
HAL Id: hal-01316836
https://hal.science/hal-01316836

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interplay of Security&Dependability and Resource using
Model-driven and Pattern-based Development

Brahim Hamid

To cite this version:
Brahim Hamid. Interplay of Security&Dependability and Resource using Model-driven and Pattern-
based Development. 14th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (IEEE TrustCom-15), Aug 2015, Helsinki, Finland. pp. 254-262. �hal-01316836�

https://hal.science/hal-01316836
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15448

The contribution was presented at :
https://research.comnet.aalto.fi/Trustcom2015/

To cite this version : Hamid, Brahim Interplay of Security&Dependability and
Resource using Model-driven and Pattern-based Development. (2015) In: 14th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (IEEE TrustCom-15), 20 August 2015 - 22 August 2015
(Helsinki, Finland).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Interplay of Security&Dependability and Resource using Model-driven

and Pattern-based Development

Brahim Hamid

IRIT, University of Toulouse

118 Route de Narbonne,

31062 Toulouse Cedex 9, France

hamid@irit.fr

Abstract—Several frameworks have been proposed
to help designers of embedded system applications.
However, we currently lack methodological tool sup-
port to take into account the interplay between secu-
rity&dependability and resource properties. In this
work, we propose a modeling environment which
associates model-driven paradigms with security and
dependability patterns to ensure that the combina-
tion of security and dependability solutions fit on the
targeted hardware platform. The resulted framework
will serve as a tool to estimate the resources con-
sumed by the security and dependability solutions at
early stages of design to help the designer to avoid
resource conflicts at run-time. In addition, we provide
an architecture for development tools to support
the design and the analysis of pattern-based secure
and dependable applications. Finally, we apply it in
practice to a use case from railway domain with strong
security and dependability requirements.
Keywords. Security, Dependability, Resource, Pat-
tern, Model-driven Engineering, Embedded Systems
Engineering.

I. Introduction

Embedded systems share a large number of common
characteristics, including real-time and physical con-
straints (e.g. temperature), as well as energy efficiency
requirements [1]. Furthermore, many embedded systems
also have assurance requirements, ranging from very
strong levels involving certification (e.g. DO178 and
IEC-61508 for safety-relevant embedded systems devel-
opment) to lighter levels based on industry practices.
Consequently, the conception and design of embedded
systems is an inherently complex endeavor. In par-
ticular, non-functional requirements from Security and
Dependability (S&D) are exacerbating this complexity.
This is especially true for Resource Constrained Embed-
ded Systems (RCES), as they refer to systems which
have memory and/or computational processing power
constraints. The generation of RCES therefore involves
specific software building processes.
Security&Dependability solutions may have a vast im-

pact to the rest of the system, for example an improved
rigorous authentication mechanism may degrade perfor-

mance; and vice-versa system resource restriction may
potentially compromise security, for example using light
cryptographic mechanisms is usually performed to boost
performance but may pose security risks. Therefore the
system’s resource constraints and S&D cannot be consid-
ered in isolation, but they need to be studied in tandem
as quality attributes. However, in many cases security
and dependability engineering and system engineering
are “islands”, in the sense that the disciplines work
independently of one another. In addition, in system
engineering, S&D may be compromised in several system
layers and lifecycle stages. Usually, S&D are considered
when design decisions are made leading to potentially
conflicting. This brings tremendous challenges during
system integration and evolution. The interplay between
requirements engineering and architecting has been well
established [2] but we lack methods and tools to support
it [3].
Model-based system engineering and Model-Driven

Engineering (MDE) promote the integration of S&D
issues into the complete engineering process [4]. When
S&D requirements are determined, architecture and de-
sign activities are conducted using modeling-techniques
and tools for higher quality and seamless development.
On the other hand, the integration of S&D features using
this approach requires the availability of system archi-
tecture expertise, application domain specific knowledge
and S&D expertise at the same time to manage the
potential consequences of design decisions on the S&D of
a system and on the rest of the architecture attributes.
For instance, at architectural level, security means to
have a mechanism (it may be a component or integrated
into a component). Hence capturing and providing this
expertise by means of S&D patterns can enhance sys-
tems development by integrating them in the different
development life-cycle stages.
In [5], we have studied pattern modeling frameworks

and proposed semi-formal representation of security and
dependability patterns using metamodeling techniques
and provided accompanying formal specification to vali-
date their security and dependability properties. In this

paper, we go one step further: we propose a modeling
framework for the specification and analysis of secure
and dependable pattern-based software and system ar-
chitecture for RCES using patterns. Special emphasis
will be devoted to promote the particularly challenging
task of efficiently integrating security and dependability
solutions, within the restricted available resources for
embedded system, by design to foster reuse. At the core
of the framework is a set of Domain-Specific Modeling
Languages (DSML) [6] and model transformations that
allow modeling a set of modeling artifacts, including pat-
tern, resource and property models. The pattern is the
first class citizen of these modeling artifacts to describe
security and dependability solution. The resource will
capture the computing system platform and the property
will allow to govern the use of patterns and their analysis
for reuse.

