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Online diagnosis of accidental faults for
real-time embedded systems using a
hidden Markov model

Ning Ge1, Shin Nakajima2 and Marc Pantel1

Abstract

This article proposes an approach for the online analysis of accidental faults for real-time embedded systems using hid-

den Markov models (HMMs). By introducing reasonable and appropriate abstraction of complex systems, HMMs are
used to describe the healthy or faulty states of system’s hardware components. They are parametrized to statistically

simulate the real system’s behavior. As it is not easy to obtain rich accidental fault data from a system, the Baum–Welch

algorithm cannot be employed here to train the parameters in HMMs. Inspired by the principles of fault tree analysis and
the maximum entropy in Bayesian probability theory, we propose to compute the failure propagation distribution to esti-

mate the parameters in HMMs and to adapt the parameters using a backward algorithm. The parameterized HMMs are

then used to online diagnose accidental faults using a vote algorithm integrated with a low-pass filter. We design a specific
test bed to analyze the sensitivity, specificity, precision, accuracy and F1-score measures by generating a large amount of

test cases. The test results show that the proposed approach is robust, efficient and accurate.
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1. Introduction

1.1. Motivation

As the scale and complexity of real-time embedded sys-

tems are rapidly increasing due to the growth of functional

and non-functional requirements, resource-consuming

simulation technologies are not able to detect all faults in

systems design. Thus, the use of abstract models to simu-

late the behavior of complex systems preserving manda-

tory semantics is now a strong requirement. The efficiency

and accuracy of model-based approaches depend on the

appropriate abstraction and reasonable assumptions. This

article restricts the attention to the problem of online acci-

dental fault diagnosis for monitored real-time embedded

systems.

According to the terminology defined in the litera-

ture,1–3 the accidental faults that happen in hardware and

software are caused either by design faults, physical wear

and tear, environmental conditions or by a peculiar set of

inputs/excitations given to the system. They can be both

expected or unexpected faults. Although accidental faults

are usually very rare in the runtime, still it is mandatory to

detect and diagnose them in real-time embedded systems

to ensure that the fault tolerance infrastructure will

automatically maintain the functionality. This is currently

the main method for improving the reliability and depend-

ability of embedded systems.

The detection and isolation (diagnosis) of faults (FDI)

in engineering systems has been of great practical signifi-

cance since the 1990s.4 FDI is dedicated to monitoring a

system, identifying when a fault has occurred, and pin-

pointing the type of fault and its location. One main FDI

methodology derives faults from models, classified into

the category of model-based FDI, which relies on an expli-

cit mathematical or knowledge-based model of the con-

trolled system. Various model-based FDI approaches have

been widely used in process engineering and dynamic sys-

tems, such as observer-based, parity-space, parameter-

estimation methods, etc.5–7
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1.2. Previous works

The research topic in this work derives from the previous

work by Nakajima et al.,8 which proposed a co-analysis

framework for the automated analysis of cyber-physical

systems (CPS).9 As a kind of real-time embedded system

with feedback loops from the environment, CPS receive

more and more attention from researchers in recent years.

CPS introduce a new paradigm to software-intensive sys-

tems, in which the controller (system) is strongly affected

by the feedback from the plant (environment). In Nakajima

et al.,8 the behavior of Simulink models is taken in an as-is

manner determined by the simulation algorithms. The

approach combines logic-based formal analysis methods

with numerical simulations to enable the analysis of an

under-constrained controller design, which cannot be

handled by co-simulation. As shown in Figure 1, a control-

ler may have several control modes and evolve by enabling

mode transitions. Since some of the Simulink model

descriptions represent hardware components, the controller

is expected to be able to online diagnose the accidental

fault F (t) occurring in the hardware. Therefore, an open

question remaining in Nakajima et al.8 is the analysis of

possible accidental faults in Simulink models in order to

increase the level of robustness.

To describe accidental faults in Simulink models that

represent hardware components, it is required to define a

failure rate parameter for each component (usually very

low values). The Simulink models are then able to ran-

domly generate some faulty signals according to these

parameters. A modeling method is needed to simulate the

system’s behavior to observe the output data from the

plants and online determine whether the hardware compo-

nents encounter an accidental fault as well as which com-

ponent does.

1.3. Contributions

This article targets the accidental fault diagnosis problem

for real-time embedded systems by proposing a modeling

method based on hidden Markov models (HMMs).10–12. In

HMMs, the system being modeled is assumed to be a

Markov process with unobserved (hidden) states. By ana-

lyzing the observation sequences from the hidden states,

the state sequence can be deduced. HMMs have thus been

widely used in temporal pattern recognition such as

speech, handwriting, gesture recognition, etc.

This work introduces reasonable and appropriate

abstraction of complex systems relying on HMMs to

model the faulty and healthy states of system’s compo-

nents. They are parametrized to statistically simulate the

real system’s behavior. The challenge in this work consists

in limited accidental fault data, because it is not easy to

obtain rich accidental fault data from a system. It is not

reasonable to rely on the limited amount of faulty data to

adapt the parameters in the initial and transition matrices

using the Baum–Welch algorithm.13 We thus propose to

fix these two matrices using the failure rate parameters of

hardware components while estimate the emission prob-

abilities. The estimation method is based on the principles

of fault tree analysis (FTA) and the maximum entropy in

Bayesian probability theory. A fault propagation distribu-

tion is thus computed, whose parameters are adapted using

the backward algorithm and observations. The parameter-

ized HMMs are then used to online diagnose accidental

faults using a vote algorithm integrated with a low-pass

filter. We design a specific test bed to assess some core

measures for fault diagnosis approaches, including the sen-

sitivity, specificity precision, accuracy and F1-score. The

test results show that the approach is robust, efficient and

accurate.

