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ABSTRACT 

The quality of a query execution plan chosen by a 
Cost-Based Optimizer (CBO) depends greatly on the 
estimation accuracy of input parameter values. Many 
research results have been produced on improving the 
estimation accuracy, but they do not work for every 
situation. Therefore, “robust query optimization” was 
introduced, in an effort to minimize the sub-optimality 
risk by accepting the fact that estimates could be 
inaccurate. In this survey, we aim to provide an 
overview of robust query optimization methods by 
classifying them into different categories, explaining 
the essential ideas, listing their advantages and 
limitations, and comparing them with multiple criteria.  

1. INTRODUCTION 
The query optimizer is an indispensable component in 
a relational DBMS engine. Since the publication of the 
System-R paper [61], cost-based optimizers have been 
widely adopted. For a given query, the optimizer 
enumerates a large number of possible execution plans, 
estimates the cost of each plan using a cost model, and 
picks the one with the lowest estimated cost. The 
parameters of the cost model fall into two categories: 
the database profile and the available amount of 
system resources. The database profile contains 
mainly: (1) basic information which represents the 
properties of the data, e.g., relation sizes and number 
of distinct attribute values, which is thereafter called 
catalog statistics, and (2) derived information specific 
to a given query, which is mainly the cardinality (i.e., 
number of tuples returned by a relational operator). 
The accuracy of parameter values has a significant 
impact on the quality of the chosen execution plan. 

It has been shown that, even if estimation errors on the 
basic information are small, their transitive effect on 
estimates of the derived information can be devastating 
(e.g., the error propagates exponentially with respect to 
the number of joins) [42]. Consequently, the optimizer 
may choose the wrong plan. However, due to non-
uniform distribution of attribute values and 
correlations between attributes, the cardinality 
estimation problem remains very challenging. Many 
efforts have been made to improve the estimation 
accuracy by constructing and maintaining more precise 
catalog statistics, using histograms [43], sampling [47, 

48, 56], maximum entropy [51] and probabilistic 
graphical model [66, 67], etc. Nevertheless, they do 
not work well for every situation, in particular for 
complex predicates and skewed data. In addition, the 
amount of system resources available may change 
dynamically during query execution. 

Having accepted the fact that parameter value 
estimates could be inaccurate or even missing, it is still 
desirable to minimize the plan sub-optimality risk, so 
the notion of “robustness” was introduced in the query 
optimizer. Informally, robustness is related to the 
ability of error resistance. However, there is yet no 
consensus on a formal definition of robustness for 
query optimizer. Recently, Graefe et al. have organized 
two seminars [31, 33] and one research panel [32] on 
the “robust query processing” topic. Before that, the 
authors tried to visualize and benchmark the robustness 
of query execution [30, 69]. [69] distinguished three 
types of robustness: query optimizer robustness (“the 
ability of the optimizer to choose a good plan as 
expected conditions change”), query execution 
robustness (“the ability of the query execution engine 
to process a given plan efficiently under different run-
time conditions”) and workload management 
robustness (“characterizes how database system 
performance is vulnerable to unexpected query 
performance”). Each type deserves an in-depth study. 
In this survey, the focus is on the query optimizer 
robustness. To make the concept more concrete, we 
propose the following definition: a query optimizer is 
robust with respect to estimation errors, if it is able to 
find a plan (or several plans) such that the query 
response time T is not greater than (1 + ε) * T(Popt) 
despite estimation errors, where T(Popt) is the query 
response time by executing the optimal plan Popt 
implied by exact input parameter values and ε is a 
user-defined tolerance threshold. Note that obtaining 
efficiently all the exact parameter values to find Popt is 
challenging [19], but outside the scope of our survey. 

The above statement is the main objective for a robust 
query optimizer. Although it has not yet been achieved 
completely, some “best-effort” research results are 
worth being analyzed. Some of them have been 
analyzed in previous surveys under the terms like 
“dynamic query optimization” [22, 52] or “adaptive 
query processing” [6, 24, 34, 35]. Indeed, dynamic or 



adaptive query optimization is one way to improve 
robustness. However, as will be seen, there are further 
interesting approaches proposed for this purpose. The 
aim of this survey is to give an overview of the 
representative robust query optimization methods, 
including many recent proposals [14-17, 25, 26, 28, 39, 
40, 53-55, 58, 65] not yet covered in any survey. Note 
that we are interested here in relational DBMS engines 
running in different environments (single-node, 
distributed or parallel), but not in query execution 
engines based on the Map-Reduce model. The major 
contributions are: (1) proposing a two-level 
classification framework for robust query optimization 
methods, (2) pointing out the inherent advantages and 
limitations of each method, as well as the relationship 
between them, and (3) comparing the methods using 
multiple well-chosen criteria. 

The remainder of the paper is organized as follows. In 
Section 2, we describe the proposed classification 
framework and choose multiple criteria for later 
comparisons. Section 3 and Section 4 are organized in 
accordance with the classification framework. We 
analyze some representative methods and compare 
them using the chosen criteria. In Section 5, we present 
a global comparison of the main approaches and their 
principle strategies. Finally, we conclude the paper in 
Section 6. 

2. CLASSIFICATION AND CRITERIA 

2.1 Classification Framework 
Depending on the query optimizer output (for a query), 
we distinguish the following two approaches: (1) 
single-plan based approach, where the output of the 
optimizer is a single plan satisfying the optimization 
criteria, and (2) multi-plan based approach, where the 
output of the optimizer is a set of plans. The main 
difference between them is that the latter often requires 
a more sophisticated execution model. 

The methods which adopt the single-plan based 
approach rely mainly on the following three strategies: 
(1) Cardinality Injection (CI). Instead of deriving 
cardinalities from basic database statistics, the 
optimizer tries to obtain directly the cardinality values 
for some operators. The main objective is to overcome 
the correlation problem (w.r.t. multi-predicate 
selections) and limit the error propagation effect (w.r.t. 
joins). One way is to collect information from 
execution feedback of previous queries; another way is 
to execute some important sub-queries during 
optimization. (2) Plan Modification (PM). The system 
collects statistics and detects estimation errors during 
query execution, then reacts to them by modifying the 
plan dynamically. Sometimes, the optimizer may be 
recalled repeatedly. (3) “Robust Plan” Selection 

(RPS). Instead of finding an “optimal” plan, the 

optimizer chooses a “robust” plan, i.e., a plan which is 
less sensitive to estimation errors. Note that, these 
strategies are not mutually exclusive. They may be 
used together by the same optimizer. In addition, some 
of them are even compatible with strategies adopted by 
a multi-plan based method. We present them as 
methods using the single-plan based approach, because 
they constitute the core contributions, while for the 
multi-plan based approach, they only serve as a tool.  