The rest of the paper is organized as follows. In
Section II, we present a review of the most important
related work. In Section III, we outline our overall
approach for pattern-based engineering methodology.
Section IV presents the management of S&D pattern-
based architecture during the software development life-
cycle with analysis activities. In Section V, we describe
an model-based development framework to support the
methodology. Section VI describes the usage of the
defined modeling framework in the context of pattern-
based RCES applications through a case study from
railway domain. Finally, section VII concludes and draws
future work directions.

II. Related Work

The ideas of system architecture, security and de-
pendability modeling and analysis are not new but, to
the best of our knowledge, the interplay and integration
of system security&dependability and the rest of the
architecture is. In this section we describe prior work in
these areas and discuss their relationship to our work.

There has been a renewed interest in how to support
the Twin Peaks model [7], in a wide range of aspects
such as: theoretical frameworks for relating requirements
and architecture, tools and techniques such as goal-
oriented inference and uncertainty management, prob-
lem frames and service composition. There has also been
a discussion on the similarities between the problem and
solution space and the way of interpreting requirements
and design decision based on the viewpoint of a stake-
holder [8]. More relevant to the topic of this paper, there
are also approaches for applying the Twin Peaks model
in the context of security [9]. [10] presents an approach
for the identification of inconsistencies of models in
the context of Model-based System Engineering using
pattern matching and multi-graphs based formalism.

Several proposals exist in the literature to deal with
patterns for security and dependability concern. They
allow to solve very general problems that appear fre-
quently as sub-tasks in the design of systems with secu-
rity and dependability requirements. These elementary
tasks include secure communication, fault tolerance, etc.
A framework for the development of dependable software
systems based on a pattern approach is proposed in
[11]. The pattern specification consists of a service-based
architectural design and deployment restrictions in form
of UML deployment diagrams for the different archi-
tectural services. [12] reports an empirical experience,
about the adoption and eliciting S&D patterns in the
Air Traffic Management (ATM) domain, and show the
power of using patterns as a guidance to structure the
analysis of operational aspects when they are used at
the design stage. [13] presented an overview and new
directions on how security patterns are used in the whole
aspects of software systems from domain analysis to the
infrastructures.

In this paper, our aim is to support the interplay
between S&D solutions and the resource constraints of
the system using property model as an intermediate
model. We will provide a set of domain-specific modeling
languages and metamodels that will support software en-
gineers in specifying the system constraints and require-
ments for the security and dependability and resource
constraints interactions. As part of this objective we will
focus on patterns to describe security and dependability
solutions and on resource models to specify customized
system and software architectures considering different
concerns (e.g. target platforms, S&D quality attributes
required by applications, etc.).

III. Approach: Contribution to the modeling
of S&D applications

Security and dependability are not building blocks
added to an application at the end of the life cycle. It
is necessary to take into account these concerns from
the requirement to the integration phases. From another
perspective, in system engineering, security and depend-
ability may be compromised in several system layers.
Usually, security and dependability are considered when
design decisions are made leading to potentially conflict-
ing design requirements. The integration of security and
dependability features requires the availability of a sys-
tem architect, an application domain specific knowledge
and a security and dependability expert at the same time
to manage the potential consequences of design decisions
on the security and on the dependability of a system
and on the rest of the architecture. For instance, at
architectural level, security means to have a mechanism
(it may be a component or integrated into a component).

We promote a new discipline for system engineering
using a pattern as its first class citizen, towards meeting
our wider objective: Pattern-Based System Engineering
(PBSE). Therefore, PBSE focuses on patterns and from
this viewpoint addresses two kinds of processes: the pro-
cess of pattern development and the process of system
development with patterns. The main concern of the first
process is designing patterns for reuse and the second
one is finding the adequate patterns and evaluating
them with regard to the system-under-development’s
requirements. As well, we add a repository as a tier
which acts as intermediate agent between these two pro-
cesses. A repository should provide a modeling container
to support modeling artifacts life-cycle associated with
different methodologies.
The conceptual vision of our process model is vi-

sualized in Fig. 1. In this vision, the developer starts
with the system specification fulfilling the requirements.
In a traditional approach (non pattern-based approach)
the developer would continue with the architecture de-
sign, module design, implementation and test. In our
vision, instead of following these phases and defining
new modeling artifacts, that usually are time and efforts
consuming as well as errors prone, the system developer
merely needs to select appropriate patterns from the
repository and integrate them into the model of the
system under development.

