
HAL Id: hal-01316823
https://hal.science/hal-01316823v1

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Query Optimization Methods With Respect to
Estimation Errors: A Survey

Shaoyi Yin, Abdelkader Hameurlain, Franck Morvan

To cite this version:
Shaoyi Yin, Abdelkader Hameurlain, Franck Morvan. Robust Query Optimization Methods With
Respect to Estimation Errors: A Survey. SIGMOD record, 2015, vol. 44 (n° 3), pp. 25-36.
�10.1145/2854006.2854012�. �hal-01316823�

https://hal.science/hal-01316823v1
https://hal.archives-ouvertes.fr

To link to this article :
Official URL: http://dx.doi.org/10.1145/2854006.2854012

To cite this version : Yin, Shaoyi and Hameurlain, Abdelkader and
Morvan, Franck Robust Query Optimization Methods With Respect to
Estimation Errors: A Survey. (2015) SIGMOD Record, vol. 44 (n° 3).
pp. 25-36. ISSN 0163-5808

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15453

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Robust Query Optimization Methods

With Respect to Estimation Errors: A Survey
Shaoyi YIN, Abdelkader HAMEURLAIN, Franck MORVAN

IRIT Laboratory, Paul Sabatier University, France

firstname.lastname@irit.fr

ABSTRACT

The quality of a query execution plan chosen by a
Cost-Based Optimizer (CBO) depends greatly on the
estimation accuracy of input parameter values. Many
research results have been produced on improving the
estimation accuracy, but they do not work for every
situation. Therefore, “robust query optimization” was
introduced, in an effort to minimize the sub-optimality
risk by accepting the fact that estimates could be
inaccurate. In this survey, we aim to provide an
overview of robust query optimization methods by
classifying them into different categories, explaining
the essential ideas, listing their advantages and
limitations, and comparing them with multiple criteria.

1. INTRODUCTION
The query optimizer is an indispensable component in
a relational DBMS engine. Since the publication of the
System-R paper [61], cost-based optimizers have been
widely adopted. For a given query, the optimizer
enumerates a large number of possible execution plans,
estimates the cost of each plan using a cost model, and
picks the one with the lowest estimated cost. The
parameters of the cost model fall into two categories:
the database profile and the available amount of
system resources. The database profile contains
mainly: (1) basic information which represents the
properties of the data, e.g., relation sizes and number
of distinct attribute values, which is thereafter called
catalog statistics, and (2) derived information specific
to a given query, which is mainly the cardinality (i.e.,
number of tuples returned by a relational operator).
The accuracy of parameter values has a significant
impact on the quality of the chosen execution plan.

It has been shown that, even if estimation errors on the
basic information are small, their transitive effect on
estimates of the derived information can be devastating
(e.g., the error propagates exponentially with respect to
the number of joins) [42]. Consequently, the optimizer
may choose the wrong plan. However, due to non-
uniform distribution of attribute values and
correlations between attributes, the cardinality
estimation problem remains very challenging. Many
efforts have been made to improve the estimation
accuracy by constructing and maintaining more precise
catalog statistics, using histograms [43], sampling [47,

48, 56], maximum entropy [51] and probabilistic
graphical model [66, 67], etc. Nevertheless, they do
not work well for every situation, in particular for
complex predicates and skewed data. In addition, the
amount of system resources available may change
dynamically during query execution.

Having accepted the fact that parameter value
estimates could be inaccurate or even missing, it is still
desirable to minimize the plan sub-optimality risk, so
the notion of “robustness” was introduced in the query
optimizer. Informally, robustness is related to the
ability of error resistance. However, there is yet no
consensus on a formal definition of robustness for
query optimizer. Recently, Graefe et al. have organized
two seminars [31, 33] and one research panel [32] on
the “robust query processing” topic. Before that, the
authors tried to visualize and benchmark the robustness
of query execution [30, 69]. [69] distinguished three
types of robustness: query optimizer robustness (“the
ability of the optimizer to choose a good plan as
expected conditions change”), query execution
robustness (“the ability of the query execution engine
to process a given plan efficiently under different run-
time conditions”) and workload management
robustness (“characterizes how database system
performance is vulnerable to unexpected query
performance”). Each type deserves an in-depth study.
In this survey, the focus is on the query optimizer
robustness. To make the concept more concrete, we
propose the following definition: a query optimizer is
robust with respect to estimation errors, if it is able to
find a plan (or several plans) such that the query
response time T is not greater than (1 + ε) * T(Popt)
despite estimation errors, where T(Popt) is the query
response time by executing the optimal plan Popt
implied by exact input parameter values and ε is a
user-defined tolerance threshold. Note that obtaining
efficiently all the exact parameter values to find Popt is
challenging [19], but outside the scope of our survey.

The above statement is the main objective for a robust
query optimizer. Although it has not yet been achieved
completely, some “best-effort” research results are
worth being analyzed. Some of them have been
analyzed in previous surveys under the terms like
“dynamic query optimization” [22, 52] or “adaptive
query processing” [6, 24, 34, 35]. Indeed, dynamic or

adaptive query optimization is one way to improve
robustness. However, as will be seen, there are further
interesting approaches proposed for this purpose. The
aim of this survey is to give an overview of the
representative robust query optimization methods,
including many recent proposals [14-17, 25, 26, 28, 39,
40, 53-55, 58, 65] not yet covered in any survey. Note
that we are interested here in relational DBMS engines
running in different environments (single-node,
distributed or parallel), but not in query execution
engines based on the Map-Reduce model. The major
contributions are: (1) proposing a two-level
classification framework for robust query optimization
methods, (2) pointing out the inherent advantages and
limitations of each method, as well as the relationship
between them, and (3) comparing the methods using
multiple well-chosen criteria.

The remainder of the paper is organized as follows. In
Section 2, we describe the proposed classification
framework and choose multiple criteria for later
comparisons. Section 3 and Section 4 are organized in
accordance with the classification framework. We
analyze some representative methods and compare
them using the chosen criteria. In Section 5, we present
a global comparison of the main approaches and their
principle strategies. Finally, we conclude the paper in
Section 6.

2. CLASSIFICATION AND CRITERIA

2.1 Classification Framework
Depending on the query optimizer output (for a query),
we distinguish the following two approaches: (1)
single-plan based approach, where the output of the
optimizer is a single plan satisfying the optimization
criteria, and (2) multi-plan based approach, where the
output of the optimizer is a set of plans. The main
difference between them is that the latter often requires
a more sophisticated execution model.