1.4. Organization of article

This article is organized as follows: Section 2 introduces

HMM modeling methods; Section 3 compares this pro-

posal with the related works; Section 4 formulates the tar-

get problem; Section 5 details the accidental fault

diagnosis approach based on HMMs; Section 6 experi-

ments the approach by designing a specific test bed, and

discusses the generalization of the approach; Section 7

gives some concluding remarks.

2. HMM modeling and analysis

An HMM is defined as a statistical model used to repre-

sent stochastic processes, where the states are not directly

observed. When modeling a system, HMM separates the

system into two conceptually independent paradigms:

behavior and observation. Behavior refers to what the sys-

tem really is; while observation to what the system exhi-

bits. The observations are used for the recognition of the

inner behavior. The initial state distribution p indicates

the probabilities for the initial state of the system. The

state transition matrix A controls the way the hidden state

at time t is chosen given the hidden state at time t 2 1.
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Figure 1. Accidental fault diagnosis in CPS.



The emission matrix B connects the behavior between

states and observations: if at a given time the behavior is

known, how probably an observation sequence will occur.

An HMM can be described as follows:

� N, number of states;
� M, number of observations;
� p, initial state probability distribution,

PN

i= 1

pi = 1;

� A, transition matrix {aij} for the probabilities from

state si to state sj,

XN

j= 1

aij = 1, 14 i4N

� B, emission matrix {bi(oj)} for the probabilities

from states si to observations oj,

XM

j= 1

bi(oj)= 1, 14 i4N

Example 1 (HMM example). An HMM used to simulate a

system’s health states and behaviors is illustrated by

Figure 2. It defines two states (respectively Healthy and

Faulty), and two observations representing that the output

values respect (R) or violate (V) the functional constraints.

The 3 matrices p, A and B are respectively: 0:6 0:4½ �,

0:7 0:3

0:4 0:6

� �

and
0:9 0:1

0:2 0:8

� �

.

As shown in Figure 3, HMM, as an abstract model of a

system, is statistically identical to the system’s real beha-

vior. The parameters in p, A and B can be obtained

through a training process using the observation data and

the Baum–Welch algorithm. Once all of these parameters

are estimated, an HMM is able to compute, given an

observation sequence, the maximum likelihood estimation

of inner-state transition sequences using the Viterbi algo-

rithm.14 Thus, it can be used to estimate the system’s cur-

rent (past) state, predict the system’s future state and

compute the occurrence probability of a future observation

sequence.

3. Related works

In Clarke and Zuliani,15 the authors aimed to prove the

validation of CPS’s behavioral properties by statistical

models. Our main ideas are quite similar: using statistical

model to deduce the probability of verification results.

They introduced a formal description in BLTL (bounded

linear temporal logic) to interpret the probable result

sequence, which is the same concept as the observation

sequence in HMM. This work relied on the importance-

sampling and cross-entropy (two classic statistical

methods). It needed much more samples to give out a con-

vincing conclusion. The reason behind is that BLTL treats

each element in a result sequence in a pure statistical thus

relatively independent manner, while the HMM modeling

method ensures that the system components are dependent

and thus the fault propagation is statistically preserved.

Some existing works16–19 proposed HMM-based algo-

rithms to diagnose or prognose system faults, where rich

training data is required to estimate the parameters in

HMMs. It is not applicable to the accidental faults due to

its non-frequent characteristics. Smyth18 and Ying et al.19

aimed at fault detection and diagnosis based on HMMs

under the single fault assumption.Figure 2. A two-state HMM.

Figure 3. HMM training approach



Smyth18 proposed to model the monitored system by

linear difference equations, where the parameters were

estimated in a training manner using the input and the

observed output data of the system. They relied on the

feedforward multi-layer neural network20 and a simple

maximum-likelihood Gaussian classifier21 to produce the

instantaneous estimates of the state probabilities, given the

observations. Hence, fault detection occurred by observing

changes in the values of estimated parameters. Finally, an

HMM model, which combined the past state estimates and

the current instantaneous estimates, was applied to deter-

mine the current state. The experimental results showed

that the neural-Markov combination was significantly bet-

ter than the combination of Gaussian–Markov in terms of

elimination of false alarms. However, it is difficult to build

a neural network for a large class of faults, while for the

accidental fault diagnosis, the classes of fault must include

all of the possibilities. This method is based on an impor-

tant assumption of availability of labeled training data,

which rules out applications where it is not possible to

gather such data like the accidental faults.

Ying et al.19 presented an HMM-based algorithm for

fault diagnosis in systems with partial and imperfect tests.

The initial state probabilities and state transition probabil-

ities were defined using the failure rates of components.

They constructed a fault dictionary via reachability analy-

sis on directed graph models by denoting that a failure

source was detected by a test or not. The emission prob-

abilities were defined using this fault dictionary and the

false alarm probabilities derived from tests using the cen-

tral limit theorem.22 All of these parameters were then

adapted by the Baum–Welch algorithm. Once the para-

meters are estimated, the trained HMM is used to deter-

mine the current state by employing a sliding window

Viterbi algorithm.

In our work, the modeling method for the states, initial

and transition matrices is quite similar to the work of

Yang et al.19 The main difference consists of the observa-

tions and the parameter estimation for the emission matrix,

which is the key problem for the HMM-based algorithms.

As the faulty output caused by an accidental fault may not

be continuous, it is possible for the system to behave nor-

mal after a sudden failure. Due to the non-frequent charac-

teristics of accidental faults, its diagnosis in complex

systems is restricted by the limited amount of faulty data.