The methods which adopt the multi-plan based 
approach rely mainly on the following strategies: (1) 

Deferred Plan Choosing (DPC). The optimizer 
proposes several potentially optimal plans, and the 
final choice is taken during execution time. One way is 
to run these plans in a competition mode. Another way 
is to start with one plan and smoothly switch to others 
if necessary. (2) Tuple Routing through Eddies 

(TRE). Avnur et al. proposed a special operator called 
“eddy” [5] which receives all base relation tuples and 
intermediate result tuples, then routes them through the 
relational operators in different orders. Since different 
tuples may follow different routing orders, and each 
routing order corresponds to a specific execution plan, 
we consider this mechanism belongs to the multi-plan 
based approach. (3) Optimizer Controlled Data 

Partitioning (OCDP). The essential idea is that the 
optimizer partitions the data explicitly according to 
their inherent characteristics such as skewed 
distribution or correlations, such that different optimal 
plans may be executed for different data partitions. The 
main difference between these strategies lies in how to 
decide which plan is used for which data. With DPC, 
only one plan will be finally chosen and used for the 
complete dataset, even though the optimizer generates 
multiple plans as the output; with TRE, the eddy 
operator chooses a routing order (i.e., a plan) for each 
tuple or a group of tuples, and the decision is based on 
local statistics collected by the eddy; with OCDP, the 
mapping between sub-datasets and multiple plans is 
decided by the optimizer, based on global statistics. 

2.2 Comparison Criteria 
For each approach, different methods will be compared 
using the following criteria. The first three criteria 
define the application scope; the fourth is related to 
query performance; and the last concerns the software 
engineering aspect. Here, we list the options for each 
criterion and their abbreviations.  
C1: Estimation Error Sources. The existing methods 
deal with one or several of the following estimation 
error sources: non-uniform data distribution (DD), data 
correlation (DC), statistics obsolescence due to data 
modification (DM), missing statistics (MS, e.g., for 
complex predicates or remote data sources), 
unavailability of resources (UR), data arrival delay 
(AD), data arrival rate changing (AR), and so on.  



C2: Target Query Types. Some methods aim at 
optimizing the currently running query (C); some serve 
for future executions (F) of the same (Sa) or similar 
(Si) queries; others only deal with predefined 
parametrized queries (P). 
C3: Target Optimization Decisions. Due to 
estimation errors, the optimizer may make wrong 
decisions in the following aspects: base relation access 
methods (AM), join methods (JM), join order (JO), 
operator execution order (OEO), execution site (ES) of 
an operator, CPU allocation (CA), memory allocation 
(MA), parallelism degree (PD), partitioning key (PK), 
etc. Different methods may cover different aspects.  
C4: Performance Degradation Risk. Sometimes, for 
a given query, the “robustly” chosen plan becomes 
even worse than the “naively” chosen plan (i.e., the 
plan chosen by a classical optimizer). This may be 
caused for various reasons, e.g., too much preparation 
work should be done before finding an ideal plan, 
costly follow-up work such as removing duplicates 
may be required, wrong decisions are made on whether 
to discard or reuse intermediate results, or only part of 
the uncertainty is removed but the remaining part 
defeats the new solution. To compare the methods, we 
classify the performance degradation risk as high (H) if 
there is no worst-case guarantee, low (L) if the 
degradation is constant or linear to the original 
performance, and medium (M) if the maximum 
degradation is bound, but non-linear to the original 
performance. Sometimes, the risk level is low, but only 
under certain conditions (LC). It is also possible that 
there is no degradation risk (N) or that the user is 
allowed to choose a certain risk level (UC). 
C5: Engineering Cost. After many years of 
maintenance, commercial DBMS engines become 
extremely complex. Modifications should be made 
very carefully to avoid system regression. We assess 
the engineering cost this way: low (L), if only adding a 
stand-alone module which could be turned on/off 
easily; medium (M), if just modifying a few modules 
of the optimizer or the executor; or high (H), if 
rewriting most of the optimizer or the executor code. 

3. SINGLE-PLAN BASED APPROACH 

3.1 Cardinality Injection 
“Cardinality Injection” is a term introduced by 
Chaudhuri in [18], meaning that the cardinality 
information is obtained from other sources rather than 
derived from basic database statistics. Two different 
ways mainly exist to obtain the cardinality: learning 
from previous query executions and running some sub-
queries during optimization process. 

3.1.1 Exploiting the execution feedback 
LEO (DB2’s LEarning Optimizer) [63] is the most 
representative work of using query execution feedback 

for cardinality estimation. LEO captures the number of 
rows produced by each operator at run-time, by adding 
a counter in the operator implementation. Then, the 
<predicate, cardinality> pairs are stored in a feedback 
cache, which can be consulted by the query optimizer 
in conjunction with catalog statistics when optimizing 

a future query.  

 

Figure 1. Example to show the limitation of LEO 

However, using this mechanism, we can only obtain 
the cardinalities of a subset of predicates used by the 
optimizer to estimate the costs. For example, given the 
query “select * from R where A1=x and A2=y”, if the 
executed plan is Plan (a) in Figure 1, we can obtain the 
cardinality Card(A1=x and A2=y) from the first 
execution, so in the future, the cost estimation for Plan 
(a) will be more accurate. Nevertheless, to estimate the 
cost of Plan (b), the optimizer still needs to derive the 
cardinality Card(A1=x) from catalog statistics. To 
solve this problem, the pay-as-you-go (PAYG) 
framework [17] uses proactive plan modification and 
monitoring mechanisms, in order to obtain cardinality 
values for some sub-expressions (e.g., Card(A1=x)) 
which are not included in the running plan. For 
example, when running Plan (a), in addition to 
counting the number of rows satisfying the predicate 
“A1=x and A2=y”, the operator keeps another counter, 
which is increased every time when “A1=x” is true for 
an input tuple. Thus, in the future, the optimizer can 
also estimate the cost of Plan (b) more precisely. 
Obviously, this will increase the overhead of query 
execution, however, the DBA or the user is allowed to 
specify a limit on the additional overhead for a query.  