The methods which adopt the single-plan based
approach rely mainly on the following three strategies:
(1) Cardinality Injection (CI). Instead of deriving
cardinalities from basic database statistics, the
optimizer tries to obtain directly the cardinality values
for some operators. The main objective is to overcome
the correlation problem (w.r.t. multi-predicate
selections) and limit the error propagation effect (w.r.t.
joins). One way is to collect information from
execution feedback of previous queries; another way is
to execute some important sub-queries during
optimization. (2) Plan Modification (PM). The system
collects statistics and detects estimation errors during
query execution, then reacts to them by modifying the
plan dynamically. Sometimes, the optimizer may be
recalled repeatedly. (3) “Robust Plan” Selection

(RPS). Instead of finding an “optimal” plan, the

optimizer chooses a “robust” plan, i.e., a plan which is
less sensitive to estimation errors. Note that, these
strategies are not mutually exclusive. They may be
used together by the same optimizer. In addition, some
of them are even compatible with strategies adopted by
a multi-plan based method. We present them as
methods using the single-plan based approach, because
they constitute the core contributions, while for the
multi-plan based approach, they only serve as a tool.

The methods which adopt the multi-plan based
approach rely mainly on the following strategies: (1)

Deferred Plan Choosing (DPC). The optimizer
proposes several potentially optimal plans, and the
final choice is taken during execution time. One way is
to run these plans in a competition mode. Another way
is to start with one plan and smoothly switch to others
if necessary. (2) Tuple Routing through Eddies

(TRE). Avnur et al. proposed a special operator called
“eddy” [5] which receives all base relation tuples and
intermediate result tuples, then routes them through the
relational operators in different orders. Since different
tuples may follow different routing orders, and each
routing order corresponds to a specific execution plan,
we consider this mechanism belongs to the multi-plan
based approach. (3) Optimizer Controlled Data

Partitioning (OCDP). The essential idea is that the
optimizer partitions the data explicitly according to
their inherent characteristics such as skewed
distribution or correlations, such that different optimal
plans may be executed for different data partitions. The
main difference between these strategies lies in how to
decide which plan is used for which data. With DPC,
only one plan will be finally chosen and used for the
complete dataset, even though the optimizer generates
multiple plans as the output; with TRE, the eddy
operator chooses a routing order (i.e., a plan) for each
tuple or a group of tuples, and the decision is based on
local statistics collected by the eddy; with OCDP, the
mapping between sub-datasets and multiple plans is
decided by the optimizer, based on global statistics.

2.2 Comparison Criteria
For each approach, different methods will be compared
using the following criteria. The first three criteria
define the application scope; the fourth is related to
query performance; and the last concerns the software
engineering aspect. Here, we list the options for each
criterion and their abbreviations.
C1: Estimation Error Sources. The existing methods
deal with one or several of the following estimation
error sources: non-uniform data distribution (DD), data
correlation (DC), statistics obsolescence due to data
modification (DM), missing statistics (MS, e.g., for
complex predicates or remote data sources),
unavailability of resources (UR), data arrival delay
(AD), data arrival rate changing (AR), and so on.

C2: Target Query Types. Some methods aim at
optimizing the currently running query (C); some serve
for future executions (F) of the same (Sa) or similar
(Si) queries; others only deal with predefined
parametrized queries (P).
C3: Target Optimization Decisions. Due to
estimation errors, the optimizer may make wrong
decisions in the following aspects: base relation access
methods (AM), join methods (JM), join order (JO),
operator execution order (OEO), execution site (ES) of
an operator, CPU allocation (CA), memory allocation
(MA), parallelism degree (PD), partitioning key (PK),
etc. Different methods may cover different aspects.
C4: Performance Degradation Risk. Sometimes, for
a given query, the “robustly” chosen plan becomes
even worse than the “naively” chosen plan (i.e., the
plan chosen by a classical optimizer). This may be
caused for various reasons, e.g., too much preparation
work should be done before finding an ideal plan,
costly follow-up work such as removing duplicates
may be required, wrong decisions are made on whether
to discard or reuse intermediate results, or only part of
the uncertainty is removed but the remaining part
defeats the new solution. To compare the methods, we
classify the performance degradation risk as high (H) if
there is no worst-case guarantee, low (L) if the
degradation is constant or linear to the original
performance, and medium (M) if the maximum
degradation is bound, but non-linear to the original
performance. Sometimes, the risk level is low, but only
under certain conditions (LC). It is also possible that
there is no degradation risk (N) or that the user is
allowed to choose a certain risk level (UC).
C5: Engineering Cost. After many years of
maintenance, commercial DBMS engines become
extremely complex. Modifications should be made
very carefully to avoid system regression. We assess
the engineering cost this way: low (L), if only adding a
stand-alone module which could be turned on/off
easily; medium (M), if just modifying a few modules
of the optimizer or the executor; or high (H), if
rewriting most of the optimizer or the executor code.

3. SINGLE-PLAN BASED APPROACH

3.1 Cardinality Injection
“Cardinality Injection” is a term introduced by
Chaudhuri in [18], meaning that the cardinality
information is obtained from other sources rather than
derived from basic database statistics. Two different
ways mainly exist to obtain the cardinality: learning
from previous query executions and running some sub-
queries during optimization process.

3.1.1 Exploiting the execution feedback
LEO (DB2’s LEarning Optimizer) [63] is the most
representative work of using query execution feedback

for cardinality estimation. LEO captures the number of
rows produced by each operator at run-time, by adding
a counter in the operator implementation. Then, the
<predicate, cardinality> pairs are stored in a feedback
cache, which can be consulted by the query optimizer
in conjunction with catalog statistics when optimizing

a future query.

Figure 1. Example to show the limitation of LEO

However, using this mechanism, we can only obtain
the cardinalities of a subset of predicates used by the
optimizer to estimate the costs. For example, given the
query “select * from R where A1=x and A2=y”, if the
executed plan is Plan (a) in Figure 1, we can obtain the
cardinality Card(A1=x and A2=y) from the first
execution, so in the future, the cost estimation for Plan
(a) will be more accurate. Nevertheless, to estimate the
cost of Plan (b), the optimizer still needs to derive the
cardinality Card(A1=x) from catalog statistics. To
solve this problem, the pay-as-you-go (PAYG)
framework [17] uses proactive plan modification and
monitoring mechanisms, in order to obtain cardinality
values for some sub-expressions (e.g., Card(A1=x))
which are not included in the running plan. For
example, when running Plan (a), in addition to
counting the number of rows satisfying the predicate
“A1=x and A2=y”, the operator keeps another counter,
which is increased every time when “A1=x” is true for
an input tuple. Thus, in the future, the optimizer can
also estimate the cost of Plan (b) more precisely.
Obviously, this will increase the overhead of query
execution, however, the DBA or the user is allowed to
specify a limit on the additional overhead for a query.