Figure 1. Pattern-based System and software Engineering

Once the repository1 is available, the usage of this
process proceeds as follow (the numbers in parentheses
correspond to the numbers in Fig. 1). The developer
creates a model representing the target platform im-
porting appropriate resource models from the repository
(1). For the software part, the system developer executes
the search/select actions from the repository to import
patterns building a pattern system configuration (2).
For each of these configurations, a mapping through

1The repository system populated with S&D patterns and mod-
els

an allocation process is executed (3). The allocation
supports the links between a pattern and its required
resources from the platform model. The result of the
allocation, as the platform model and a configuration
for a model of a system of patterns, is then used for
analyzing (4) the resource consumption of the patterns
with regard to the resources defined in the platform
model (e.g. memory, processing power). The result of
the analysis is then delivered for evaluation (5). The
developer can then use MDE techniques, such as refine-
ment, for implementing the system using the appropriate
pattern system configuration (6).

IV. S&D Pattern-based Architecture
Modeling and Analysis

In our context, we have identified three kind of model-
ing artifacts: (1) resource models to describe platforms,
(2) S&D patterns to describe software and system secu-
rity and dependability solutions and (3) property models
as intermediate models to serve primarily to govern the
use of patterns and to evaluate their level of security as
well as their resource consumption for analysis and reuse,
with regard to the targeted platform. This approach
aims to define an engineering discipline for S&D applica-
tions that is adapted to resource-constrained embedded
systems. We now present a set of definitions and concepts
that might prove useful in understanding our approach.

Adapting the definitions of [14], we propose the
following:

Definition 1 (System of S&D Patterns.): We define a
security and dependability system of patterns as a col-
lection of security and dependability patterns forming
a vocabulary. Such a collection may be skillfully woven
together into a cohesive whole that reveals the inher-
ent structures and relationships of its constituent parts
toward fulfilling a shared security and dependability
objective.

Definition 2 (System of S&D Patterns Configuration):
A system of S&D patterns configuration is a subset of a
system of patterns composed of a list of S&D patterns
and a list of relationships between these S&D patterns.
It will be used to specify one possible structure of
an application based on S&D patterns which will be
deployed on a platform.

In the following, we show how we integrate a pattern
from the input pattern system (i.e. from the reposi-
tory) in pattern system configuration using the potential
relationships between patterns. Then, we describe the
analysis in terms of resource consumption to help during
the pattern selection activity regarding the target plat-
form. Mainly, we focus on the support of consistency be-
tween S&D architectural design decisions and platform
resource models through patterns.

A. Pattern System Configuration Management

A system of pattern is composed of a set of patterns
and their relationships (see Definition 1). Let S be a
system of patterns. We denote by P (S) and R(S) the
set of patterns and the set of the relationships of the
system of patterns S, respectively. Each relationship
is associated with a relationship type [15], denoted by
referenceKind, and each pattern is associated with a
list of its relationships, denoted by references. Let Sc

and Si denote the complete system of patterns and the
initial configuration of the system of patterns, respec-
tively. To define a set of system of patterns configura-
tions, denoted by Sg, we propose in Listing 1 a simple
algorithm called configurationGen.

1 Algorithm conf igurat ionGen
2 Input : Sc , Si , r e f e r e n c e K i n d .
3 Output : {Sg } .
4 for each Pattern in the P(S i) do
5 for each Reference in Pattern . r e f e r e n c e s do
6 i f Reference . r e f e r e n c e K i n d = r e f e r e n c e K i n d
7 dupl icateModel (Sg , S i)
8 r e p l a c e P a t t e r n (Sg , Sc , Pattern ,

r e f e r e n c e d P a t t e r n)
9 save ()

10 e n d i f
11 endfor
12 endfor

Listing 1. Configuration generation algorithm

This algorithm takes as input Sc and Si and a ref-
erenceKind from R(Sc) to find further configurations
which are equal to Si with respect to the relationship
(i.e. referenceKind). The base of the system of patterns
(Si) is parsed and for each pattern in this system
equal patterns (with respect to the referenceKind) are
looked up in the complete system of patterns (lines
3 and 4). If a pattern is found, a new configuration
(newConfig) is generated from the base system (line
7) and the pattern (Pattern) from Si is replaced by the
equal pattern (referencedPattern) from Sc. If multiple
patterns are equal to a pattern in the base system,
multiple configurations (one for each equal pattern) are
generated. This algorithm allows to generate equal (e.g.
similar, alternative) pattern system configurations and,
later on, to analyze these different configurations.