Some other methods [1, 13, 20, 62] use feedback 
information to refine catalog statistics. They are less 
general than the above CI methods, because each of 
them limits to a specific statistical data structure. They 
have gone further with regard to previous methods 
mentioned in Section 1 which maintain precise catalog 
statistics, and most of them have been covered by 
earlier surveys [43, 49], so are not discussed in detail 
in this paper. 

3.1.2 Querying during optimization process 
This idea was first adopted for multi-databases (MIND 
system [27]). In case that there are not enough 
statistics for generating a complete execution plan, the 
query optimizer first decomposes the query into sub-
queries, sends them to different remote sites, and then 



decides the order of inter-site operators (e.g., joins) 
based on the sub-query results. A recent work of 
Neumann et al called “Incremental Execution 
Framework” (IEF) [53] adopted a similar principle to 
optimize queries in uni-processor environment. The 
main steps are: (1) construct the optimal execution 
plan using the cost model, (2) identify sensitive plan 
fragments, i.e., the fragments whose cardinality 
estimation errors might lead to wrong plan decisions 
for higher level operators, (3) execute those plan 
fragments, materialize the results, and thus retrieve the 
cardinality (i.e., the number of tuples), and (4) find a 
new optimal plan using the obtained cardinality. IEF to 
some extent removes the uncertainty of the cardinality 
estimation. However, it still has some limitations. For 
example, it identifies the sensitive query fragments 
based on “estimation error rates”, but this information 
is often unknown or inaccurate.  

Different from the above work, Xplus [40] focused on 
offline tuning of repeatedly-running queries. When a 
query plan is claimed to be sub-optimal, the optimizer 
picks some candidate (sub)plans heuristically, calls the 
executor to run these (sub)plans iteratively, collects the 
actual cardinalities from these runs, and stops the 
iterations when finding a plan which is δ% better than 
the original one, where δ is a user-defined threshold. 
This proposal is only suitable for read-only 
applications running in a stable environment.  

3.1.3 Comparison 
In Table 1, the above methods are compared using the 
five criteria defined in Section 2.2. C1: They deal with 
all kinds of cardinality estimation errors, except that 
Xplus is not resistant to data modifications. C2: The 
feedback-based methods serve for future similar 
queries; others optimize the currently running query, 
except that Xplus tunes a query for future runs. C3: 
LEO, PAYG and Xplus try to improve all kinds of 
decisions; IEF focuses on JM and JO. C4: As LEO and 
PAYG only correct part of the estimation errors, the 
uncertainty of other values may lead to a worse plan. 
However, for repeatedly-running queries, after several 
runs, a stable plan can be obtained. Normally, PAYG 
could converge earlier, because it collects information 
more efficiently. IEF introduces some degradation risk 
due to materialization, but this cost is rather limited. 
Xplus does not have degradation risk, because it uses 
only exact cardinalities. C5: LEO comprises four 
components: one to save the optimizer’s plan, a 
monitoring component, a feedback analysis component 
and a feedback exploitation component. The analysis 
component is a stand-alone process, and the others are 
minor modifications to the DB2 server. PAYG needs 
to modify the optimizer generated plan and identify 
important expressions to run, so it is more complicated 
than LEO. IEF optimizer needs to identify critical plan 

fragments to execute, interact with the executor, and 
materialize intermediate results, but the plan executor 
stays the same, so we consider the engineering cost as 
medium. Finally, Xplus can work as a stand-alone 
module. 

Table 1. Comparison of cardinality injection methods 

  
  Criterion 
 
Method 

 C
1

: 

E
stim

. 

e
r
ro

r 

so
u

r
ce

s 

C
2

: 

T
a
r
g
e
t 

q
u

e
r
y
 

C
3

:T
a

rg

e
t o

p
t. 

d
e
c
isio

n
s 

C
4

:D
e
g
. 

r
isk

 

C
5

:E
n

g
. 

c
o

st 

LEO  DD,DC,DM,MS F, Si All LC L 

PAYG DD,DC,DM,MS F, Si All LC M 

IEF  DD,DC,DM,MS C JM,JO L M 

Xplus  DD,DC,MS F, Sa All N L 

3.2 Plan Modification 
With this different strategy, the optimizer uses catalog 
statistics to generate a plan. However, the execution 
plan is monitored at run-time. Once a sub-optimality is 
detected, the plan is modified: either by rescheduling, 
or by re-optimization. Rescheduling is to update only 
the execution order of the operators or to update the 
order of the base relations. Re-optimization is to 
generate a new plan for the remainder of the query 
using run-time collected statistics. Based on the new 
cost estimation, re-optimization might throw away the 
intermediate results and start a new plan from scratch.  

3.2.1 Rescheduling 
In distributed environments, the relations participating 
in a query plan are often stored in remote sites, and the 
arrival of data may be delayed. In this situation, to 
avoid idling, Amsaleg et al proposed a query plan 
scrambling algorithm [2]. The algorithm contains two 
phases: (1) materializing sub-trees. During this phase, 
each iteration of the algorithm identifies a plan 
fragment that is not dependent on any delayed data (the 
fragment is called a “runnable sub-tree”), then the 
fragment is executed and the result is materialized. (2) 
Creating new joins between relations that were not 
directly joined in the original query tree. When no 
more runnable sub-trees can be found by Phase 1, the 
scrambling algorithm moves into Phase 2, so that the 
plan execution could continue.  
Query plan scrambling can improve the response time 
in many cases, but it only deals with the initial delay 
(i.e., the arrival of the first tuple is delayed). If the 
delay happens during the execution of the fragment, it 
is blocked and has to wait. To solve this problem, 
Bouganim et al proposed a dynamic query scheduling 
strategy (DQS) [12] that interleaves the scheduling 
phase and the execution phase. Each time, the 
scheduler only schedules the query fragments that can 
be executed immediately (i.e., all their inputs are 
available and there is enough memory). These 
fragments are executed concurrently. During 
execution, the data arrival rate is monitored 



continuously. Once a problem is detected or the 
execution is finished, rescheduling is triggered. If the 
rescheduling cannot solve the problem, a re-
optimization (see Section 3.2.2) may be triggered.  