Some other methods [1, 13, 20, 62] use feedback
information to refine catalog statistics. They are less
general than the above CI methods, because each of
them limits to a specific statistical data structure. They
have gone further with regard to previous methods
mentioned in Section 1 which maintain precise catalog
statistics, and most of them have been covered by
earlier surveys [43, 49], so are not discussed in detail
in this paper.

3.1.2 Querying during optimization process
This idea was first adopted for multi-databases (MIND
system [27]). In case that there are not enough
statistics for generating a complete execution plan, the
query optimizer first decomposes the query into sub-
queries, sends them to different remote sites, and then

decides the order of inter-site operators (e.g., joins)
based on the sub-query results. A recent work of
Neumann et al called “Incremental Execution
Framework” (IEF) [53] adopted a similar principle to
optimize queries in uni-processor environment. The
main steps are: (1) construct the optimal execution
plan using the cost model, (2) identify sensitive plan
fragments, i.e., the fragments whose cardinality
estimation errors might lead to wrong plan decisions
for higher level operators, (3) execute those plan
fragments, materialize the results, and thus retrieve the
cardinality (i.e., the number of tuples), and (4) find a
new optimal plan using the obtained cardinality. IEF to
some extent removes the uncertainty of the cardinality
estimation. However, it still has some limitations. For
example, it identifies the sensitive query fragments
based on “estimation error rates”, but this information
is often unknown or inaccurate.

Different from the above work, Xplus [40] focused on
offline tuning of repeatedly-running queries. When a
query plan is claimed to be sub-optimal, the optimizer
picks some candidate (sub)plans heuristically, calls the
executor to run these (sub)plans iteratively, collects the
actual cardinalities from these runs, and stops the
iterations when finding a plan which is δ% better than
the original one, where δ is a user-defined threshold.
This proposal is only suitable for read-only
applications running in a stable environment.

3.1.3 Comparison
In Table 1, the above methods are compared using the
five criteria defined in Section 2.2. C1: They deal with
all kinds of cardinality estimation errors, except that
Xplus is not resistant to data modifications. C2: The
feedback-based methods serve for future similar
queries; others optimize the currently running query,
except that Xplus tunes a query for future runs. C3:
LEO, PAYG and Xplus try to improve all kinds of
decisions; IEF focuses on JM and JO. C4: As LEO and
PAYG only correct part of the estimation errors, the
uncertainty of other values may lead to a worse plan.
However, for repeatedly-running queries, after several
runs, a stable plan can be obtained. Normally, PAYG
could converge earlier, because it collects information
more efficiently. IEF introduces some degradation risk
due to materialization, but this cost is rather limited.
Xplus does not have degradation risk, because it uses
only exact cardinalities. C5: LEO comprises four
components: one to save the optimizer’s plan, a
monitoring component, a feedback analysis component
and a feedback exploitation component. The analysis
component is a stand-alone process, and the others are
minor modifications to the DB2 server. PAYG needs
to modify the optimizer generated plan and identify
important expressions to run, so it is more complicated
than LEO. IEF optimizer needs to identify critical plan

fragments to execute, interact with the executor, and
materialize intermediate results, but the plan executor
stays the same, so we consider the engineering cost as
medium. Finally, Xplus can work as a stand-alone
module.

Table 1. Comparison of cardinality injection methods

 Criterion

Method

 C
1

:

E
stim

.

e
r
ro

r

so
u

r
ce

s

C
2

:

T
a
r
g
e
t

q
u

e
r
y

C
3

:T
a

rg

e
t o

p
t.

d
e
c
isio

n
s

C
4

:D
e
g
.

r
isk

C
5

:E
n

g
.

c
o

st

LEO DD,DC,DM,MS F, Si All LC L

PAYG DD,DC,DM,MS F, Si All LC M

IEF DD,DC,DM,MS C JM,JO L M

Xplus DD,DC,MS F, Sa All N L

3.2 Plan Modification
With this different strategy, the optimizer uses catalog
statistics to generate a plan. However, the execution
plan is monitored at run-time. Once a sub-optimality is
detected, the plan is modified: either by rescheduling,
or by re-optimization. Rescheduling is to update only
the execution order of the operators or to update the
order of the base relations. Re-optimization is to
generate a new plan for the remainder of the query
using run-time collected statistics. Based on the new
cost estimation, re-optimization might throw away the
intermediate results and start a new plan from scratch.

3.2.1 Rescheduling
In distributed environments, the relations participating
in a query plan are often stored in remote sites, and the
arrival of data may be delayed. In this situation, to
avoid idling, Amsaleg et al proposed a query plan
scrambling algorithm [2]. The algorithm contains two
phases: (1) materializing sub-trees. During this phase,
each iteration of the algorithm identifies a plan
fragment that is not dependent on any delayed data (the
fragment is called a “runnable sub-tree”), then the
fragment is executed and the result is materialized. (2)
Creating new joins between relations that were not
directly joined in the original query tree. When no
more runnable sub-trees can be found by Phase 1, the
scrambling algorithm moves into Phase 2, so that the
plan execution could continue.
Query plan scrambling can improve the response time
in many cases, but it only deals with the initial delay
(i.e., the arrival of the first tuple is delayed). If the
delay happens during the execution of the fragment, it
is blocked and has to wait. To solve this problem,
Bouganim et al proposed a dynamic query scheduling
strategy (DQS) [12] that interleaves the scheduling
phase and the execution phase. Each time, the
scheduler only schedules the query fragments that can
be executed immediately (i.e., all their inputs are
available and there is enough memory). These
fragments are executed concurrently. During
execution, the data arrival rate is monitored

continuously. Once a problem is detected or the
execution is finished, rescheduling is triggered. If the
rescheduling cannot solve the problem, a re-
optimization (see Section 3.2.2) may be triggered.