B. Pattern-based System Model Analysis

Once the platform was specified using resource mod-
els, the analysis activity will be used to calculate re-
source consumption values and to incorporate these
information into system models. For that, we provide in
Listing 2 a simple algorithm to calculate the resource
usage of a pattern system configuration (Sg) for a
platform (R). This algorithm parses the used patterns
for their consumption of different resources defined in

the platform model (e.g. memory, processing power)
and adds these up. The result is then injected into the
platform model.

1 Algorithm CalculateResourceUsage
2 Input : Sg as a system o f pattern c o n f i g u r a t i o n

model
3 InputOutput : R as a plat form model
4 f o r each Property pr in R
5 f o r each Pattern p in the P(Sg) do
6 f o r each P. Property do
7 i f (P. Property . category=pr . category) then

8 pr . va lue :=sum(pr . value ,P. Property . va lue)
9 endfor

10 endfor
11 endfor

Listing 2. Resource consumption computing algorithm

For each identified property, the algorithm loops over
all the patterns composing the system of patterns config-
uration (Sg). For each pattern (line 5), all its properties’
categories (line 6) are compared to the category of the
R resource property, and if matching (line 7) the values
are summed up (line 8). The result is then stored as the
value of the value of the platform resource property.

V. Model-Based Development (MBD)

In this section we describe an MDE framework to
support the previous approach. We use metamodeling
and model transformation techniques for the specifica-
tion and analysis of secure and dependable system and
software architecture. However, the approach does not
prescribe a fixed set of metamodels and model transfor-
mations to be used. As mentioned earlier, the approach
only focuses on security and dependability requirements
that directly influence the available platform resources.

A. Artifacts Modeling Languages

Here, we provide a description of a set of modeling
languages for the specification of the identified set of
modeling artifacts: S&D patterns, property and resource
models. As we shall see, S&D and resource models are
used as model libraries to define the S&D and resource
properties of the pattern. Therefore, a pattern can be
stored in a repository and can be loaded according to
the desired S&D and resource properties.

1) A Metamodel for Non-Functional Properties
(GPRM).: The Generic PRoperty Metamodel (GPRM)
is a metamodel defining a new formalism for describing
property libraries including units, types and property
categories. The following paragraph details the meanings
of the principal classes of the GPRM Metamodel, which
is depicted with Ecore notations in Fig. 2.

• GprmProperty. A property is a basic attribute shared
by all members of an artifact (pattern, resource, etc).
As we shall see, it will be used to define pattern and
resource properties (see SERM and SEPM metamodels).

GprmMeasurementT...

symbol : EString

GprmPropertyCateg... GprmType

GprmPrimitiveType

GprmProperty

computable : EBoolean

GprmResourceCategory

GprmValueSpeci!cation

description : EString

GprmSimple...

types 1..*

valueSepci"cation0..1

category 1

gprmProperty0..1

resourceCategory

0..*

inherits
0..*

inherits

0..*

defaultType 1

Figure 2. The (simplified) GPRM Metamodel

The property is defined by its category, its type and its
value.
Example. CPU execution time for encryption and en-
ergy consumption for encryption are two properties
(resource-related) of the pattern SecureCommSSL.

• GprmPropertyCategory. A property category is a clas-
sification for properties. Its role is to group all the
properties sharing common characteristics. These char-
acteristics may depend on the user or application do-
main viewpoint. A category supports a set of types that
define the nature of the property, it can also be defined
based on other categories by specialization. A category
is defined with at least one default type.
Example: CPUTime is a category of resource properties
and Authenticity is a category of S&D properties.

• GprmResourceCategory. A resource category is a classi-
fication for resources. Its role is to group all the resources
sharing common characteristics. These characteristics
may depend on the user or application domain view-
point. The main categories are those related to comput-
ing, data storage and to energy consumption. However
other categories may be defined such as peripheral,
sensor, actuator, etc. A category may also be built based
on existing categories by specialization.

2) A Metamodel for Resource (SERM).: In the de-
velopment context defined in our approach, embedded
platforms are seen as a composition of (hardware) re-
sources. Resources are pieces of the platform and can
be combined and linked together without having an
external observable state. The System and Software
Engineering Resource Metamodel (SERM) is a meta-
model for describing resources and their properties, as
described with Ecore notations in Fig. 3. The meanings
of the principal classes are more detailed in the following
paragraph.

• SermResource. Is a modeling artifact which represents
a piece of the platform. It defines a set of parameters
that will be later used by the framework to automate
the analysis of applications based on S&D patterns.
Example. IntelAtom Z530 and DDR2 RAM are two
hardware resources for computing and data storage,
respectively.

• SermResourceCategory. It is an GprmResourceCategory
denoting a classification of a resource. Example. As com-
puting resource categories we can define CPU, FPGA,
DSP, etc. Therefore, the IntelAtom Z530 belongs on

SermPropertyGprmProperty

(from gprm)

yyyyy

SermResource
SermResourceCategory

GprmResourceCateg...

