Johan Benthem’s description of game-oriented principles and
use them to derive two well-known results in combinatorial game theory.

3.1 Game-Oriented Principles

Johan Benthem described a number of game-oriented principles in his temporal
forcing logic [7]. These principles specify the fundamental properties of any finite
games, and they can be formally presented and proved in our framework.

Theorem 1. For any state transition model M, a € N, C;D C N and ¢, ¢,
Y eL,

(A1) If ¢ does not contain O) and does(.), then

M = [a]e <> pA(terminalV (turn(a) A[N][a]e)V \/ (turn(b) A[0][a]e))
beN\{a}

(A2) If ¢ does not contain () and does(.),

M o A0]((turn(a) Ao — [INJe) A\ (turn(b) A g = [D]p)) = [ale
beN\{a}

(A3) IfCND =0, then

M = [Cl¢ A [D]¢ — [CUD](¢ A o)

(A1) is a fixed-point recursion, which says that to maintain a property for a
whole game, a player must make sure it is true now and, before the game is
terminated, either there is a strategy so that she can maintain the property at
next step if it is his turn, or he can maintain the property at next step for all
strategies of the player who is taking his turn. Note that the property under
consideration must be state-wise (no time spanning). (A2) provides a sufficient
condition for a player to construct a strategy that maintains a property. (A3)
shows that strategic ability of disjoint coalitions is superadditive [8].

It is easy to see that these three statements are the generalisation of Benthem’s
game-oriented principles (Fact 3: C1-C3 in [7]). We formalise them and generalise
them into the multi-agent case. Interestingly, the well-known results for two
player games: weak determinacy and Zermelo’s theorem are corollaries of the
above theorem.

Proposition 1 (Weak Determinacy). Let M? be any state transition model
for finite two-player games and N = {a,b}, then

M?* = [a](terminal — wins(a)) V [b]—[a](terminal — wins(a))



Weak determinacy says in any finite two-player game with perfect information
either one player has a winning strategy or the other player has a strategy that
ensures her opponent has no winning strategy.

Proposition 2 (Zermelo’s Theorem).
M? = [a](terminal — wins(a)) V [b](terminal — wins(b))

V[a](terminal — Tie) V [b](terminal — T'ie)
where T'ie =4c5 (—wins(a) A\ ~wins(b)).

Zermelo’s theorem says in any finite two-player game with perfect information
and three outcomes (win, lose and tie), at least one of the players has a strategy
to win or to lead to a tie [17].

3.2 Strategy Representation

In this subsection, we discuss how to represent strategies in our language. We
try to represent a strategy by a normal formula. We know that a strategy is
player-specific and specifies a single action at each reachable state for a player
when it is his turn. If there is a formula that satisfies this condition, this formula
can then be a syntactical representation of a strategy for that player. This idea
leads to the following definition.

Definition 4. Given a state transition model M, a formula ¢ € L is a strategy
rule for player a if for all w € W*n WPM  A%(p w) = {a € A® : 35T
M,6,i =, 0[i] = w and o(d,1) = a} is a singleton.

Obviously not every formula ¢ € £ can be a strategy rule. The main challenge
is how to create a strategy rule from non-strategy rules (normal formulas). We
borrow Zhang and Thielscher’s idea to combine strategies using the prioritised
strategy connectives [12]. To demonstrate how they work, we use our running
example.

Consider a simple mk-game where m = 5 and k = 3. After some practice or
backward induction reasoning, we may find that the following simple ideas may
help player x to win:

Fill the center.

If filling any grid leads to win, do it.

Fill a next (an empty grid next to her own symbol).

Fill any grid.

Try (1) first; if fails, try (2); if fails, try (3); if fails, do (4).

Sl W=

These ideas can be formally represented in GDR language as follows (a €
{x,0}):
1. fill_center® =g4cs does(as 3)

5
2. attack® =gey \/ (does(aj ;) A Quins(a))
j,k=1



5
3. fill.next® =qep \/ (p?,k/\ ( does(af_q ) V does(aj_y 1) Vdoes(af_q p11)V
]7k:1
does(aj _1)Vdoes(aj . q1)Vdoes(afq —1)Vdoes(ajq k) vdoes(a?+1,k+1)))2
5
4. fill_any® =4ey \/ does(aj )
Jk=1
5. combined®” =g4c¢ fill_center®Vattack®v fill_next®v fill_any“

It is easy to see that the formula combined® can be satisfied in any state when
it is a’s turn (due to fill_any®). However, it is not a strategy rule because it can
suggest more than one actions in one state. To make it to be a strategy rule, we
need the following technical treatment.