3.2.2 Re-optimization
The dynamic Re-Optimization (ReOpt) algorithm
proposed by Kabra et al [46] detects the estimation
errors during query execution and re-optimizes the rest
of the query if necessary. At specific intermediate
points in the query plan, statistics collector operators
are inserted to collect various statistics. During query
execution, the collected statistics are compared with
the estimated ones. If there is a large difference, some
heuristics are triggered to evaluate whether a re-
optimization is beneficial. If so, the optimizer is
recalled to modify the execution plan for the rest of the
query. Instead of suspending a query in mid-execution,
the currently executing operator is run to completion
and re-directs the output to a temporary file on disk.
Then, SQL corresponding to the rest of the query is
generated by using this temporary file. The new SQL
is re-submitted to the optimizer as a regular query. In
ReOpt, if the difference between the collected
parameter value and the estimated one exceeds a
threshold, the re-optimization procedure will be
considered. A later work [50] argued that this threshold
is chosen arbitrarily so could be blind. [50] introduced
POP algorithm which uses the “validity range” concept
of the chosen plan for each input parameter. If the
actual value of the parameter violates the validity
range, a re-optimization is triggered; otherwise, the
current plan continues execution. The violation of
validity ranges is detected by a CHECK operator.
Another difference between POP and ReOpt is that,
when a re-optimization is triggered, ReOpt always
modifies the plan for the remainder of the query in
order to reuse the intermediate results, while POP
allows the optimizer to discard the intermediate results
and choose a completely new plan, if the cost model
estimates that is to be beneficial. Han et al [37]
extended the POP algorithm to a parallel environment
with a shared-nothing architecture.
Continuous query optimization (CQO) [15] extends
ReOpt for query optimization in massively parallel
environments. On the same principle, query execution
is continuously monitored, run-time statistics are
collected and the parallelism degree or the partition
key choice is dynamically modified.
Re-optimization is also applied for recursive queries in
[28], where the estimation errors may be propagated to
later iterations. The authors proposed two mechanisms.
The first mechanism is called “lookahead planning”:
the optimizer generates plans for k iterations, the
executor executes them, provides collected statistics,
and then the optimizer generates plans for the next k

iterations using these statistics, and so on. The second
mechanism is called “dynamic feedback”: it detects the
divergence of the cardinality estimates and decides to
re-optimize the remainder of the running plan if
needed. The proposal is named “lookahead with
feedback” (LAWF).
Bonneau et al [11] and Hameurlain et al [36] focused
on the re-optimization problem for the shared-nothing
architecture and the multi-user environment. The main
objective is to improve the physical resource (CPU and
memory) allocation by exploiting the collected
statistics at run-time. When an estimation error is
detected, they re-optimize not only the mapping
between the remaining tasks and the CPUs, but also
the allocation of memory. Incremental memory
allocation (we call it IMA in short) heuristics were
proposed to avoid unexpected extra I/Os caused by
lack of memory. During re-optimization, the
parallelism degree may also be modified to satisfy the
memory requirements.

3.2.3 Comparison
In Table 2, we compare the above methods using the
five criteria. C1: The rescheduling methods were
mainly designed to deal with data arrival delay and rate
changing problems, while the re-optimization methods
were originally used to solve the other estimation error
problems. However, they are not contradictory and can
co-exist to handle both kinds of problems, as Tukwila
[44] does. In CQO, statistics are missing during
optimization. In IMA, the unavailability of resources is
also taken into account. C2: They all optimize the
currently running query. C3: They focus on different
decision aspects, but none of them deal with all
aspects. C4: Scrambling may degrade the performance
dramatically if a bad join order is chosen during Phase
2. DQS reduces this risk by estimating the increased
cost before changing the join order. ReOpt reacts to
every detected estimation error. When there is only one
wrongly estimated parameter, it works very well.
However, when there are many uncertain parameters,
each re-optimization may generate just another wrong
plan. POP, LAWF and IMA may face the same
problem. We consider the degradation risk level as
high. CQO is different, because for the moment, it only
modifies parallelism degree and partition key. The
decision is based on run-time collected statistics, so the
degradation risk is rather low. C5: Scrambling only
modifies slightly the scheduler in order to detect data
arrival delays and run the two phases iteratively. DQS
not only rewrites the scheduler, but also modifies
slightly the optimizer to generate annotated query
plans and enhances the executor to be able to interact
with the scheduler. Re-optimization methods only add
statistics collectors and re-optimization triggers, except
POP. It suspends the query during re-optimization, and

it provides different strategies for placing the CHECK

operators, in order to support pipelined execution.

Table 2. Comparison of plan modification methods

 Criterion

Method

 C
1

:

E
stim

.

e
r
ro

r

so
u

r
ce

s

C
2

:T
a

rg

e
t q

u
e
ry

ty
p

e
s

 C
3

:T
a

rg

e
t O

p
t.

d
e
c
isio

n
s

C
4

:D
e
g
.

r
isk

C
5

:E
n

g
.

c
o

st

Scrambling AD C OEO,JO H L

DQS AD,AR C OEO,JO L M

ReOpt DD,DC,DM C JM,JO,MA H L

POP DD,DC,DM C AM,JM,JO H M

CQO MS C PD,PK L L

LAWF DD,DC,DM,MS C AM,JM,JO H L

IMA DD,DC,DM,UR C CA,MA,PD H L

3.3 “Robust Plan” Selection
In section 3.2, were presented the methods which react
to estimation errors by modifying the plan; in this
section, are examined the methods which take into
account the uncertainty during optimization process.
Instead of an “optimal” plan, they choose a “robust”
plan.

3.3.1 Robust cardinality estimation
The traditional sampling-based cardinality estimation
methods compute a single-point value: if the
population size is N, the sample size is s, and the
observed cardinality for the sample is C’, then the
estimated cardinality C for the whole dataset should be
C’*N/s. The estimation error could be small; however,
the optimizer may still make a big mistake when
choosing the plan. For example, in Figure 2 (a), we
have two candidate plans P1 and P2 for query Q,
where x-axis represents the value space of the
uncertain cardinality and y-axis represents the cost of
the plan. Suppose that the real cardinality is between
Clow and Chigh. If the estimated cardinality is Clow, the
optimizer will choose P2. Otherwise, if the estimated
cardinality is Chigh, the optimizer will choose P1. By
comparing these two situations, we find that the first

one is more risky, because the worst case cost is high.

Figure 2. Robust cardinality estimation

Instead of estimating the cardinality by a single value
C, the Robust Cardinality Estimation (RCE) method in
[8] derives a probability density function of C from the
sampling result, as shown in Figure 2(b). Then it
transforms the probability density function into a
cumulative probability function cdf(c), as shown in
Figure 2(c). The user is allowed to choose a confidence
threshold T which represents the level of risk (a big T
corresponds to a small risk). The estimated cardinality

is computed by: C = cdf-1(T). For example, if T=95%,
the model returns Chigh as the estimated cardinality, so
the more stable plan P1 will be chosen. If T=50%, the
more risky plan P2 will be chosen. The authors claim
that this solution is robust, because users are aware of
the risk and take the responsibility for it.