When the failure rates of hardware components are avail-

able, it is not reasonable to rely on the limited amount of

faulty data to adapt the parameters in the initial and transi-

tion matrices using the Baum–Welch algorithm. We thus

propose to fix these two matrices using the failure rate

parameters of hardware components while estimate the

emission probabilities. The estimation method is based on

the principles of FTA and the maximum entropy in

Bayesian probability theory. A fault propagation distribu-

tion is thus computed, whose parameters are adapted using

the backward algorithm and observations. The parameter-

ized HMMs are then used to online diagnose accidental

faults using a vote algorithm integrated with a low-pass

filter.

The method for diagnosing accidental faults using

HMMs was first presented in our previous work.23

Compared with our previous work,23 this work has two

important improvements: introducing a low-pass filter to

the vote algorithm; and introducing a backward algorithm

that adapts the emission matrix parameters to the state

sequences derived from the observations. The experiments

show that the fault diagnosis has been prominently

improved.

4. Problem description

The accidental faults may occur on the hardware during

system’s execution. As their occurrence is infrequent, it is

rather rare to have two or more hardware components

being the source of accidental faults at exactly the same

time. Therefore, it is reasonable to apply the following

single-fault assumption to the target problem.

Assumption 1 (Single-fault assumption). An occur-

rence of accidental fault denotes that at each time instant,

only one hardware component is the fault source. Two

components cannot be the source of accidental fault at the

same time.

The prior knowledge in this work consists of the failure

rate parameters of hardware components and system speci-

fications. The failure rate parameters are usually provided

by the hardware manufacture according to the testing

results before the hardware are supplied. They denote the

fault occurrence probability either caused by design faults,

physical wear and tear, environmental conditions or by a

peculiar set of inputs/excitations given to the system.

System specifications describe the expected functional

constraints. They are used to online test the pass/fail of the

output data of hardware components to build the observa-

tion sequences. The target problem is explained using the

following example.

Example 2 (Problem description example). During a

finite execution time t, six time instants are observed for

the system in Figure 4. Assume 5 functional constraints Cfi

(1 4 i 4 5) are available in the system specification.

After time t, the test results are obtained: R for respecting

specification, VI for single variable violating specifica-

tion, and VC for multiple variables violating functional

constraint. The test results are shown in Table 1.

When a wrong output from a component is observed,

usually the outputs from other components may also be

wrong due to the failure propagation. It is important to

distinguish the output fault of a component and the source

of fault. When a component is the fault source, many other

components may behave wrongly (output is wrong). The



modeling method thus should consider the dependencies

between the hardware elements and the fault propagation

between them.

The accidental fault diagnosis approach should allow

online analysis, which implies that the method needs to be

computation-economic and easy to be implemented by

most onboard embedded systems.

5. Online diagnosis of accidental fault

5.1. Overview of proposed approach

The modeling of HMM follows two steps: first, determine

the structure of HMM, i.e. the states and observations;

then, estimate the parameters for the three matrices.

An overview of the proposed approach is illustrated by

Figure 5. For a monitored system that contains n compo-

nents, n + 1 hidden states are modeled. Each state repre-

sents, at time t, which component has encountered an

accidental fault. The observation sequences are derived

from the test results with respect to the functional con-

straints. The parameters in the initial state distribution and

the state transition matrix are computed using the failure

rates of hardware components. The emission matrix para-

meters are estimated using a failure propagation algorithm

based on the principles of FTA and the maximum entropy

in Bayesian probability theory. Relying on the Viterbi

algorithm, the state sequences are derived from the obser-

vation sequences. They are then used to diagnose the acci-

dental faults using a vote algorithm through a low-pass

filter and to revise the parameters in the emission matrix

through a backward algorithm.

Compared with our previous work,23 this work intro-

duces the vote algorithm through the low-pass filter and

the backward algorithm for revising the failure propaga-

tion distribution to improve the diagnosis results.

5.2. System states

System states represent that at time t, which component is

the source of accidental fault. A system with n hardware

components is thus model by n + 1 states {si} (0 4 i

4 n). Here s0 represents that none of components

encounters accidental faults. Here si represents that the ith

component is the fault source.

5.3. Observations

Definition 1 (Physical variable). A component C has nI
inputs and nO outputs variables, which connect C with

other components. These variables are defined as physical

variables of C.

During the execution of a monitored system, the test

results of functional constraints are available. The observa-

tions represent that physical variables respect or violate

the functional constraints. If m physical variables vj (1 4

j 4 m) are involved, m HMMs {hj} are modeled for this

system. Here hj describes how a variable vj behaves in

terms of functional constraints during system’s execution.

Figure 4. Problem description example.

Table 1. Output observations.

t Cf1(v1,v2,v3) Cf2(v7,v11) Cf3(v9) Cf4(v4,v5,v6) Cf5(v2)

1 R R R R R
2 R R R R R
3 VC R R VC R
4 R R R R VI

5 VC R R VC VI



It is possible to generate three kinds of observations for vj:

respecting, independent violating or coupling violating

functional constraints.

Definition 2 (Respecting (R)). When a physical variable

does not violate any functional constraint, this observation

is defined as Respecting.

Definition 3 (Independent violation (VI)). When a physical

variable v violates a functional constraint that only con-

tains v, i.e. C(v), this observation is defined as independent

violation.

Definition 4 (Coupling Violation (VC)). When v violates a

functional constraint containing v as well as other vari-

ables, i.e. C(v, v1, v2, .), this observation is defined as

coupling violation.

Therefore, each HMM hj has these three kinds of obser-

vations: R, VI and VC. The structure of HMMs that model

the monitored system is thus defined, as shown in

Figure 6.

An intuitive way for modeling the observations is to

directly use two observed statuses: respected (R) and vio-

lated (V). In this work, we provide more details in the

observation by distinguishing VI and VC. The observations

will be used to decide the probabilities in the emission

matrix, which depends on the topology structure connect-

ing by physical variables. We rely on the principles of

FTA to compute the influence weight of variables, which

requires as much as detailed test results about each

variable.