3.2.2 Re-optimization 
The dynamic Re-Optimization (ReOpt) algorithm 
proposed by Kabra et al [46] detects the estimation 
errors during query execution and re-optimizes the rest 
of the query if necessary. At specific intermediate 
points in the query plan, statistics collector operators 
are inserted to collect various statistics. During query 
execution, the collected statistics are compared with 
the estimated ones. If there is a large difference, some 
heuristics are triggered to evaluate whether a re-
optimization is beneficial. If so, the optimizer is 
recalled to modify the execution plan for the rest of the 
query. Instead of suspending a query in mid-execution, 
the currently executing operator is run to completion 
and re-directs the output to a temporary file on disk. 
Then, SQL corresponding to the rest of the query is 
generated by using this temporary file. The new SQL 
is re-submitted to the optimizer as a regular query. In 
ReOpt, if the difference between the collected 
parameter value and the estimated one exceeds a 
threshold, the re-optimization procedure will be 
considered. A later work [50] argued that this threshold 
is chosen arbitrarily so could be blind. [50] introduced 
POP algorithm which uses the “validity range” concept 
of the chosen plan for each input parameter. If the 
actual value of the parameter violates the validity 
range, a re-optimization is triggered; otherwise, the 
current plan continues execution. The violation of 
validity ranges is detected by a CHECK operator. 
Another difference between POP and ReOpt is that, 
when a re-optimization is triggered, ReOpt always 
modifies the plan for the remainder of the query in 
order to reuse the intermediate results, while POP 
allows the optimizer to discard the intermediate results 
and choose a completely new plan, if the cost model 
estimates that is to be beneficial. Han et al [37] 
extended the POP algorithm to a parallel environment 
with a shared-nothing architecture. 
Continuous query optimization (CQO) [15] extends 
ReOpt for query optimization in massively parallel 
environments. On the same principle, query execution 
is continuously monitored, run-time statistics are 
collected and the parallelism degree or the partition 
key choice is dynamically modified.  
Re-optimization is also applied for recursive queries in 
[28], where the estimation errors may be propagated to 
later iterations. The authors proposed two mechanisms. 
The first mechanism is called “lookahead planning”: 
the optimizer generates plans for k iterations, the 
executor executes them, provides collected statistics, 
and then the optimizer generates plans for the next k 

iterations using these statistics, and so on. The second 
mechanism is called “dynamic feedback”: it detects the 
divergence of the cardinality estimates and decides to 
re-optimize the remainder of the running plan if 
needed. The proposal is named “lookahead with 
feedback” (LAWF). 
Bonneau et al [11] and Hameurlain et al [36] focused 
on the re-optimization problem for the shared-nothing 
architecture and the multi-user environment. The main 
objective is to improve the physical resource (CPU and 
memory) allocation by exploiting the collected 
statistics at run-time. When an estimation error is 
detected, they re-optimize not only the mapping 
between the remaining tasks and the CPUs, but also 
the allocation of memory. Incremental memory 
allocation (we call it IMA in short) heuristics were 
proposed to avoid unexpected extra I/Os caused by 
lack of memory. During re-optimization, the 
parallelism degree may also be modified to satisfy the 
memory requirements.  

3.2.3 Comparison 
In Table 2, we compare the above methods using the 
five criteria. C1: The rescheduling methods were 
mainly designed to deal with data arrival delay and rate 
changing problems, while the re-optimization methods 
were originally used to solve the other estimation error 
problems. However, they are not contradictory and can 
co-exist to handle both kinds of problems, as Tukwila 
[44] does. In CQO, statistics are missing during 
optimization. In IMA, the unavailability of resources is 
also taken into account. C2: They all optimize the 
currently running query. C3: They focus on different 
decision aspects, but none of them deal with all 
aspects. C4: Scrambling may degrade the performance 
dramatically if a bad join order is chosen during Phase 
2. DQS reduces this risk by estimating the increased 
cost before changing the join order. ReOpt reacts to 
every detected estimation error. When there is only one 
wrongly estimated parameter, it works very well. 
However, when there are many uncertain parameters, 
each re-optimization may generate just another wrong 
plan. POP, LAWF and IMA may face the same 
problem. We consider the degradation risk level as 
high. CQO is different, because for the moment, it only 
modifies parallelism degree and partition key. The 
decision is based on run-time collected statistics, so the 
degradation risk is rather low. C5: Scrambling only 
modifies slightly the scheduler in order to detect data 
arrival delays and run the two phases iteratively. DQS 
not only rewrites the scheduler, but also modifies 
slightly the optimizer to generate annotated query 
plans and enhances the executor to be able to interact 
with the scheduler. Re-optimization methods only add 
statistics collectors and re-optimization triggers, except 
POP. It suspends the query during re-optimization, and 



it provides different strategies for placing the CHECK 

operators, in order to support pipelined execution.  

Table 2. Comparison of plan modification methods 
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Scrambling AD C OEO,JO H L 

DQS AD,AR C OEO,JO L M 

ReOpt DD,DC,DM C JM,JO,MA H L 

POP DD,DC,DM C AM,JM,JO H M 

CQO MS C PD,PK L L 

LAWF DD,DC,DM,MS C AM,JM,JO H L 

IMA DD,DC,DM,UR C CA,MA,PD H L 

3.3 “Robust Plan” Selection 
In section 3.2, were presented the methods which react 
to estimation errors by modifying the plan; in this 
section, are examined the methods which take into 
account the uncertainty during optimization process. 
Instead of an “optimal” plan, they choose a “robust” 
plan.  

3.3.1 Robust cardinality estimation 
The traditional sampling-based cardinality estimation 
methods compute a single-point value: if the 
population size is N, the sample size is s, and the 
observed cardinality for the sample is C’, then the 
estimated cardinality C for the whole dataset should be 
C’*N/s. The estimation error could be small; however, 
the optimizer may still make a big mistake when 
choosing the plan. For example, in Figure 2 (a), we 
have two candidate plans P1 and P2 for query Q, 
where x-axis represents the value space of the 
uncertain cardinality and y-axis represents the cost of 
the plan. Suppose that the real cardinality is between 
Clow and Chigh. If the estimated cardinality is Clow, the 
optimizer will choose P2. Otherwise, if the estimated 
cardinality is Chigh, the optimizer will choose P1. By 
comparing these two situations, we find that the first 

one is more risky, because the worst case cost is high. 