(from gprm)

....

SermModel

properties0..*

category

1

resourceCategories

0..*

resources

0..*

Figure 3. The (simplified) SERM Metamodel

CPU resource category and the DDR2 RAM belongs
on RAM resource category.

• SermProperty. It is an GprmProperty denoting a partic-

ular characteristic of a resource.

3) A Metamodel for S&D Patterns (SEPM).: The
System and Software Engineering Pattern Metamodel
(SEPM) is a metamodel for describing S&D patterns,
and constitutes the base of our pattern modeling lan-
guage. Here we consider patterns as sub-systems that
expose services (via interfaces) and manage S&D and
Resource properties (via features) yielding a unified way
to capture meta-information related to a pattern and
its context of use. The following paragraph details the
principal concepts of the SEPM metamodel to specify
an S&D pattern, as described with Ecore notations in
Fig. 4.

• SepmPattern. This block represents a security pattern
as a subsystem describing a solution for a security par-
ticular recurring design problem that arises in specific
design context. A SepmPattern defines its behavior in
terms of provided and required interfaces.

• Interface. A SepmPattern interacts with its environment
with Interfaces. We consider two kinds of interface:

– SepmExternalInterface. Allows implementing inter-
action with regard to the integration of a pattern
into an application model or to compose patterns.

– SepmTechnicalInterface. Allows implementing in-
teraction with security primitives and protocols,
such as encryption, and specialization for specific
underlying software and/or hardware platforms,
mainly during the deployment activity.

• SepmProperty. Is an GprmProperty denoting a partic-
ular characteristic of a pattern related to the concern
it is dealing with and dedicated to capture its intent in
a certain way. For instance, security and dependability
properties.

Example. We illustrate the usage of the SEPM for speci-

fying a pattern with the example of secure communication

pattern based on SSL2 mechanism. Here, we specify an

S&D property: “authenticity of sender and receiver”. To type

the category of this property we use a category from the

earlier defined in the S&D category library: Authenticity.

Moreover, we identify some resource properties, such as

“CPU resource time for encryption” and “CPU resource time

2The TLS Protocol Version 1.2. rfc5246, 2008.

for authentication” that belong to category CPUTime, and

“extra energy cost for encryption” and “extra energy cost for

authentication” that belong to category PowerConsumption.

SepmPattern

publisher_identity : EString

origin : EString

also_known_as : EString

consequences : EString

problem : EString

context : EString

examples : EString

SepmDSPattern

SepmInterface

kind : SepmInterfaceKin

SepmKeyWord

name : EString

SepmDIPattern

SepmExternalInterface

SepmTechnicalInterface

SeArtefact

(from core)

SepmPrope...

SepmConstraint

GprmProperty

(from gprm)

tyyytyyy

keywords1..*

0..*

0..*

properties

0..*

constraints

0..*

Figure 4. The (simplified) SEPM Metamodel

4) A Metamodel of system of patterns.: According
to Definition 1, an S&D pattern system is a modeling
artifact system where its constituent parts are S&D pat-
terns and their potential relationships. In the following
we detail the meanings of the principal classes of the
pattern system metamodel, which is depicted with Ecore
notations in Fig. 5.

• SepmSystemOfPatterns. A system of S&D patterns de-
scribes the relationships and the linkage among individ-
ual patterns (SeReference). Thus dependencies between
specific problems can be considered in a comprehensive
way.

• SeReferenceKind. We use an enumeration to define a set
of types of links between S&D patterns as an extension
of the relationships classification proposed in [15].

– refines. It is used to represent the refinement rela-
tionship between two patterns.

– specializes. It is used to represent the specialization
relationship (detail).

– uses. It is used to represent the functional depen-
dency relationship between two patterns.

– isSimilar. It allows to link two patterns that per-
form the same functionality. This link is often
used to link software patterns to their equivalent
hardware patterns.

– isAnAlternative. It allows to link tow patterns that
solve the same problem, but propose different solu-
tions.

B. System of Patterns Configuration Analysis

For the analysis, we propose to use model transfor-
mations techniques to calculate resource consumption
values and to incorporate the results into system models.
According to the describable artifact, we introduce a
new kind of properties to be described as a computable
characteristic using the attribute computable (see Fig-
ure 2). Hence, the value of the property could be defined
either by the designer during the design activity or by
calculation during the analysis activity. In this case, the
corresponding instance of GprmProperty (GPRM) has
the computable attribute set to “true”.