3.3.2 Proactive re-optimization
Babu et al [7] proposed another way to take into
account the estimation uncertainty during optimization
process. In the Rio prototype, the authors estimate
cardinalities using intervals, instead of single point
values. If the optimizer is very certain of the estimate,
then the interval should be narrow; otherwise, the
interval should be wider. Using intervals allows the
optimizer to generate robust plans that minimize the
need for re-optimization. A robust plan is a plan whose
cost is very close to optimal at all points within the
interval. For example, in Figure 2(a), we assume that
the estimated cardinality is Clow and the actual
cardinality is Chigh. With re-optimization methods such
as POP, the optimizer will first choose P2 which is
optimal at point Clow, and then choose P1 during re-
optimization. For more complicated queries (e.g., with
multiple joins and selection predicates), the situation
could be even worse: re-optimization may happen

repeatedly when multiple errors are detected.

We come back to the example in Figure 2(a). With
Rio, the cardinality could be estimated as interval
[Clow, Chigh], so P1 will be chosen directly at the
beginning, because it is robust within this interval.
Thus, the re-optimization is avoided. The authors claim
that their method is “proactive”, because instead of
reacting to the disaster caused by a wrong plan, they
tried to prevent the optimizer from choosing that plan.
Unfortunately, very often, a robust plan does not exist
for the estimated interval. In this case, the authors
propose to choose a set of plans which are
“switchable”. We will talk about this in Section 4.1.
Actually, sometimes, we cannot even find a switchable
plan. If this is the case, the authors propose to do like
POP: choose an optimal plan using a single-point
estimate and re-optimize the query if necessary. Note
that, even if a robust or switchable plan is found, re-
optimization may still be triggered, because the
detected cardinalities may be outside of the estimated

intervals.

Ergenç et al [26] extends the proactive re-optimization
idea to deal with the query optimization problem in
large-scale distributed environments. In such
environments, the amount of data transferred between
sites has a big impact on the overall performance. If
the optimizer decides to place a relational operator at a
wrong site due to cardinality estimation errors, huge
amount of data may be transferred. To minimize the
risk of wrong placement, the authors estimate the

cardinality as an interval instead of a single point
value. If at any point in the interval, placing an
operator on site S provides near-optimality (i.e., the
performance degradation compared to the optimal
placement is less than a threshold), then the site S is
called a robust site. A Robust Placement (RP) for a
query is to place recursively each operator in the plan
tree on a robust site.
Least Expected Cost (LEC) optimization [21] also used
intervals to estimate cardinalities. LEC treats statistics
estimates as random variables to compute the expected
cost of each plan and picks the one with lowest
expected cost. It is an interesting approach for query
optimization in general, but in our opinion cannot be
considered as a robust optimization method, because
its objective is to minimize the average running time of
a compile-once-run-many query, but not to improve
the worst case performance of a specific query
execution.

3.3.3 Robust plan diagram reduction
A “plan diagram” is a color-coded pictorial
enumeration of the plans chosen by the optimizer for a
parameterized query template over the relational
selectivity space [60]. The diagram is generated offline
[57] by repeatedly invoking the query optimizer, each
time with a different selectivity value. Then, for an
instance of the query template, the optimizer first calls
the selectivity estimator, and then picks the
corresponding plan from the diagram. In the original
paper, the authors gave examples with two-
dimensional diagrams, each dimension representing
the possible selectivity of one parametrized predicate
in the query template. In this paper, for ease of
comprehension, we illustrate the principle with a one-
dimensional example. The sample query is “select *
from R, S where R.A2 = S.A2 and R.A1 = $x”, where
$x is a variable. Figure 3(a) shows the diagram in the
lower part, and the corresponding cost function curves
above for more information. For example, if the
estimated selectivity is between b and c, plan P3 will

be chosen.

Using the plan diagram can avoid running the
complete optimization algorithm for each instance of
the parametrized query, thus the query optimization is
more efficient. However, a plan diagram may contain a
large number of plans in the selectivity space, making
the diagram maintenance difficult. Therefore, Harish et
al [38] proposed to reduce the dense diagrams to
simpler ones, without degrading too much the quality
of each individual plan. The principle is as follows: a
plan Pa can be replaced by another plan Pb if and only
if at each query point covered by Pa, the increased cost
(C(Pb) – C(Pa)) is less than a tolerance threshold
defined by the user (such as 10%). For example, P1
and P3 can be replaced by P2, as shown in Figure 3(b).

When the cardinality estimation is precise, the reduced
plan diagram does not degrade the performance too
much compared to the original diagram. However,
when there are estimation errors, use of the reduced
diagram could be at high risk. For example, with the
reduced diagram in Figure 3(b), if the estimated
selectivity is between b and c, P2 will be chosen.
However, if the actual selectivity is much higher than

c, the cost of P2 becomes very high compared to P3.

Figure 3. Example of robust plan diagram reduction

To reduce this risk, the same authors [39] proposed to
make the plan replacement policy stricter: during the
plan reduction, a plan Pa can be replaced by another
plan Pb only if at each query point in the whole

selectivity space, the increased cost (C(Pb) – C(Pa)) is
less than a tolerance threshold defined by the user.
Considering this condition, P3 cannot be replaced
anymore, so we get the reduction result in Figure 3(c).
This reduction is called “Robust Diagram Reduction”
(RDR), because the risk of significant performance
degradation is limited in case of estimation errors.

3.3.4 Comparison
The above methods are compared in Table 3. C1: They
all assume that the running environment is stable. RCE
derives the probability density function by using fresh
random samples which are pre-computed manually or
updated periodically whenever a sufficient number of
database modifications have occurred. Thus, it does
not deal with DM and MS. Rio and RP still work when
catalog statistics are missing or outdated. However,
their effectiveness may be affected. In fact, they
compute the estimation intervals based on catalog
statistics. If statistics are missing or outdated, it may
happen that the intervals become too large for the
optimizer to find a robust plan, or that the intervals are
erroneous and re-optimization should be triggered.
RDR has no constraints on estimation error sources.
C2: They all deal with the currently running query,
except RDR, which works for predefined parametrized
queries. C3: RCE, Rio, RDR could avoid wrong
decisions on base relation access methods, join
methods and join ordering; RP extends Rio to improve
the execution site selection. C4: RCE allows the user
to choose the risk level. For Rio, if the actual
cardinalities fall into the estimated intervals, and if a

robust plan exists, then the performance degradation
risk is limited to a predefined threshold. However,
these two conditions are difficult to satisfy. RP has the
same risk level as Rio. The degradation risk of RDR is
always limited, thanks to the strict replacement policy.
C5: RCE only modifies the cardinality estimation
module of the optimizer. Rio requires more
modifications to the DBMS engine. RP works for
large-scale distributed environments and is based on a
mobile execution model [4]. Similar to Rio, it also
requires significant modifications to the optimizer in
order to support the interval-based estimation. RDR
develops a stand-alone tool to prepare a set of robust

plans for a predefined query template.