 

Figure 2. Robust cardinality estimation 

Instead of estimating the cardinality by a single value 
C, the Robust Cardinality Estimation (RCE) method in 
[8] derives a probability density function of C from the 
sampling result, as shown in Figure 2(b). Then it 
transforms the probability density function into a 
cumulative probability function cdf(c), as shown in 
Figure 2(c). The user is allowed to choose a confidence 
threshold T which represents the level of risk (a big T 
corresponds to a small risk). The estimated cardinality 

is computed by: C = cdf-1(T). For example, if T=95%, 
the model returns Chigh as the estimated cardinality, so 
the more stable plan P1 will be chosen. If T=50%, the 
more risky plan P2 will be chosen. The authors claim 
that this solution is robust, because users are aware of 
the risk and take the responsibility for it. 

3.3.2 Proactive re-optimization 
Babu et al [7] proposed another way to take into 
account the estimation uncertainty during optimization 
process. In the Rio prototype, the authors estimate 
cardinalities using intervals, instead of single point 
values. If the optimizer is very certain of the estimate, 
then the interval should be narrow; otherwise, the 
interval should be wider. Using intervals allows the 
optimizer to generate robust plans that minimize the 
need for re-optimization. A robust plan is a plan whose 
cost is very close to optimal at all points within the 
interval. For example, in Figure 2(a), we assume that 
the estimated cardinality is Clow and the actual 
cardinality is Chigh. With re-optimization methods such 
as POP, the optimizer will first choose P2 which is 
optimal at point Clow, and then choose P1 during re-
optimization. For more complicated queries (e.g., with 
multiple joins and selection predicates), the situation 
could be even worse: re-optimization may happen 

repeatedly when multiple errors are detected.  

We come back to the example in Figure 2(a). With 
Rio, the cardinality could be estimated as interval 
[Clow, Chigh], so P1 will be chosen directly at the 
beginning, because it is robust within this interval. 
Thus, the re-optimization is avoided. The authors claim 
that their method is “proactive”, because instead of 
reacting to the disaster caused by a wrong plan, they 
tried to prevent the optimizer from choosing that plan. 
Unfortunately, very often, a robust plan does not exist 
for the estimated interval. In this case, the authors 
propose to choose a set of plans which are 
“switchable”. We will talk about this in Section 4.1. 
Actually, sometimes, we cannot even find a switchable 
plan. If this is the case, the authors propose to do like 
POP: choose an optimal plan using a single-point 
estimate and re-optimize the query if necessary. Note 
that, even if a robust or switchable plan is found, re-
optimization may still be triggered, because the 
detected cardinalities may be outside of the estimated 

intervals.  

Ergenç et al [26] extends the proactive re-optimization 
idea to deal with the query optimization problem in 
large-scale distributed environments. In such 
environments, the amount of data transferred between 
sites has a big impact on the overall performance. If 
the optimizer decides to place a relational operator at a 
wrong site due to cardinality estimation errors, huge 
amount of data may be transferred. To minimize the 
risk of wrong placement, the authors estimate the 



cardinality as an interval instead of a single point 
value. If at any point in the interval, placing an 
operator on site S provides near-optimality (i.e., the 
performance degradation compared to the optimal 
placement is less than a threshold), then the site S is 
called a robust site. A Robust Placement (RP) for a 
query is to place recursively each operator in the plan 
tree on a robust site. 
Least Expected Cost (LEC) optimization [21] also used 
intervals to estimate cardinalities. LEC treats statistics 
estimates as random variables to compute the expected 
cost of each plan and picks the one with lowest 
expected cost. It is an interesting approach for query 
optimization in general, but in our opinion cannot be 
considered as a robust optimization method, because 
its objective is to minimize the average running time of 
a compile-once-run-many query, but not to improve 
the worst case performance of a specific query 
execution. 

3.3.3 Robust plan diagram reduction 
A “plan diagram” is a color-coded pictorial 
enumeration of the plans chosen by the optimizer for a 
parameterized query template over the relational 
selectivity space [60]. The diagram is generated offline 
[57] by repeatedly invoking the query optimizer, each 
time with a different selectivity value. Then, for an 
instance of the query template, the optimizer first calls 
the selectivity estimator, and then picks the 
corresponding plan from the diagram. In the original 
paper, the authors gave examples with two-
dimensional diagrams, each dimension representing 
the possible selectivity of one parametrized predicate 
in the query template. In this paper, for ease of 
comprehension, we illustrate the principle with a one-
dimensional example. The sample query is “select * 
from R, S where R.A2 = S.A2 and R.A1 = $x”, where 
$x is a variable. Figure 3(a) shows the diagram in the 
lower part, and the corresponding cost function curves 
above for more information. For example, if the 
estimated selectivity is between b and c, plan P3 will 

be chosen.  

Using the plan diagram can avoid running the 
complete optimization algorithm for each instance of 
the parametrized query, thus the query optimization is 
more efficient. However, a plan diagram may contain a 
large number of plans in the selectivity space, making 
the diagram maintenance difficult. Therefore, Harish et 
al [38] proposed to reduce the dense diagrams to 
simpler ones, without degrading too much the quality 
of each individual plan. The principle is as follows: a 
plan Pa can be replaced by another plan Pb if and only 
if at each query point covered by Pa, the increased cost 
(C(Pb) – C(Pa)) is less than a tolerance threshold 
defined by the user (such as 10%). For example, P1 
and P3 can be replaced by P2, as shown in Figure 3(b). 

When the cardinality estimation is precise, the reduced 
plan diagram does not degrade the performance too 
much compared to the original diagram. However, 
when there are estimation errors, use of the reduced 
diagram could be at high risk. For example, with the 
reduced diagram in Figure 3(b), if the estimated 
selectivity is between b and c, P2 will be chosen. 
However, if the actual selectivity is much higher than 

c, the cost of P2 becomes very high compared to P3.  