5.4. Initial probability distribution p

For a system with n components, the failure rate para-

meters {vi} (1 4 i 4 n) of hardware components {Ci}

are usually provided by its manufacture or determined by

the MTBF (mean time between failure). Without prior

knowledge, {vi} are determined by
Pn

i, j= 1 vi ÿ vj

�

�

�

�= 0.

According to the definition of HMM, p = {pi} are directly

computed as follows:

p0 =

Qn

i= 1

(1ÿ vi)

Qn

i= 1

(1ÿ vi)+
Pn

i= 1

vi

ð1Þ

pi =
vi

Qn

i= 1

(1ÿ vi)+
Pn

i= 1

vi

, 14 i4 n ð2Þ

Figure 5. Approach overview.



5.5. Transition probability matrix A

Here {aij} (0 4 i, j 4 n) represents the probabilities of

the transition from state i to state j. It is computed using

the failure rate parameters {vi}. When the system transits

from current state to the no fault state s0, the transition

probability is
Qn

k= 1 (1ÿ vk). When the system transits to

a faulty component state sj (j6¼0), the probability is

vj �
Qn

k= 1, k 6¼j (1ÿ vk). After normalization, A is deter-

mined as follows:

ai0 =

Qn

k= 1

(1ÿ vk)

Qn

k= 1

(1ÿ vk)+
Pn

n= 1

(vn

QN

k= 1, k 6¼j

(1ÿ vk))

,

04 i4 n

ð3Þ

aij =

vj

Qn

k= 1, k 6¼j

(1ÿ vk)

Qn

k= 1

(1ÿ vk)+
Pn

p= 1

(vp

Qn

k= 1, k 6¼j

(1ÿ vk))

,

04 i4 n, 14 j4 n

ð4Þ

5.6. Emission probability matrix B

Here {bij(O)} (0 4 i 4 n, 1 4 j 4 m, O 2 {R, VI,

VC}) represents, if a component encounters accidental

faults, the probability that it will influence the observa-

tions. More precisely, how probably the physical variables

will violate the functional constraints. Inspired by the prin-

ciples of FTA and the principle of maximum entropy in

Bayesian probability theory, we propose the algorithms

for computing B, as shown in Figure 7.

5.6.1. Computing influence graph GI.

Definition 5 (Dependency graph GD). A dependency

graph represents the dependency between system’s compo-

nents. It is directly derived from the system’s topology

structure.

Definition 6 (Influence graph GI). An influence graph is a

graph representing how components’ accidental fault

influences its output physical variables. Influence graph is

topologically identical to the dependency graph, with sup-

plementary influence weights indicating the probability

that the component Ci influences its output variables {vj}.

An influence layout algorithm is proposed to compute the

influence weights GI(i, j).

Example 3 (Influence graph example). Figure 8 is an

influence graph with 9 components and 15 physical vari-

ables. Based on the dependency graph, the influence

weights GI(1, 2) and GI(2, 3) respectively indicate whether

component C1 (respectively C2) is the fault source, the

probability that v2 (respectively v3) will be influenced to

produce a wrong output.

Algorithm 1 (Influence layout algorithm). An influence

graph with n components and m variables can be solved

by applying linear programming to Equations (5)–(8).

Figure 6. HMMs for m observation variables.

Figure 7. Emission matrix algorithms.



Equation (5) normalizes all of the influence weights:

Xm

i= 1

vi = 1 ð5Þ

Equation (6) ensures that a component must have some

impact on its output variables:

vi . 0 ð6Þ

Equation (7) represents the failure effect caused by a com-

ponent C (denoted as e(t)), which is equal to the difference

between the sum of C’s output weights and the sum of its

input weights:

X

in

vi ÿ
X

out

vj = e(t) ð7Þ

Here e(t) varies along with the execution time t, and is

measured using the state sequences and the backward

algorithm (Algorithm 6, explained later in Section 5.9).

The maximum entropy principle states that the prob-

ability distribution which best represents the current state

of knowledge is the one with largest entropy. Equation

(8)ensures that the difference between variables must be

minimized according to this principle:

min
v1...vm

Xm

i= 1

vi ÿ
1

m

Xm

j= 1

vj

�

�

�

�

�

�

�

�

�

�

ð8Þ

5.6.2. Computing influence distribution DI. The influence

graph gives out the influence weight from a component to

its direct output variables. This faulty impact will propa-

gate through the dependency structure of the system. The

propagated weights are recorded in the influence

distribution.

Definition 7 (Influence distribution DI). When component

Ci is the fault source, the failure influence it causes to all

of the physical variables {vj} is defined as DI (i, j).

Ideally, DI can be derived from exhaustive simulation

or tests. If enough simulation or test scenarios that cover

all of the variable ranges are available, the parameters in

DI can be almost the same as the real values. The problem

is that, for the non-frequent accidental fault, the time for

obtaining enough training data by exhaustive simulation

(test) is not definitive. To make a compromise between the

computation time and the parameter precision, we compute

DI using the influence graph. The algorithm is based on

the principle of FTA, a top-down deductive failure analysis

method widely used in the FDI techniques, in which an

undesirable state of a system is analyzed using Boolean

logic to combine a series of lower-level events. It is an

heuristic algorithm, in which the coefficients will be pre-

cise with respect to the problem. In this work, we propose

the following influence distribution algorithm to compute

the coefficients of fault propagation.

Algorithm 2 (Influence distribution algorithm). When the

output variables of component Ci violates some functional

constraints, it is either because Ci has encountered an

accidental fault, or because one of its dependent compo-

nents Cj has encountered an accidental fault and thus Ci is

influenced due to the failure propagation.