Let B={(i,7) : 1 <1i,j <5} be the game board and < be the lexicographic
order on B, i.e., (1,1) < (1,2) < --- < (1,5) < (2,1) < --- < (5,5). For each
grid £ € B, let ¢f = V(i»j)% does(ay ;), which represents the idea of player a to
fill any grid from (1,1) up to &. We let

Sts =def (fill_center® v attack® V fill_next® vV fill_any®) A Clsm) D Ay

Observation 1. Let M be the state transition model of 53-game. For any player
a € {x,0}, S% is a strategy rule for player a.

3.3 Reasoning about Strategic Abilities of Game Players

In this subsection, we continue to use mk-games to demonstrate how to reason
about strategic abilities of a player.

A standard strategy stealing argument from combinatorial game theory shows
that there is no winning strategy for the second player in any mk-game. This
can be easily described as follows:

Proposition 3. Let M™* be any state transition model for mk-games. Then
M™F = —[o] (terminal — wins(0))

By Proposition 2, we derive that the first player x has a no-losing strategy:
M™ = [x](terminal — —wins(o))

According to Observation 1, S5 is a strategy rule for player a. We now prove
that this is actually a winning strategy for the player who has the first move
in 53-game. To this end, we say that a state transition model M complies with
player a’s strategy f, specified by a strategy rule S, denoted by Mga, if for
all complete paths 6 € P(M), 6 complies with f,. Formally, P(Mga) = {6 €
P(M) : M, |= turn(a) — S*}. With this notion, we can reason about that the
strategy specified by S%; is a winning strategy for player x in 53-game.

Observation 2. For all § € P(Msy,), M™,6 |= terminal — wins(x)

2 To avoid too much complexity, we ignore the cases when the indexes go over their
range.



This is just a simple example. In fact, our language can be used to describe
more complicated strategies for more complicated games. We have provided a
constructive approach to show Tic-tac-toe game can be forced in a draw. Cur-
rently we are working on the logical description of the winning strategy for
Gomoku game, invented by Allis et al. [18, 19], and formally prove it to be a
winning strategy instead of the computer assisted proof [20-22].

4 Model Checking

The model-checking problem for GDR is the problem of determining: for a given
GDR formula ¢, a state transition model M, a complete path § and a stage ¢
in M, whether or not M, J,i = . By establishing a translation from GDR to
ATL~*, we show an upper bound of the model-checking problem for GDR, which
is no worse than the model-checking problem for ATL*.

4.1 From GDR Model to ATL* Model

In this part, we will show any state transition model can be transformed into a
ATL* model, using the methods in [23]. The main idea is that we encode notions
like terminal, turn, wins through valuation m, rather than through separate
relations or functions. For this purpose, we redefine the set of atomic propositions
of GDR, denoted by Atgpr, as follows:

Atepr =def @ U {terminal} U {turn(a), wins(a) | a € N}

Given a state transition model M = (N, W, A,w,T,U, g,t, V) and a set of atomic
propositions Atgpr, we define an associate action-based alternating transition
system(AATS) Ty = {W',w,N, A}, --- Al p,7,9' 7} with the same set of
agents N = {1,--- ,n} and initial state w, and such that @’ is constructed in
the following manner.

Definition 5. Define a translation ST: Atgpr — Atarrp+ associating every
atom in Atgpr with an atom in AT A7« :

ST(turn(a)) = turn(a) ST(wins(a)) = wins(a)
ST(terminal) = terminal ST(p) = p for all p € &

Then we next define the set of atomic propositions @’ as a set of atoms such
that
— for all p € Atarr+, p € PD'.
— done(a) € @' for all a € |J,. y A representing actions that are done in the transi-
tion from previous state to current state®.
— initial € &' and s, € &' where s, is a special atom to specify a ’sink state’ which
is the only successor of a terminal state and itself.

The other components of Ty, are constructed as follows:

3 Note this concept as well as the following two concepts sink state and fin; is bor-
rowed from [23].



— W' =W1UW> where W1 =W and W = {s,, | w € W1} including sink states.

— A, = A; U {noop;} U{fin;} where for all 1 <i <n A; is the same as that in M,
noop; means player ¢ does nothing, and fin, is an action for the terminal and sink
states

— p:Uen A; — W' is an action precondition function such that

e for any o € UleN pla) ={w e W | U(w, ) is defined.};
e for any 1 <i<n, p(noop,—) = W\T;
e for any 1 <i <mn, p(fin;) =WaUT.
— 7: Al x - x A, x W < W’ is a partial system transition function such that
o forall @ € Ay x -~ x A, and w € W, if t(w) = 4, then 7(a,w) = U(as,w)
where a; € Aj;;
o forall we T, 7((fini, -+, finy) ,w) = Sw;
e for all s, € Wo, 7((fini, -, finn), Sw) = Sw.