����������	

�
���������	����������	�

���	�������	�

������	��	����������	�

��	���
�	����������	�

��������������	�

��	�����������	�

���������������	�

����������

����������

�����������

���	
��	���

�����������������������������
!!�	
������	""

��#�����	��$	�

����������

���

�%���&�

����	��'	

��	�����(��

��������'�

������)��

��	����)��

���	��

����)��

�#���)��&�

������

��	�����	��*�

""""

���
�	���

���
��	����� ���
�	��������

���
�����
����������

�	����
�

�������� ����

��	����������� �	�������������

����������

����

��������������

��� ��
�

������������

Figure 5. A metamodel of a system of patterns

The overview of the framework’s transformations is
shown in Fig. 6. The concepts of the transformations
are expressed (i.e. Transformation Specification) using
the Source Metamodel(s) and the Target Metamodel(s).
Once specified, transformation is run (i.e. Transforma-
tion execution) taking as input the Source Model(s) and
producing as output the Target model(s).

Figure 6. Overview of the framework’s transformations

C. Design and Analysis Tools

Using the proposed metamodels and the Eclipse Mod-
eling Framework (EMF) [16], ongoing experimental work
is done with Semcomdt 3(SEMCO Model Development
Tools, IRIT’s editor and platform plugins) as a Model-
Driven Engineering tool-chain supporting the proposed
metamodels. All used metamodels are specified using
EMF. For the description of the model transformations,
the QVT Operational language4 is used. We build a set
of software tools, for instance for design, for populating
the repository and for retrieval and transform from the
repository. Moreover, we provide tools to support the

3http://www.semcomdt.org
4http://www.omg.org/spec/QVT/

management of systems of patterns, the generation of
configurations and the transformations for analysis.
The resource designer called Matho includes features

supporting the design of resource category libraries, the
design of platform resources, deposit to and retrieval
from the repository through access tools. Although the
tool allows to mix resource categories and resources in
the same model (conforming to the definition of SERM
metamodel), we recommend to separate these artifacts
in two different models. The first is used to define the
libraries of resource categories; and the second is used
to describe the platform resources by importing and
using the previous resource category libraries to type the
resources. The pattern designer called Arabion is used
to populate the repository with patterns conforming to
SEPM metamodel, to model the system of patterns and
to derive configurations from systems of patterns.
Using the algorithm proposed in IV-A, we generate

a set of configurations that will be simulated with the
platform in order to select the ones that give the best
resources consumption trade-off. To traverse the model
of the platform, the pattern system configuration and to
perform calculations of resource consumption, such as
depicted in Listing 2, we developed a M2M transforma-
tion using the Eclipse implementation of QVTO.

VI. A Case Study

We demonstrate the applicability of our proposed
framework through the Safe4Rail demonstrator [17]
which is a simplified version of a real ETCS (Eu-
ropean Train Control System) signaling, control and
train protection system. The main functionality of this
demonstrator is to supervise that traveled speed and
distance do not exceed authorized maximum values
provided by the railway infrastructure. In the following
sub-sections, we focus on the European Vital Computer
(EVC) subsystem’ platform that executes the safety ap-
plication. For the sake of simplicity, many functionalities
of this case study have been omitted. As we will see,
the architecture will be incomplete, since the approach
only focuses on the description of the system platform
that directly influence the security and dependability
requirements. The hardware part of this subsystem is
composed of a carried board on which is installed a
conga-CA board with a microprocessor (Intel Atom
Z530), a RAM (DDR2 RAM) and a set of interfaces
for the connections. The conga-CA is accompanied with
an additional programmable resource calculation unit
(FPGA-Spartran).

A. Identification of Patterns

The architects analyze system safety and security re-
quirements and mentally identify possible architectures
and safety solutions to be used. Fig. 7 shows how these

patterns are interconnected to form the whole system of
patterns.

Figure 7. Architecture of complete system of patterns

Figure 8. Safe4Rail platform description

B. Modeling of Safe4Rail

First, we model the platform resources using the
predefined libraries of resource categories. We have used
Matho which provides a tree editor for resources mod-
eling, as shown in Fig. 8. These resources are tagged
and configured using the resource category libraries and
the property category libraries, so that the platform
model can be built subsequently as a set of configured
resources. Second, we model the application based on the
selected S&D patterns. We have used Arabion following
modeling steps as explained in Section V-C. This means
that we have started by modeling the whole pattern
system including all the patterns and the relationships
between them as shown in Fig. 7. Then, we use Arabion
again to build the base configuration. In our case, we