� If Ci has encountered an accidental fault, it will

probably generate an output violation. The reason

why it is not a definitive violation is that the cou-

pling variables referred to by the functional con-

straints may also be influenced. This probability is

defined as DA.
� If Ci depends on Cj (Ci directly or indirectly takes

Cj’s output as input), and an accidental fault occurs

on Cj, Ci will probably have an output violation. It

is not a definitive violation, because either the cou-

pling variables referred to by the functional con-

straints may also be influenced; or the intermediate

component’s design has fault-tolerance consider-

ation. This probability is defined as DB.

As DA and DB are independent. If vj directly depends on ci,

at the same time, it can indirectly depend on ci due to the

control feedback loop. Therefore, we have

DI (i, j)=DA(i, j)+DB(i, j) ð9Þ

� If variable vj does not depend on component Ci (Ci

has no path to vj),

DI (i, j)= 0 ð10Þ

Figure 8. Influence graph example.



� If vj directly depends on Ci,

DA(i, j)=GI (i, j) ð11Þ

� If vj indirectly depends on Ci, let {vk} (k6¼j) be the

output variables of Ci, and Ck be the target compo-

nent of vk. The DB(i, j) can be recursively computed

as follows:

DB(i, j)=
X

k

GI (i, k)I (k, j) ð12Þ

Example 4 (Influence distribution algorithm example). An

example of influence distribution algorithm is given by

Figure 9. We enumerate three cases.

1. DI(1, 11): As there is no path from C1 to v11, v11 is

independent from C1. The influence weight from C1

to v11 is DI(1,11) = 0.

2. DI(1, 1): As v1 is the direct output from C1 and

there is no control feedback loop, the influence

weight from C1 to v1 is DI(1,1) = DA(1,1) =

GI(1,1).

3. DI(1,3): As v3 indirectly depends on C1, the influ-

ence weight from C1 to v3(DI(1,3)) is computed

using Equation (12), as follows:

DI (1, 3)=GI (1, 1) � DI (2, 3)+GI (1, 2)

� DI (3, 3)=GI (1, 1) � DA(2, 3)

+ 0=GI (1, 1) � GI (2, 3)

5.6.3. Emission probability matrix B. Algorithm 3 (Emission

matrix algorithm). For the HMM hj of variable vj, we use

the following algorithm to compute the probability for the

observations R, VI and VC from state si.

� For the independent violation VI, its probability is

directly deduced from DI.

bij(VI )=DI (i, j) ð13Þ

� For the coupling violation VC, if vj violates func-

tional constrains containing other variables {vk}

(k6¼j), assume vk appears nk times in all of the func-

tional constraints, and vj appears nj times, the cou-

pling violation probability is computed as follows:

bij(VC)=
nj � DI (i, j)P
k nk � DI (i, k)

ð14Þ

� For the non-violation observation R, its probability

is

bij(R)= 1ÿ bij(VI )ÿ bij(VC) ð15Þ

Obviously, the healthy state (s0) will lead to b0j(R) = 1,

b0j(VI) = 0 and b0j(VC) = 0.

5.7. Viterbi algorithm

Once the parameters in HMMs are estimated, it can be

used to decode an observation sequence O= fotg into the

most likely state sequence Q= fqtg. This is computed

using the Viterbi algorithm, a dynamic programming algo-

rithm for finding the most likely sequence of hidden states

(called a Viterbi path).

Suppose that T time instants are observed for a system

with m physical variables and n components. Therefore, m

HMMs with n + 1 states are modeled, denoted as hj,

1 4 j 4 m. For each {hj}, an observation sequence of

length T is thus obtained.

To find the single optimal state sequence, the Viterbi

algorithm defines a variable d(i) in

dt(i)= max
q1q2...qtÿ1

Pfq1q2 . . . qt = si, o1o2 . . . otjhjg ð16Þ

which represents the maximum probability along a single

path that accounts for the first t observations and ends at

state si.

By induction, dt+ 1(k) can be computed as

dt+ 1(k)= max
i

½dt(i)aik �bk(ot+ 1) ð17Þ

To retrieve the state sequence, we need to keep the track

of the state that maximizes dt(i) at each time t, which is

done by constructing the following array, where ut+ 1(k)

is the state at time t from which a transition to state sj max-

imizes the probability dt+ 1(k)

ut+ 1(k)= argmax
14 i4 n+ 1

½dt(i)aik � ð18Þ

Figure 9. Influence distribution example.



The Viterbi algorithm for finding the optimal state

sequence becomes as follows.

� Initialization:

d1(i)=pibi(o1), 14 i4N ð19Þ

u1(i)= 0(no previous states) ð20Þ

� Recursion:

dt(j)= max
14 i4 n+ 1

½dtÿ1(i)aik �bk(ot), 24 t4 T , 14 k4 n+ 1

ð21Þ

ut(k)= argmax
14 k4 n+ 1

½dtÿ1(i)aik �, 24 t4 T , 14 k4 n+ 1

ð22Þ

� Termination:

P= max
14 i4 n+ 1

½dT (i)� ð23Þ

qT = argmax
14 i4 n+ 1

½dT (i)� ð24Þ

� The optimal state sequence can be retrieved by

backtracking

qt =ut+ 1(qt+ 1), t= T ÿ 1, T ÿ 2, . . . , 1 ð25Þ

The computation complexity of Viterbi algorithm is

O(K2L), where K and L are respectively the number of

HMM states and the length of O. To online diagnose acci-

dental faults for time t, we use the observation sequences

in the past time of t according to the feature of Markov

process. When t is too long, we might have huge quantity

of observation sequences, which makes the computation

time increases, a sampling window of w is thus introduced

to ensure the efficiency of the online diagnosis.