 

Figure 3. Example of robust plan diagram reduction 

To reduce this risk, the same authors [39] proposed to 
make the plan replacement policy stricter: during the 
plan reduction, a plan Pa can be replaced by another 
plan Pb only if at each query point in the whole 

selectivity space, the increased cost (C(Pb) – C(Pa)) is 
less than a tolerance threshold defined by the user. 
Considering this condition, P3 cannot be replaced 
anymore, so we get the reduction result in Figure 3(c). 
This reduction is called “Robust Diagram Reduction” 
(RDR), because the risk of significant performance 
degradation is limited in case of estimation errors. 

3.3.4 Comparison 
The above methods are compared in Table 3. C1: They 
all assume that the running environment is stable. RCE 
derives the probability density function by using fresh 
random samples which are pre-computed manually or 
updated periodically whenever a sufficient number of 
database modifications have occurred. Thus, it does 
not deal with DM and MS. Rio and RP still work when 
catalog statistics are missing or outdated. However, 
their effectiveness may be affected. In fact, they 
compute the estimation intervals based on catalog 
statistics. If statistics are missing or outdated, it may 
happen that the intervals become too large for the 
optimizer to find a robust plan, or that the intervals are 
erroneous and re-optimization should be triggered. 
RDR has no constraints on estimation error sources. 
C2: They all deal with the currently running query, 
except RDR, which works for predefined parametrized 
queries. C3: RCE, Rio, RDR could avoid wrong 
decisions on base relation access methods, join 
methods and join ordering; RP extends Rio to improve 
the execution site selection. C4: RCE allows the user 
to choose the risk level. For Rio, if the actual 
cardinalities fall into the estimated intervals, and if a 



robust plan exists, then the performance degradation 
risk is limited to a predefined threshold. However, 
these two conditions are difficult to satisfy. RP has the 
same risk level as Rio. The degradation risk of RDR is 
always limited, thanks to the strict replacement policy. 
C5: RCE only modifies the cardinality estimation 
module of the optimizer. Rio requires more 
modifications to the DBMS engine. RP works for 
large-scale distributed environments and is based on a 
mobile execution model [4]. Similar to Rio, it also 
requires significant modifications to the optimizer in 
order to support the interval-based estimation. RDR 
develops a stand-alone tool to prepare a set of robust 

plans for a predefined query template.  

Table 3. Comparison of robust plan selection methods 
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4. MULTI-PLAN BASED APPROACH 

4.1 Deferred Plan Choosing 
Parametric query optimization process [10] determines 
for each point in the parameter space, an optimal plan. 
It defers choosing the plan until the start of execution. 
However, its objective is to avoid compiling the query 
for each run, but not to achieve robustness. In this 
section, we will study other methods, which make the 
choice in the middle of execution. 

4.1.1 Access method competition 
Whether to use indexes and which ones to use for a 
single-relation access depends strongly on the 
selectivity of the predicate. To avoid wrong 
optimization decisions due to the selectivity estimation 
uncertainty, Antoshenkov [3] proposed access method 
competition (AMC), i.e., to run simultaneously 
different base relation access processes for a small 
amount of time. The author argues that there is a high 
probability that one of them finishes during this time, 
and others can be canceled. Otherwise, if none of them 
finishes quickly, the execution engine should guess 
and continue only one that has the least estimated cost.  

4.1.2 Plan switching 
In Rio [7], if the optimizer fails to find a robust plan 
within the estimated interval, it tries to find a 
“switchable plan” (SP), which is a set S of plans such 
that: (1) at any point in the intervals, there is a plan p 
in S whose cost is close to optimal; (2) according to the 
detected statistics, the system can switch from one plan 
to another in S without losing any significant fraction 
of work done so far. Figure 4 gives an example of a 

switchable plan. Assuming that the result size of R S 
is estimated to be small, then the first plan is executed; 

during execution, if the tuples produced by R S 
cannot fit in memory, the second plan will be switched 
on (i.e., changing the join algorithm from NLJ to HJ); 

later on, if the result size of R S is detected to be 
much bigger than the relation T, the third plan will be 
switched on. The switching process is smooth thanks 

to a “switch” operator integrated in the plan tree. 

 

Figure 4. Example of a switchable plan 

The “switch” operator can be seen as a variant of the 
“choose-plan” operator (CP) proposed earlier by 
Graefe et al. in [29]. “Choose-plan” operators are run-
time primitives that permit optimization decisions to be 
prepared at compile-time and evaluated at run-time. It 
was initially designed to deal with the situation where 
parameters in the query template are unknown; 
however, other estimation errors like non-uniform 
distribution could also be addressed by adding a 
“choose-plan” operator at an appropriate position in 
the decision tree.  
A different way of switching plans based on “Plan 
Bouquets” (PB) has been proposed recently [25]. First, 
through repeated invocations of the optimizer, a 
“parametric optimal set of plans” (POSP) that covers 
the entire selectivity space of the predicates is 
identified. Second, a “POSP infimum curve” (PIC) 
which is the trajectory of the minimum cost from the 
POSP plans is constructed. Then, the PIC is discretized 
by some predefined isocost (IC) steps, IC1, IC2, … , 
which are progressive cost thresholds, for example, 
each IC value doubles the preceding one. The 
intersection of each IC with the PIC corresponds to a 
selectivity value and the best POSP plan for this 
selectivity. The set of plans associated with these ICs 
is called a “Plan Bouquet”. At run-time, the plan 
associated with the cheapest IC step is executed first. If 
the partial execution overheads exceed the IC value, it 
means that the actual selectivity is beyond the range 
where the current plan is optimal, so a switch to the 
plan associated with the next IC value is triggered. 
Otherwise, if the current plan completes execution 
before reaching the IC value, it means that the actual 
selectivity is inside the range covered by this plan. 
Since the cost of executing a sequence of plans before 
discovering the actual selectivity and then switching to 
the optimal plan is bounded by the IC values, Plan 
Bouquet method guarantees worst-case performance. 