,-./0123�� ,-./0123�� ,-./0123��
4.5361-.5 4.5361-.�7137.189

-08.:319 ;0<�=0>6. ?50:. � ?50:. � ?50:. �

@/8.>$83A�B��� &C?D2A. ����� ������ ������ ��� ����� ��� ������

,701810/���EF���D)C*$D2A. ����� ���� ����� � ����� � �����

''4�G4$; 10A52H. ����� ������ ������ ��� ������ ��� ������

C3I.1,677>9)C*$ 73I.1&3/56A7823/ �� ����� ������ �� ������ �� �������

&3A70-8)>05J A.A31952H. �� ���� ����� � ������ � �����

DC; DC;52H. � ���� ����� � ����� � ������

DC;82A. ����� ���� ����� � ����� �� �����

K38.1 K38.182A. ��� ����� ������ � ����� � �����

L08-JM3:NL L08-JM3:D2A. ��� ���� ����� � ����� � �����

Table I
Analysis of the three scenarios

have chosen an initial configuration composed of N-
version programming, VoterSW, DataAgrement, Watch-
dog, SafetyCommCRC, SecureCommSSL and reciprocal
monitoring patterns. Finally, using the configuration
generation algorithm introduced in Section IV-A, we get
a set of pattern system configurations. Next, we will see
how some of these configurations will be used for the
resource consumption analysis.

C. Analysis of Safe4Rail Application

To describe the conduct of analysis, we have selected
three configurations:

• Scenario 1: ”isSimilar” configuration is obtained by
replacing sofware Voter pattern by hardware Voter
pattern in the ”Base” configuration.

• Scenario 2: ”isAlternative” configuration is obtained
by replacing SecureComSSL pattern by Secure-
ComHMAC pattern in the ”Base” configuration.

• Scenario 3: ”Specializes” configuration is obtained
by replacing SecureComSSL pattern by Secure-
ComSSLTPM pattern.

Both the system of patterns and the platform are
modeled as shown previously. To calculate the whole
resource consumption, we execute the M2M transfor-
mation engine, using the configuration model of this
scenario and the platform model as inputs, to produce
a new platform model annotated with the calculated
values of the resource consumption. Table I shows a
comparative view of the resource consumption of the
three pattern system configurations. Of course, since the
system architecture contains only elements necessary for
the description of the platform, the architecture will be
incomplete. However, the resulted model of the system,
including platform description, system of patterns con-
figurations and the analysis, will allow the architect to
experiment and to get familiar with different possibilities
and options before proceed to the next steps. Also, the
resource consumption results can be used to analyze
which security and dependability requirements should
be implemented and which should be candidates for
modification or for elimination.

VII. Conclusion and Future Work

The intended role of pattern-use is to ease, systematize
and standardize the approach to the construction of
software-based systems. However, the problem consists
in identifying them explicitly and then selecting them
for reuse. In Resource Constrained Embedded Systems
(RCES) development, this means that a careful balance
and trade-off analysis among Security and Dependability
(S&D) requirements, patterns and available platform
resources is necessary. In doing so, we propose to use
metamodeling and model transformation techniques for
the specification of pattern configuration and to cal-
culate resource consumption values and to incorporate
this information into system models. This allows: (1) To
define a new paradigm for design and implementation
based on the interplay between the S&D and resource
properties; (2) To increasing S&D level of RECS prod-
ucts by making S&D a built-in feature while enabling
a consistent architecture of a system taken into account
resource constraints. Furthermore, we walk through a
prototype as a set of EMF editors and a set of model
transformation engines supporting the approach using
Operational QVT specification. An illustration by means
of a case study from railway domain is provided.
As stated earlier, the pattern-based security and de-

pendability methodology seems to be a very interesting
combination of two flavors of software and hardware
design which has not been addressed sufficiently in liter-
ature. The next step of this work consists in defining a
pattern-based security engineering methodology. It aims
at providing the correct-by-construction integration of
a design pattern into an application while offering a
certain degree of liberty to the designer using it. In order
to be able to validate the integration, we must have a
formal specification of the pattern [18], i.e., its prop-
erties, constraints and related validation artifacts [19],
as input to the pattern-based development process. The
architecture description needs to be extended with other
type of elements, e.g., software components, connectors
and deployments units. This types of elements can be
used, for instance, to describe architectural security and
dependability patterns [20]. Concurrently, more sophis-
ticated techniques to derive artifacts relationships can

be implemented, possibly using different domains, to
reduce the complexity to design pattern systems. Fur-
thermore, the correctness of the model transformations
have to be determined. Another objective for the near
future is to provide automated tool support for pattern-
based development, preferably based on a widely known
and accepted model-based approach in industry such as
UML [21]. For that, we plan to investigate the possibility
to transform our design artifacts into UML and their
corresponding validation artifacts into OCL [22], which
would make these patterns compatible with collections
such as the one in [23].

References

[1] T. Henzinger and J. Sifakis, “The embedded systems
design challenge,” in Proceedings of the 14th Interna-
tional Symposium on Formal Methods (FM), Lecture
Notes in Computer Science, (Ontario, Canada), pp. 1–
15, Springer, August 2006.