5.8. Vote algorithm

At time t, each HMM hj obtains an optimal state sequence

Q= fqtg using the Viterbi algorithm. As the system is

modeled by m HMMs, a state sequence matrix of size m

by t is built using the m optimal state sequences, denoted

as Qj = fqt(j)g. Here Qj is used to diagnose accidental

faults using a vote algorithm and also provide feedback by

a backward algorithm to revise the emission matrix

parameters.

Algorithm 4 (Vote algorithm). For time t, each HMM

computes the most probable fault source respectively using

its state sequence Q= fqtg, and vote to synthesize a glob-

ally optimized result. In order to avoid hash synthesis, it

would be a good idea to wait for several periods to see if

the vote is stable. More precisely, to diagnose the potential

fault source at time t, it needs to observe from instant t 2

w to t to see whether the trend is stable, where w is the time

window. This can be considered as a low-pass filter for the

vote result. The larger this time window is, the fewer false

alarms will be given by the method. In practice, this value

decides the trade-off between the timeliness of online anal-

ysis and cost of false alarm handling. Therefore, a new

state sequence bQ= fq̂tg is derived thought the low-pass

filter (given by Algorithm 5).

At time T, the optimal state sequence matrix after using

the low-pass filter is bQj = fq̂t(j)g, 1 4 j 4 m and

T 2 w + 1 4 t 4 T.

The global vote results are represented by a vote matrix

V= fvt(i)g, 0 4 i 4 n. It computes, at time t, the

appearance times of the state si among the m state

sequences.

vt(i)=
Xm

j= 1

u(bqt (j)) ð26Þ

Algorithm 5. (Low-pass filter algorithm).

public static int[] filter(int[] original, int delayWindow,
int HEALTH_INDEX) {

int[] newSeq = new int[original.length];
for (int i = 0; i < delayWindow; i++ )

newSeq [i] = original[i];
for (int i = delayWindow; i < original.length; i++ ) {

int v = original[i];
int endIndex = -1;
boolean match = true;
for (int j = i; j > i - delayWindow; j–) {
if (original[j] != HEALTH_INDEX
&& original[j] != v) {

match = false;
break;

}
if (original[j] == v)

endIndex = j;
}
if (!match)
newSeq[i] = original[i];

else {
if (endIndex == -1)

newSeq[i] = original[i];
else {

// smooth
for (int j = endIndex; j <= i; j++ )

newSeq[j] = v;
}

}
}
return newSeq;

}



u(q̂t(j))=
1 bqt (j)= si
0 bqt (j) 6¼ si

�

ð27Þ

In order to observe the trends of fault occurrence along

with the time, we introduce a variation matrix to measure

the fault trends between two neighboring time instants.

This matrix is denoted as U= fut(i)g:

ut(i)=
0 t= T ÿ w+ 1

vt(i)ÿ vtÿ1(i) T ÿ w4 t4 T

�

ð28Þ

The accidental fault log F = fftg is then derived from

the matrices U and V:

ft =
fsijmax ut(i)g card(ft)= 1

fsijsi 2 max ut(i) ^max vt(i)g card(ft)5 2

�

ð29Þ

Example 5 (Vote algorithm example). For a time dura-

tion 5, the state sequences for 3 variables derived from the

Viterbi algorithm are shown in Table 2. The system has 3

components, and the time window is 5 time units. The state

sequence matrix after low-pass filtering is Table 3. The

vote matrix derived from state sequence matrix is given by

Table 4, and the variation matrix is given by Table 5. By

applying the vote algorithm, the accidental fault log F is

shown in Table 6.

5.9. Backward algorithm

This backward algorithm adapts the emission matrix para-

meters to the state sequences derived from the observa-

tions. It is used to revise the parameter e(t) in Equation (7)

when computing the influence distribution. The e(t) repre-

sents the fault impact that a component causes to its output

variables.

Algorithm 6 (Backward algorithm). At the initial time,

none of components is faulty, thus the fault impact of the

component Ci is 0. If t 5 1, the value of ei(t) is computed

using the vote matrix V obtained from the state sequence

matrix Q:

ei(t)=

P
t

vt(i)

(n+ 1)�t 14 t\w
Pt

tÿw+ 1

vt(i)

(n+ 1)�w t5w

8
>>><

>>>:
ð30Þ

6. Experimental results

It is difficult to evaluate a fault diagnosis method for acci-

dental faults, because it is too costly to monitor accidental

fault data from real systems. We thus design a specific test

bed to randomly generate a large amount of test cases to

assess some measures for fault diagnosis approaches: the

sensitivity, specificity precision, accuracy and F1-score.

6.1. Experiment measures

To give the experiment measures for our fault diagnosis

approach, the contingency matrix is given in Table 7. The

system is either healthy (s0) or faulty (si, i6¼ 0). The diagno-

sis state derived from the HMM approach is either healthy

(s0) or faulty as same as the system state (si), or faulty but

different from the system state (sj, j6¼i). Therefore, the test

results can be hit faulty state, hit healthy state, false alarm,

error alarm, or miss healthy state.

Table 2. State sequence matrix.

t 1 2 3 4 5

Q1 s0 s2 s1 s1 s1
Q2 s0 s1 s0 s0 s1
Q3 s0 s1 s3 s2 s2

Table 3. Filtered state sequence matrix.

t 1 2 3 4 5

Q1 s0 s2 s1 s1 s1
Q2 s0 s1 s1 s1 s1
Q3 s0 s1 s3 s2 s2

Table 4. Vote matrix.

t 1 2 3 4 5

s0 3 0 0 0 0
s1 0 2 2 2 2
s2 0 1 0 1 1
s3 0 0 1 0 0

Table 5. Variation matrix.

t 1 2 3 4 5

s0 0 − 3 0 0 0
s1 0 2 0 0 0
s2 0 1 − 1 1 0
s3 0 0 1 − 1 0

Table 6. Accidental fault log.