Table 3. Comparison of robust plan selection methods

Criterion

Method

C
1

:

E
stim

.

e
r
ro

r

so
u

r
ce

s

C
2

: T
a

rg
e
t

q
u

e
r
y

ty
p

e
s

 C
3

:

T
a
r
g
e
t

o
p

t.

d
e
c
isio

n
s

C
4

:D
e
g
.

r
isk

C
5

:E
n

g
.

c
o

st
RCE DD,DC C AM,JM,JO UC L

Rio DD,DC,DM,MS C AM,JM,JO LC M

RP DD,DC,DM,MS C AM,JM,JO,ES LC M

RDR DD,DC,DM,MS P AM,JM,JO L L

4. MULTI-PLAN BASED APPROACH

4.1 Deferred Plan Choosing
Parametric query optimization process [10] determines
for each point in the parameter space, an optimal plan.
It defers choosing the plan until the start of execution.
However, its objective is to avoid compiling the query
for each run, but not to achieve robustness. In this
section, we will study other methods, which make the
choice in the middle of execution.

4.1.1 Access method competition
Whether to use indexes and which ones to use for a
single-relation access depends strongly on the
selectivity of the predicate. To avoid wrong
optimization decisions due to the selectivity estimation
uncertainty, Antoshenkov [3] proposed access method
competition (AMC), i.e., to run simultaneously
different base relation access processes for a small
amount of time. The author argues that there is a high
probability that one of them finishes during this time,
and others can be canceled. Otherwise, if none of them
finishes quickly, the execution engine should guess
and continue only one that has the least estimated cost.

4.1.2 Plan switching
In Rio [7], if the optimizer fails to find a robust plan
within the estimated interval, it tries to find a
“switchable plan” (SP), which is a set S of plans such
that: (1) at any point in the intervals, there is a plan p
in S whose cost is close to optimal; (2) according to the
detected statistics, the system can switch from one plan
to another in S without losing any significant fraction
of work done so far. Figure 4 gives an example of a

switchable plan. Assuming that the result size of R S
is estimated to be small, then the first plan is executed;

during execution, if the tuples produced by R S
cannot fit in memory, the second plan will be switched
on (i.e., changing the join algorithm from NLJ to HJ);

later on, if the result size of R S is detected to be
much bigger than the relation T, the third plan will be
switched on. The switching process is smooth thanks

to a “switch” operator integrated in the plan tree.

Figure 4. Example of a switchable plan

The “switch” operator can be seen as a variant of the
“choose-plan” operator (CP) proposed earlier by
Graefe et al. in [29]. “Choose-plan” operators are run-
time primitives that permit optimization decisions to be
prepared at compile-time and evaluated at run-time. It
was initially designed to deal with the situation where
parameters in the query template are unknown;
however, other estimation errors like non-uniform
distribution could also be addressed by adding a
“choose-plan” operator at an appropriate position in
the decision tree.
A different way of switching plans based on “Plan
Bouquets” (PB) has been proposed recently [25]. First,
through repeated invocations of the optimizer, a
“parametric optimal set of plans” (POSP) that covers
the entire selectivity space of the predicates is
identified. Second, a “POSP infimum curve” (PIC)
which is the trajectory of the minimum cost from the
POSP plans is constructed. Then, the PIC is discretized
by some predefined isocost (IC) steps, IC1, IC2, … ,
which are progressive cost thresholds, for example,
each IC value doubles the preceding one. The
intersection of each IC with the PIC corresponds to a
selectivity value and the best POSP plan for this
selectivity. The set of plans associated with these ICs
is called a “Plan Bouquet”. At run-time, the plan
associated with the cheapest IC step is executed first. If
the partial execution overheads exceed the IC value, it
means that the actual selectivity is beyond the range
where the current plan is optimal, so a switch to the
plan associated with the next IC value is triggered.
Otherwise, if the current plan completes execution
before reaching the IC value, it means that the actual
selectivity is inside the range covered by this plan.
Since the cost of executing a sequence of plans before
discovering the actual selectivity and then switching to
the optimal plan is bounded by the IC values, Plan
Bouquet method guarantees worst-case performance.

4.1.3 Comparison

In Table 4, we compare the above methods. C1: They
deal with all kinds of estimation errors in a stable
environment. C2: AMC and SP work for the currently
running query, while CP and PB were initially
designed for predefined parametrized queries. C3:
AMC focuses on base relation access method
selection; SP deals with join methods and join order;
CP and PB cover all those three decisions. C4: AMC
has low degradation risk, at the condition that one of
the concurrent processes finishes quickly; SP also has
low degradation risk, at the condition that the actual
cardinalities are inside the estimated intervals. CP and
PB have low degradation risk. C5: All methods require

major modifications to the optimizer and the executor.

Table 4. Comp. of deferred plan choosing methods

 Criterion

Method

 C
1

:

E
stim

.

e
r
ro

r

so
u

r
ce

s

C
2

:

T
a
r
g
e
t

q
u

e
r
y

C
3

:T
a

rg

e
t o

p
t.

d
e
c
isio

n
s

C
4

:D
e
g
.

r
isk

C
5

:E
n

g
.

C
o

st

AMC DD,DC,DM,MS C AM LC M

SP DD,DC,DM,MS C JM,JO LC M

CP DD,DC,DM,MS P AM,JM,JO L M

PB DD,DC,DM,MS P AM,JM,JO L M

4.2 Tuple Routing through Eddies
With the methods described in Section 4.1, although
the optimizer proposes multiple execution plans, only
one of them “survives”. Thus, all tuples flow through
the same plan tree (route). Differently, Avnur et al [5]
allow different tuples to flow through different routes
using a special operator “eddy”. The eddy mechanism
was extended for different environments [59, 64, 70].

4.2.1 The eddy
A tree-like plan fixes the execution order of the
operators in advance, i.e., tuples always flow from
leaves to the root. This order can be changed at run-
time by using rescheduling or re-optimization, but it is
too costly to change it frequently. Avnur et al. [5]
proposed a more flexible mechanism which can
continuously reorder the operators. They use a star-like
query plan, where the relational operators surround a
coordinating operator called an eddy. Tuples from base
relations and intermediate results are sent to the eddy
which routes each tuple to an operator according to the
routing policy. The eddy sends a tuple to the output

only if it has been handled by all the operators.