— 7 : W' — 2% is a valuation function such that for any w € W' w(w) is a set of

atoms satisfying the following conditions:
(1) for all w € W,
e for any p € &, p € V(w) iff p € w(w);

w € T iff terminal € (w);

for any a € N, t(w) = a iff turn(a) € 7(w);

for any a € N, w € g(a) iff wins(a) € 7w(w);

initial € w(W);

done(a) € w(w) iff 0(6,i) = a and d[i + 1] = w.

(2) for all s,y € Wa, 7'(sw) = 7' (w)U{sL }U{done(fin;) | 1 < i < n}\{done(a)

| € Ujen Ai}-

Given a complete path § in M, we extend d to an infinite path (computation)
in 7y with the sink state labelled by the terminal state of . We denote it by 5.
We use d[i, 0] to denote the infinite subsequence of ¢ starting at stage i.

4.2 Translation from GDR to ATL*

We next define a translation map from GDR formulas to ATL* formulas to make
GDR embedded into ATL*.

Definition 6. A translation ST* from GDR formulas to ATL* formulas is de-
fined as follows:

— ST(p) = ST(p) for all p € Atepr

— ST*(initial) = initial

— ST () = =S5T"(9)

= ST (p1 A p2) = ST (p1) A ST (p2)

— ST*(does(a)) = Odone(a)

— ST (p1Vp2) = ST (p1)V({(0) ST (1) A ST"(p2))
= ST (Op) = O(=s1L — ST (¢))

— ST*([Clp) = ((C)) O (msL = ST (p))

— ST([Cp) = (C)N(@O)(msL = ST"(¢))



With this, we have the following correspondent result between the state tran-
sition model and its associated AATS with respect to the translation.

Lemma 1. Given a state transition model M, a complete path 6 in M and a
stage © on 0, for any GDR formula ¢ € L,

(1) if ST*(¢) is an ATL* state formula, M,8,i =apr ¢ iff Tar,0[i] Earrs
ST*(); )

(2) if ST*(p) is an ATL* path formula, M,0,i Ecpr ¢ iff Tar,0[i, 0] Earns
ST (¢).

It follows that the model-checking problem for GDR is no more complicated than
ATL*. Since the model-checking problem for ATL* is 2EXPTIME-complete[l],
then we have the following result.

Theorem 2. The model-checking problem for GDR is in 2EXPTIME.

5 Conclusion

We have presented a unified logical framework for game description, strategy
representation and strategic reasoning. The language of the framework combines
GDL, ATL and prioritised strategy connectives. To minimize the complexity
of this language, we took a cautious way of doing that. We do not introduce
until operator U and legal(). We have demonstrated that our language is rich
enough to express generic game results such as Weak Determinacy and Zermelo’s
Theorem as well as complicated game strategies.

Most of the related work has been discussed in the introduction. Besides that,
the following is also worth mentioning.

Ruan et al. studied the relationship between GDL and ATL [23]. Different
from our motivation, their goal is to use ATL to reason about GDL-specified
games. Therefore, instead of integrating language components, they focus on
how to transfer a GDL game specification into an ATL specification.

We would also like to mention that there are three essential differences be-
tween Zhang and Thielscher’s work [12] and ours. Firstly, their definition of the
prioritized connectives was based on the semantics of strategies rather than on
the semantics of the logic. Strictly speaking, their prioritized connectives are
not part of their logical language. However, our ones are part of the logical lan-
guage. Secondly, we define these connectives as binary operators while theirs are
multiple tuple operators. The prioritized conjunction operators diverge when ar-
guments are more than two due to non-associativity. Thirdly, their work does
not have the facility for reasoning about strategic abilities of players.

There are many directions for future investigations. Firstly, our approach may
be used in the development of general game players. Since GDL is the native
language for general game playing, with further extension of prioritised strategy
connectives, a player would be able to combine simple actions into more com-
plicated actions. Secondly, with our approach we may be able to provide logical



solutions for already solved games, such as Connect Four and Gomoku, instead
of the computer assisted solutions [20-22]. With the help of model-checking ap-
proach, we may be also develop solutions for some unsolved games. Moreover, it
would be interesting to investigate the epistemic extension of the current frame-
work so as to study the beliefs of other players’ strategies.
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