[2] B. Nuseibeh, “Weaving together requirements and archi-
tectures,” IEEE Computer, vol. 34, no. 3, pp. 115–117,
2001.

[3] M. Galster, M. Mirakhorli, J. Cleland-Huang, J. Burge,
X. Franch, R. Roshandel, and P. Avgeriou, “Views on
software engineering from the twin peaks of require-
ments and architecture,” SIGSOFT Softw. Eng. Notes,
vol. 38, no. 5, pp. 40–42, 2013.

[4] B. Hamid, J. Geisel, A. Ziani, J. Bruel, and J. Perez,
“Model-Driven Engineering for Trusted Embedded Sys-
tems Based on Security and Dependability Patterns,” in
SDL Forum, pp. 72–90, 2013.

[5] B. Hamid, S.Gurgens, C. Jouvray, and N. Desnos, “En-
forcing S&D Pattern Design in RCES with Modeling
and Formal Approaches,” in ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (MODELS), vol. 6981, pp. 319–333, Springer,
octobre 2011.

[6] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema,
and J. Sprinkle, Domain-Specific Modeling. Chapman &
Hall/CRC, 2007.

[7] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and
I. Mistŕık, eds., Relating Software Requirements and
Architectures. Springer, 2011.

[8] R. de Boer and H. V. Vliet, “On the similarity between
requirements and architecture,” Journal of Systems and
Software, vol. 82, no. 3, pp. 544–550, 2009.

[9] T. Heyman, K. Yskout, R. Scandariato, H. Schmidt, and
Y. Yu, “The security twin peaks,” in Proceedings of the
International Symposium on Engineering Secure Soft-
ware and Systems (ESSoS), vol. LNCS 6542 of Lecture
Notes in Computer Science, pp. 167–180, Springer, 2011.

[10] S. J. Herzig, A. Qamar, and C. J. Paredis, “An approach
to identifying inconsistencies in model-based systems
engineering,” Procedia Computer Science, vol. 28, no. 0,
pp. 354 – 362, 2014.

[11] M. Tichy, D. Schilling, and H. Giese, “Design of self-
managing dependable systems with UML and fault tol-
erance patterns,” in Proceedings of the 1st ACM SIG-
SOFT workshop on Self-managed systems, WOSS ’04,
pp. 105–109, ACM, 2004.

[12] V. D. Giacomo, M. Felici, V. Meduri, D. Presenza,
C. Riccucci, and A. Tedeschi, “Using Security and De-
pendability Patterns for Reaction Processes,” in Pro-
ceedings of the 2008 19th International Conference on
Database and Expert Systems Application, pp. 315–319,
IEEE Computer Society, 2008.

[13] E. B. Fernandez, N. Yoshioka, H. Washizaki, J. Jrjens,
M. VanHilst, and G. Pernul, “Software Engineering for
Secure Systems: Industrial and Research Perspectives.
In H. Mouratidis, editor,” IGI Global, pp. 16–31, 2010.

[14] M. Schumacher, Security Engineering with Patterns
- Origins, Theoretical Models, and New Applications,
vol. 2754 of Lecture Notes in Computer Science.
Springer, 2003.

[15] J. Noble, “Classifying relationships between object-
oriented design patterns,” in Software Engineering Con-
ference, 1998. Proceedings. 1998 Australian, pp. 98–107,
1998.

[16] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks, EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd ed., 2009.

[17] TERESA, “Specification of Platform. Deliverable D6.1
– TERESA/WP6/D6.1, IST Project IST-248410,” Jan-
uary 2013.

[18] B. Hamid and C. Percebois, “A modeling and formal ap-
proach for the precise specification of security patterns,”
in Engineering Secure Software and Systems - 6th Inter-
national Symposium, ESSoS 2014, vol. 8364 of Lecture
Notes in Computer Science, pp. 95–112, Springer, 2014.

[19] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “On a
formal framework for security properties,” International
Computer Standards & Interface Journal (CSI), Special
issue on formal methods, techniques and tools for secure
and reliable applications, vol. 27, no. 5, pp. 457–466,
2005.

[20] U. Zdun and P. Avgeriou, “A catalog of architec-
tural primitives for modeling architectural patterns,”
Information & Software Technology, vol. 50, no. 9-10,
pp. 1003–1034, 2008.

[21] OMG, “Unified Modeling Language, v2.4.1,” 2012.

[22] OMG, “OCL 2.2 Specification,” February 2010.

[23] E.B.Fernandez, Security patterns in practice: Building
secure architectures using software patterns. Wiley Series
on Software Design Patterns, 2013.