t 1 2 3 4 5

F s0 s1 s3 s2 s1



In pattern recognition and information retrieval with

binary classification, the following measures are usually

used to assess the performance of the statistical

approaches.24

� Sensitivity (recall rate) relates to the ability to iden-

tify an accidental fault correctly:

Sensitivity=

P
hiP

hi +
P

e+
P

m
ð31Þ

The miss rate can be derived from it:

Miss rate= 1ÿ sensitivity ð32Þ

� Specificity relates to the ability to exclude an acci-

dental fault correctly:

Specificity=

P
h0P

h0 +
P

f
ð33Þ

� Precision relates to the ability to avoid the false

alarm:

Precision=

P
hiP

hi +
P

e+
P

f
ð34Þ

The false alarm rate can be derived from it:

False alarm rate= 1ÿ precision ð35Þ

� Accuracy (hit rate) relates to the ability to diagnose

system’s state correctly:

Accuracy=

P
hi +

P
h0P

hi +
P

h0 +
P

e+
P

m+
P

f
ð36Þ

� F1-score is a measure of a statistic test’s accuracy.

F1ÿ score= 23
precision3 recall

precision+ recall
ð37Þ

6.2. Test bed

The pattern of system instance generated by the test bed

follows the classical definition: a system has several

components; components are connected by physical vari-

ables. A variable can be read by multiple components, but

can only be written by one component. System itself has

input and output, which is an encapsulation of some com-

ponent’s input/output variable according to system

architecture.

Component, when encountering an accidental fault, will

output, in a high probability p1 (0.95), some non-func-

tional-compliant data. A normal component, when dealing

with a faulty input, tends to output also an faulty output in

probability p2 (0.6). Since component may have inner

states, this negative impact may last for some time (less

than p3 (10 time units)), with a probability p4 (0.5). Due to

the incompleteness of functional constraints, an actual

fault will only be identifiable in a probability p5 (0.8) by

applying these checks.

The five parameters above p1 2 p5 vary from system

to system. Some of them cannot even be easily represented

by probability, for example, a good fault tolerance design

will make p2 and p4 very specific to compute. In this arti-

cle, in order to maximize the generality, all these para-

meters are excluded for the system configuration diversity.

They are defined by constants. These constants are intent

to cover as large as possible the real system pattern space.

A random test configuration is composed of the follow-

ing parameters.

� Component number: defines the total number of

component in this system instance.
� Min/Max component failure rate: each component

will be distributed a failure rate falling into this

range. Higher the rate, more likely to encounter an

accidental fault.
� Min/Max component output/input variable number:

each component will have a number of input/output

variables, and their quantity is limited by the range

respectively.
� Min/Max accidental fault number: during a simula-

tion, defines how many accidental faults will be

generated.
� Simulation time: defines the observation time for

each system simulation.
� Time window: defines the sampling window for

observations.

Table 7. Contingency matrix.

System state

Faulty si Healthy s0

HMM state Faulty si Hit faulty state si (hi) False alarm (f)
Faulty sj Error (e)
Healthy s0 Miss healthy state (m) Hit healthy state (h0)



6.3. Experimental results

We assess the performance of the proposed approach

through the measures including sensitivity (recall rate),

specificity, precision, accuracy and F1-score. We have

generated more than 1.4 3 105 test cases by varying the

parameters in Table 7. The objective is to analyze the var-

iation trends of there measures along with the system’s

scale, the sparsity of accidental faults and the sampling

window size. In addition, as a low-pass filter algorithm is

introduced to compute the optimal state sequence, we

respectively analyze the measure values for the methods

without and with low-pass filter to assess the effectiveness

of the low-pass filter algorithm.

6.3.1. Experimental results by average component

number. Figure 10 gives the average measure values vary-

ing with the average component number for both methods.

The following conclusions are derived from the test results.

� The specificity and accuracy are nearly 100% in

both methods. This phenomenon is quite obvious.

For the non-frequent accidental faults, its occur-

rence times (limited from 1 to 26 in our experi-

ments) during the simulation (from 1000 to 2000

time units) is far less the number of normal states

in the system. This explains why the average values

Table 8. Parameters in test cases.

Parameter Value

Component number 10–90
Failure rate of hardware component 5 × 10− 4–7 × 10− 4

Output variable number
per component

2–5

Accidental fault number 1–26
Simulation time units 1000–2000
Sampling window size 3–30

Figure 10. Measures with average component number from 10 to 90.



of specificity and accuracy are almost 100% in all

of the following test results.
� The measures are largely improved by the low-pass

filter.
� The method is robust with respect to the number of

components (the scale of system).

6.3.2. Experimental results by average output variable

number. Figure 11 in page 19 gives the average measure

values varying with the average number of output vari-

ables per component for both methods. The following con-

clusions are derived from the test results.

� The measures are largely improved by the low-pass

filter.

� The method is robust with respect to the average

number of variables per component (the scale of

system).

6.3.3. Experimental results by average accidental fault

number. Figure 12 in page 20 gives the average measure

values varying with the average accidental fault number

during the simulation. The following conclusions are

derived from these test.

� The measures are largely improved by the low-pass

filter.
� The method is robust with respect to the number of

accidental faults (the sparsity of data).

Figure 11. Measures with average output variable number per component from 1.5 to 4.



6.3.4. Experimental results by the size of sampling

window. Figure 13 gives the average measure values vary-

ing with the size of the sampling window. When the time

window is larger than 3 time units, the measures become

stable and are not effectively impacted by the size of time

window. This ensures the efficiency of online analysis.

6.4. Discussion: multiple fault diagnosis

Our base hypothesis in this work is that at any moment, at

most only one component can be the source of accidental

failure (which indeed implies that the old fault will disap-

pear when a new one occurs). It is true that when there is

only one fault source in a system, many hardware compo-

nents may behave wrongly. As the Assumption 1 defined

the states in the HMM that represent the component of

fault source. In other words, a component that is not the

fault source may be faulty (the outputs violate the func-

tional constraints) due to the fault propagation. The

modeling method thus has considered the dependencies

between the hardware elements and the fault propagation

between them.