We illustrate the effectiveness of eddies using the
query “select * from R, S, T where R.B=S.B and
S.C=T.C”. Suppose that tuples arrive from the three
relations with different delay and rate. In the plan, if

there are two join operators Op1 (R S) and Op2

(S T), tuples from R can be only routed to Op1, and
tuples from T can be only routed to Op2, while tuples
from S can be routed either to Op1 or to Op2. The

eddy makes the routing decision for tuples from S
dynamically according to a predefined policy, which
tries to minimize the execution cost. A specific join
algorithm called Symmetric Hash Join (SHJ) [68, 41]
is recommended: two hash tables are maintained, one
for each input relation; the arriving tuple is built
immediately into the corresponding hash table and
probed against the existing tuples in the other hash
table, so the intermediate result can be produced
immediately and returned to the eddy. This is actually
the “secret” of eddies to enable the reorder-ability: (1)
the operator state is continuously maintained,
regardless of the execution order; and (2) the “faster”

relation is never blocked by the “slower” relation.

We can find that, an eddy is equivalent to a set of tree-
like query plans, each one handling a subset of tuples.
The tuple routing policy is used to make the mappings.
Advanced routing policies [9] were proposed later on.
Note that, since the eddy implementations rely on the
symmetric hash join, they are more adequate to
streaming scenarios where existing relations fit in
memory.

4.2.2 Extensions of the eddy
The adaptability of the eddy is limited to operator re-
ordering, whereas access methods and join algorithms
are pre-chosen and fixed during the execution. A more
flexible version [59] also allows continuously
changing the choice of access methods and join
algorithms, etc. To do this, Raman et al [59] made the
following main modifications to the eddy architecture:
(1) each join operator is replaced by two State Modules
(SteMs) which encapsulate data structures (such as
hash tables or indexes) used in join algorithms; (2) one
or several Access Modules (AMs) are added to each
base relation, each AM encapsulating one access
method to the data source; and (3) new routing policies
are used by the eddy module. At the beginning,
different AMs are run concurrently (thus redundantly).
In fact, they are in competition: when the eddy finds
that one is much more efficient than the others, it will
stop the slower ones. Tian and DeWitt [64] extended
the eddy and SteMs architecture to a distributed
version. Instead of using a centralized eddy module
which could become a bottleneck, the authors
proposed to integrate the routing function into each
operator. Zhou et al [70] designed another distributed
query processing architecture called SwAP, building
on eddies and SteMs. The authors proposed to use one
eddy module for each execution site, which routes
tuples between the local operators and remote eddies.

4.2.3 Comparison
We compare the tuple routing methods in Table5. C1:
They deal with all kinds of estimation errors. C2: They
optimize the currently running query. C3: Eddy only

optimizes the join order and operator execution order;
the extensions of eddy also optimize base relation
access methods and join methods. C4: Although there
is no theoretical guarantee, Deshpande [23] has shown
experimentally that the performance degradation of
eddies is low. Other methods have the same risk level,
under the condition that one of the competing access
methods wins quickly. C5: In these methods, most of
the optimization decisions are made by the eddy
module, so the classical optimizer is reduced to a pre-
optimizer, and the execution engine becomes more

complicated. Thus, the engineering cost is high.

Table 5. Comparison of tuple routing methods

 Criterion

Method

C
1

: E
stim

.

e
r
ro

r so
u

r
c
es

C
2

: T
a

rg
e
t

q
u

e
r
y
 ty

p
e
s

 C
3

:

T
a
r
g
e
t o

p
t.

d
e
c
isio

n
s

C
4

:D
e
g
. risk

C
5

:E
n

g
. C

o
st

Eddy All C JO,OEO L H

SteM All C AM,JM,JO,OEO LC H

Tian All C AM,JM,JO,OEO LC H

SwAP All C AM,JM,JO,OEO LC H

4.3 Optimizer Controlled Data

Partitioning
In TRE based methods, the mapping between tuples
and multiple plans is decided by the eddy module,
according to local indicators, such as input rate and
output rate of an operator. In OCDP based methods,
the mapping is decided by the optimizer, according to
global statistics. TRE tends to avoid worst-case
performance, while OCDP also aims at exploring best-
case opportunities. We will present some
representative methods in this section.

4.3.1 Run-time partitioning
Ives et al [45] proposed an adaptive data partitioning
(ADP) method. During query execution, the data are
dynamically partitioned into sub-datasets, each
following a specific plan. Three partitioning strategies
are illustrated: (1) sequential partitioning. The query
execution is divided into multiple phases. All tuples
arriving during Phase PhN follow a plan PlN. PlN is
chosen using the statistics collected during the
previous N-1 phases. To guarantee the correctness of
the result, a “stitch-up” phase is added at the end. For
example, two relations S and T are joined through two
phases. During Ph0, S0 and T0 are joined; during Ph1,
S1 and T1 are joined. According to the following

equation: S T = (S0 T0) U (S1 T1) U (S0 T1) U

(S1 T0), the “stitch-up” phase has to compute (S0 T1)

and (S1 T0). (2) Dynamic splitting. Multiple plans are
run concurrently, and the arriving tuple is sent to one
plan by a “split” operator according to some criteria.
For example, to join two relations which are quasi-
sorted, tuples respecting the expected order will be sent

to the plan with merge-join, and others will be sent to
the plan with hash join. (3) Partitioning used for plan
competition. Multiple plans are run concurrently, each
processing a small subset of data. If one is much faster
than the others, it will process all the remaining data.
Note that, for the last two strategies, a “stitch-up”
phase is also needed.