4.1.3 Comparison 

In Table 4, we compare the above methods. C1: They 
deal with all kinds of estimation errors in a stable 
environment. C2: AMC and SP work for the currently 
running query, while CP and PB were initially 
designed for predefined parametrized queries. C3: 
AMC focuses on base relation access method 
selection; SP deals with join methods and join order; 
CP and PB cover all those three decisions. C4: AMC 
has low degradation risk, at the condition that one of 
the concurrent processes finishes quickly; SP also has 
low degradation risk, at the condition that the actual 
cardinalities are inside the estimated intervals. CP and 
PB have low degradation risk. C5: All methods require 

major modifications to the optimizer and the executor. 

Table 4. Comp. of deferred plan choosing methods 
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4.2 Tuple Routing through Eddies 
With the methods described in Section 4.1, although 
the optimizer proposes multiple execution plans, only 
one of them “survives”. Thus, all tuples flow through 
the same plan tree (route). Differently, Avnur et al [5] 
allow different tuples to flow through different routes 
using a special operator “eddy”. The eddy mechanism 
was extended for different environments [59, 64, 70]. 

4.2.1 The eddy 
A tree-like plan fixes the execution order of the 
operators in advance, i.e., tuples always flow from 
leaves to the root. This order can be changed at run-
time by using rescheduling or re-optimization, but it is 
too costly to change it frequently. Avnur et al. [5] 
proposed a more flexible mechanism which can 
continuously reorder the operators. They use a star-like 
query plan, where the relational operators surround a 
coordinating operator called an eddy. Tuples from base 
relations and intermediate results are sent to the eddy 
which routes each tuple to an operator according to the 
routing policy. The eddy sends a tuple to the output 

only if it has been handled by all the operators.  

We illustrate the effectiveness of eddies using the 
query “select * from R, S, T where R.B=S.B and 
S.C=T.C”. Suppose that tuples arrive from the three 
relations with different delay and rate. In the plan, if 

there are two join operators Op1 (R S) and Op2 

(S T), tuples from R can be only routed to Op1, and 
tuples from T can be only routed to Op2, while tuples 
from S can be routed either to Op1 or to Op2. The 

eddy makes the routing decision for tuples from S 
dynamically according to a predefined policy, which 
tries to minimize the execution cost. A specific join 
algorithm called Symmetric Hash Join (SHJ) [68, 41] 
is recommended: two hash tables are maintained, one 
for each input relation; the arriving tuple is built 
immediately into the corresponding hash table and 
probed against the existing tuples in the other hash 
table, so the intermediate result can be produced 
immediately and returned to the eddy. This is actually 
the “secret” of eddies to enable the reorder-ability: (1) 
the operator state is continuously maintained, 
regardless of the execution order; and (2) the “faster” 

relation is never blocked by the “slower” relation. 

We can find that, an eddy is equivalent to a set of tree-
like query plans, each one handling a subset of tuples. 
The tuple routing policy is used to make the mappings. 
Advanced routing policies [9] were proposed later on. 
Note that, since the eddy implementations rely on the 
symmetric hash join, they are more adequate to 
streaming scenarios where existing relations fit in 
memory. 

4.2.2 Extensions of the eddy 
The adaptability of the eddy is limited to operator re-
ordering, whereas access methods and join algorithms 
are pre-chosen and fixed during the execution. A more 
flexible version [59] also allows continuously 
changing the choice of access methods and join 
algorithms, etc. To do this, Raman et al [59] made the 
following main modifications to the eddy architecture: 
(1) each join operator is replaced by two State Modules 
(SteMs) which encapsulate data structures (such as 
hash tables or indexes) used in join algorithms; (2) one 
or several Access Modules (AMs) are added to each 
base relation, each AM encapsulating one access 
method to the data source; and (3) new routing policies 
are used by the eddy module. At the beginning, 
different AMs are run concurrently (thus redundantly). 
In fact, they are in competition: when the eddy finds 
that one is much more efficient than the others, it will 
stop the slower ones. Tian and DeWitt [64] extended 
the eddy and SteMs architecture to a distributed 
version. Instead of using a centralized eddy module 
which could become a bottleneck, the authors 
proposed to integrate the routing function into each 
operator. Zhou et al [70] designed another distributed 
query processing architecture called SwAP, building 
on eddies and SteMs. The authors proposed to use one 
eddy module for each execution site, which routes 
tuples between the local operators and remote eddies.  

4.2.3 Comparison 
We compare the tuple routing methods in Table5. C1: 
They deal with all kinds of estimation errors. C2: They 
optimize the currently running query. C3: Eddy only 



optimizes the join order and operator execution order; 
the extensions of eddy also optimize base relation 
access methods and join methods. C4: Although there 
is no theoretical guarantee, Deshpande [23] has shown 
experimentally that the performance degradation of 
eddies is low. Other methods have the same risk level, 
under the condition that one of the competing access 
methods wins quickly. C5: In these methods, most of 
the optimization decisions are made by the eddy 
module, so the classical optimizer is reduced to a pre-
optimizer, and the execution engine becomes more 

complicated. Thus, the engineering cost is high. 

Table 5. Comparison of tuple routing methods 

 
    Criterion 
 
 
Method 

C
1

: E
stim

. 

e
r
ro

r so
u

r
c
es 

C
2

: T
a

rg
e
t 

q
u

e
r
y
 ty

p
e
s 

 C
3

: 

T
a
r
g
e
t o

p
t. 

d
e
c
isio

n
s 

C
4

:D
e
g
. risk

 

C
5

:E
n

g
. C

o
st 

Eddy All C JO,OEO L H 

SteM All C AM,JM,JO,OEO LC H 

Tian All C AM,JM,JO,OEO LC H 
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4.3 Optimizer Controlled Data 

Partitioning 
In TRE based methods, the mapping between tuples 
and multiple plans is decided by the eddy module, 
according to local indicators, such as input rate and 
output rate of an operator. In OCDP based methods, 
the mapping is decided by the optimizer, according to 
global statistics. TRE tends to avoid worst-case 
performance, while OCDP also aims at exploring best-
case opportunities. We will present some 
representative methods in this section.  