We fully understand that at first glance, the single fault

source assumption makes the approach not applicable for

real-world scenarios because all can go wrong at any

moment. However, it should be known that this simplifica-

tion is only a trade-off for online fault analysis perfor-

mance: our method can deal with the case that ‘‘at any

moment t, at most K components of failure source can

simultaneously occur (K 5 1)’’. Therefore, 2K states will

be modeled in one HMM. The only issue is that, for an

HMM with 2K states, the analysis time will be quite long,

which could degrade the timeliness of online fault

analysis.

To be more precise, in our original work, we do handle

the problem in a general way: inner states are the combina-

tion of the fault source component, the emission matrices

are the overlap (normalized accumulation) of related

Figure 12. Measures with average accidental fault number from 1 to 26.



states’ influence distribution, etc. The test result is also

quite positive (average measures are also . 90%). The

problem we encountered is that from K . 4, for a system

having more than 30 components, the analyzing time (on a

PC laptop) will exceed the cycle period of a typical

embedded system (e.g. 50 ms), which compromises

‘‘online analysis’’. Therefore, we found that this method,

although it had high accuracy, required a computing trade-

off for large-scale systems. That is why finally we decide

to remove the generosity to keep the maximum scalability.

Today we found that if K = 1, the analysis can be done in

time (\ 50 ms) for a system having less than 700 compo-

nents, which covers largely the real industrial scenarios.

That is also why we have developed another method25

(each component is an HMM, compared with this method

where each observed variable is an HMM). The bench-

mark shows that the component-based method is less accu-

rate (4–11% decrease), but can be computed very fast, so

is more scalable for industrial usage.

A question may be raised: why no parallel computation?

If we introduce parallel computation, will it solve the per-

formance problem that we can re-enable the generosity of

the approach? Effectively, each HMM can be computed

independently once their parameter has been defined. But

this can only be done on a PC. Because finally we need to

embed this online analysis function into an embedded parti-

tion, and current standard prevents the parallel computation

inside the same partition (even between partitions it is not

recommended). Therefore we have to ignore this option.

6.5. Discussion: modeling method of multiple

HMMs

In our work, the Viterbi algorithm from Section 5.7 is

applied for each observation variable independently for the

related HMM and then these results are combined using

voting. It seems that a single HMM where all observations

are combined would be better as this would allow us to

use the combined observation to detect the right faulty

component and not only trust some majority of observa-

tions. It is very possible that a majority of the observed

variables are not reflecting a particular fault and, therefore,

it is impossible to conclude where the failure source is on

their own. We will discuss this problem in the following

two parts.

First, why multiple HMMs instead of one HMM? This

concern is fully understandable and in fact it was indeed

our modeling choice in our earlier experiments. The prob-

lem is related to HMM’s characteristics: the smaller the

difference between the values of different matrix elements

is, the worse its prediction would be (entropy is smaller).

It is more likely to happen if observation number increases

(e.g. if we take 0.1 as granularity, for a HMM having 1

inner state, if it contains 2 observation states, it only has 1/

11 chance ([0.5, 0.5] among the following 11 possible

emission matrices [0, 1], [0.1, 0.9], ., [0.9, 0.1], [1, 0]))

that these observations cannot distinguish from each other

from the view point of information. But if it contains 3

observation states, it can have a chance of 18/66

([0.1,0.1,0.8], [0.3,0.3,0.4], etc.)

So, when combining all observations into a single

HMM, the whole HMM’s parameter (particularly for

emission matrix, because initial and transition matrices are

the same for all variables) is ‘‘flattened’’. The difference

between elements of emission matrix is decreased. This

leads to a non-accurate fault isolation result (around 70%

according to our tests). So the choice of multiple HMMs

has improved this single HMM modeling.

Second, will a partial vote mislead the result? The

answer is first a yes. Let us consider a extreme case: there

Figure 13. Measures with sample window size from 3 to 30.



is only one observation variable available (so only one

HMM will do the vote), and the faulty component will not

influence this variable at all (i.e. not direct/indirect data-

flow towards this variable), the conclusion given by this

HMM will make no sense. The final answer is that we can

avoid this. All variables are not necessarily to be con-

trolled, but at least we need to guarantee that if we take a

backward dependency analysis, all components must be

covered at least once by the controlled variable set.

7. Conclusion

This article presents an HMM-based approach to online

diagnose accidental faults for real-time embedded systems.

By introducing reasonable and appropriate abstraction of

complex systems, HMM is used to describe the healthy or

faulty states of a system’s hardware components. The

observation sequences are derived from the test results

with respect to the functional constraints defined in system

specifications. They are parametrized to statistically simu-

late the real system’s behavior. As it is not easy to obtain

rich accidental fault data from a real system, the Baum–

Welch algorithm cannot be employed here to train the

parameters in HMMs. The parameters in the initial state

distribution and the state transition matrix are computed

using the failure rates of hardware components. The para-

meters in the emission matrix are estimated using the fail-

ure propagation algorithm. The estimation method is based

on the principles of FTA and the maximum entropy in

Bayesian probability theory. A fault propagation distribu-

tion is thus computed, whose parameters are adapted using

the backward algorithm and observations. The parameter-

ized HMMs are then used to online diagnose accidental

faults using a vote algorithm integrated with a low-pass fil-

ter. We have designed a specific test bed to analyze the

measures including the sensitivity, specificity, precision,

accuracy and F1-score by generating a large amount of test

cases. The test results show that the proposed approach is

robust, efficient and accurate.
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