4.3.1 Run-time partitioning 
Ives et al [45] proposed an adaptive data partitioning 
(ADP) method. During query execution, the data are 
dynamically partitioned into sub-datasets, each 
following a specific plan. Three partitioning strategies 
are illustrated: (1) sequential partitioning. The query 
execution is divided into multiple phases. All tuples 
arriving during Phase PhN follow a plan PlN. PlN is 
chosen using the statistics collected during the 
previous N-1 phases. To guarantee the correctness of 
the result, a “stitch-up” phase is added at the end. For 
example, two relations S and T are joined through two 
phases. During Ph0, S0 and T0 are joined; during Ph1, 
S1 and T1 are joined. According to the following 

equation: S T = (S0 T0) U (S1 T1) U (S0 T1) U 

(S1 T0), the “stitch-up” phase has to compute (S0 T1) 

and (S1 T0). (2) Dynamic splitting. Multiple plans are 
run concurrently, and the arriving tuple is sent to one 
plan by a “split” operator according to some criteria. 
For example, to join two relations which are quasi-
sorted, tuples respecting the expected order will be sent 

to the plan with merge-join, and others will be sent to 
the plan with hash join. (3) Partitioning used for plan 
competition. Multiple plans are run concurrently, each 
processing a small subset of data. If one is much faster 
than the others, it will process all the remaining data. 
Note that, for the last two strategies, a “stitch-up” 
phase is also needed.  

4.3.2 Compile-time partitioning   
Different from ADP, Selectivity-Based Partitioning 
(SBP) [58] and Query Mesh (QM) model [54, 55] 
decide the data partitions and corresponding plans at 
query compile time. The author of SBP noticed that 
there often exist join correlations among relation 
fragments, for example, given two relations R and S, 

where S = S1 S2, it may happen that the join R S1 is 

selective while R S2 is much less selective. Based on 
this observation, for a chain query with equality 
predicates, the author proposed to horizontally 
partition one relation in the chain, and rewrite the 
original query as the union of a set of sub-queries. For 
different sub-queries, the optimizer can choose several 
join orders, such that the overall performance is better 
than using a single plan without partitioning. The 
search space of this optimization problem is large: the 
optimizer has to decide which relation to partition, 
choose the number of partitions and compute the 
optimal join order corresponding to each partition. The 
author proposed a heuristic algorithm for computing an 
effective solution without exploring the complete 
search space. With the QM model, for a given query, a 
decision tree-based classifier is learned from a training 
dataset. Each decision node is a predicate (such as 
A>x) which distributes the arriving tuples into 
different classes. For each tuple class, a best plan is 
chosen. The choice of execution plans and the 
classifier are mutually dependent, so they should be 
considered as a whole, meaning that the execution cost 
of each plan for each possible data subset should be 
estimated and compared. The search space is too big to 
use an enumerative search strategy, so the authors 
chose randomized search strategies. Similar to QM, 
correlation-aware multi-route stream query optimizer 
(CMR) [16] also partitions the data and computes an 
optimal plan for each partition. The difference is that it 
explores explicitly data correlations, which not only 
makes the partitioning more effective but also reduces 
the optimization complexity. Horizontal Partitioning 
with Eddies HPE [65] is another work using different 
plans for different data partitions. The originality is: 
first, the authors introduced the notion of conditional 
join plans (CJP), a new representation of search space 
which captures both the partitioning and the join orders 
for each partition combination; second, they use the 
eddy mechanism as the execution model, in order to 

share intermediate results between different plans. 



4.3.3 Comparison 
We compare the above methods in Table 6. C1: They 
are all resistant to (or even take advantage of) non-
uniform data distribution and data correlations. HPE 
uses eddies, so it is also resistant to data arrival delay 
and rate changing, etc. C2: They all optimize the 
current query. C3: SBP focuses only on join order. 
Others focus also on access methods and join methods. 
Again, with eddies, HPE can also optimize the 
operator execution order. C4: The degradation risk is 
low, because characteristics of each sub-dataset are 
well-known by the optimizer. C5: The engineering cost 
is high, because both the optimizer and the plan 

executor need to be rewritten. 

Table 6. Comparison of data partitioning methods 
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5. GLOBAL COMPARISON 
In this section, we make a global comparison of the 
two approaches and their adopted strategies. With 
single-plan based approach, methods are easier to 
implement, but none of them can handle all types of 
estimation error sources; different methods could be 
combined to enlarge the application scope, but when 
there are too many uncertain factors, the degradation 
risk becomes high. With multi-plan based approach, 
the degradation risk is limited, but the engineering cost 
is higher. Eddy-based methods can handle all kinds of 
estimation error sources, however, most of them 
require that the hash tables fit in memory. In addition, 
how eddies can be used in a highly parallel 

environment has not been well studied.  

In Table 7, we list briefly the advantages and 

limitations of the strategies used by each approach. 

6. CONCLUSION 

Robust query optimization methods take into account 
the uncertainty of estimated parameter values, in order 
to avoid or recover from bad decisions caused by 
estimation errors. In this paper, the representative 
methods were classified into two main approaches: 
single-plan based approach and multi-plan based 
approach. For each approach, we highlight the 
principle strategies. We analyzed and compared the 
methods using five well-selected criteria: estimation 
error sources, target query types, target optimization 
decisions, performance degradation risk and 

engineering cost. Finally, a global comparison of the 
approaches and the strategies is given. 

Table 7. Global comparison  

Approach Strat
egy 

Advantage Limitation 

 
 
Single- 
Plan 
Based 

CI Good for 
repeatedly-running 
queries 

For current query, 
only JM, JO are 
optimized 

PM Could be extended 
to improve all kinds 
of opt. decisions 

May have high 
degradation risk 

RPS Degradation risk is 
low if a robust plan 
exists 

Difficult to handle too 
many uncertain 
factors 

 
Multi- 
Plan 
Based 

DPC Easier to implement 
than TR and DP 

AMC may consume 
too many resources 

TRE Deal with all kinds 
of estimation error 
sources 

Memory consuming;  
Parallelization 
problem not addressed 

OCD
P 

Take advantage of 
inherent data 
characteristics 

Optimization time 
may be long 

The main conclusions to be drawn are: (1) different 
strategies of the single-plan based approach can be 
combined to enlarge the application scope, as the 
AutoAdmin project [14] does, (2) single-plan based 
approach is easier to be integrated into the main 
commercial DBMSs, but it only works well when there 
are few uncertain parameters, and (3) hence when there 
are too many uncertain parameters, the multi-plan 
based approach is a safer choice. 
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