4.3.2 Compile-time partitioning
Different from ADP, Selectivity-Based Partitioning
(SBP) [58] and Query Mesh (QM) model [54, 55]
decide the data partitions and corresponding plans at
query compile time. The author of SBP noticed that
there often exist join correlations among relation
fragments, for example, given two relations R and S,

where S = S1 S2, it may happen that the join R S1 is

selective while R S2 is much less selective. Based on
this observation, for a chain query with equality
predicates, the author proposed to horizontally
partition one relation in the chain, and rewrite the
original query as the union of a set of sub-queries. For
different sub-queries, the optimizer can choose several
join orders, such that the overall performance is better
than using a single plan without partitioning. The
search space of this optimization problem is large: the
optimizer has to decide which relation to partition,
choose the number of partitions and compute the
optimal join order corresponding to each partition. The
author proposed a heuristic algorithm for computing an
effective solution without exploring the complete
search space. With the QM model, for a given query, a
decision tree-based classifier is learned from a training
dataset. Each decision node is a predicate (such as
A>x) which distributes the arriving tuples into
different classes. For each tuple class, a best plan is
chosen. The choice of execution plans and the
classifier are mutually dependent, so they should be
considered as a whole, meaning that the execution cost
of each plan for each possible data subset should be
estimated and compared. The search space is too big to
use an enumerative search strategy, so the authors
chose randomized search strategies. Similar to QM,
correlation-aware multi-route stream query optimizer
(CMR) [16] also partitions the data and computes an
optimal plan for each partition. The difference is that it
explores explicitly data correlations, which not only
makes the partitioning more effective but also reduces
the optimization complexity. Horizontal Partitioning
with Eddies HPE [65] is another work using different
plans for different data partitions. The originality is:
first, the authors introduced the notion of conditional
join plans (CJP), a new representation of search space
which captures both the partitioning and the join orders
for each partition combination; second, they use the
eddy mechanism as the execution model, in order to

share intermediate results between different plans.

4.3.3 Comparison
We compare the above methods in Table 6. C1: They
are all resistant to (or even take advantage of) non-
uniform data distribution and data correlations. HPE
uses eddies, so it is also resistant to data arrival delay
and rate changing, etc. C2: They all optimize the
current query. C3: SBP focuses only on join order.
Others focus also on access methods and join methods.
Again, with eddies, HPE can also optimize the
operator execution order. C4: The degradation risk is
low, because characteristics of each sub-dataset are
well-known by the optimizer. C5: The engineering cost
is high, because both the optimizer and the plan

executor need to be rewritten.

Table 6. Comparison of data partitioning methods

 Criterion

Method

C
1

:

E
stim

. er
ro

r

so
u

r
ce

s

C
2

:T
a

rg
e
t

q
u

e
r
y
 ty

p
e
s

 C
3

:

T
a
r
g
e
t o

p
t.

d
e
c
isio

n
s

C
4

:D
e
g
. risk

C
5

:E
n

g
.

c
o

st

SBP DD,DC C JO L H

ADP DD,DC C AM,JM,JO L H

QM DD,DC C AM,JM,JO L H

CMR DD,DC C AM,JM,JO L H

HPE All C AM,JM,JO,OEO L H

5. GLOBAL COMPARISON
In this section, we make a global comparison of the
two approaches and their adopted strategies. With
single-plan based approach, methods are easier to
implement, but none of them can handle all types of
estimation error sources; different methods could be
combined to enlarge the application scope, but when
there are too many uncertain factors, the degradation
risk becomes high. With multi-plan based approach,
the degradation risk is limited, but the engineering cost
is higher. Eddy-based methods can handle all kinds of
estimation error sources, however, most of them
require that the hash tables fit in memory. In addition,
how eddies can be used in a highly parallel

environment has not been well studied.

In Table 7, we list briefly the advantages and

limitations of the strategies used by each approach.

6. CONCLUSION

Robust query optimization methods take into account
the uncertainty of estimated parameter values, in order
to avoid or recover from bad decisions caused by
estimation errors. In this paper, the representative
methods were classified into two main approaches:
single-plan based approach and multi-plan based
approach. For each approach, we highlight the
principle strategies. We analyzed and compared the
methods using five well-selected criteria: estimation
error sources, target query types, target optimization
decisions, performance degradation risk and

engineering cost. Finally, a global comparison of the
approaches and the strategies is given.

Table 7. Global comparison

Approach Strat
egy

Advantage Limitation

Single-
Plan
Based

CI Good for
repeatedly-running
queries

For current query,
only JM, JO are
optimized

PM Could be extended
to improve all kinds
of opt. decisions

May have high
degradation risk

RPS Degradation risk is
low if a robust plan
exists

Difficult to handle too
many uncertain
factors

Multi-
Plan
Based

DPC Easier to implement
than TR and DP

AMC may consume
too many resources

TRE Deal with all kinds
of estimation error
sources

Memory consuming;
Parallelization
problem not addressed

OCD
P

Take advantage of
inherent data
characteristics

Optimization time
may be long

The main conclusions to be drawn are: (1) different
strategies of the single-plan based approach can be
combined to enlarge the application scope, as the
AutoAdmin project [14] does, (2) single-plan based
approach is easier to be integrated into the main
commercial DBMSs, but it only works well when there
are few uncertain parameters, and (3) hence when there
are too many uncertain parameters, the multi-plan
based approach is a safer choice.

7. REFERENCES
[1] Aboulnaga, A. and Chaudhuri, S. 1999. Self-tuning

Histograms: Building Histograms without Looking at Data. In
SIGMOD. New York, USA, 181-192.

[2] Amsaleg, L., al.1996. Scrambling Query Plans to Cope with
Unexpected Delays. In PDIS. Miami, USA, 208-219.

[3] Antonshenkov, G. 1993. Dynamic Query Optimization in
Rdb/VMS. In ICDE. Vienna, Austria, 538-547.

[4] Arcangeli, J.P., et al. 2004. Mobile Agent Based Self-Adaptive
Join for Wide-Area Distributed Query Processing. Journal of
Database Management, 15(4): 25-44.

[5] Avnur, R. and Hellerstein, J.M. 2000. Eddies: Continuously
Adaptive Query Processing. SIGMOD. Dallas, USA, 261-272.

[6] Babu, S. and Bizarro, P. 2005. Adaptive Query Processing in
the Looking Glass. In CIDR. Asilomar, USA, 238-249.

[7] Babu, S., et al. 2005. Proactive Re-Optimization. In SIGMOD.
Baltimore, USA, 107-118.

[8] Babcock, B. and Chaudhuri, S. 2005. Towards a Robust Query
Optimizer: A Principled and Practical Approach. In SIGMOD.
Baltimore, USA, 119-130.

[9] Bizarro, P., et al. 2005. Content-Based Routing: Different
Plans for Different Data. In VLDB. Trondheim, Norway, 757-
768.

[10] Bizarro, P., et al. 2009. Progressive Parametric Query
Optimization. KDE, 21(4): 582 – 594.

[11] Bonneau, S. and Hameurlain, A. 1999. Hybrid Simultaneous
Scheduling and Mapping in SQL Multi-Query Parallelization.
In DEXA. Florence, Italy, 88-98.

[12] Bouganim, L., et al. 2000. Dynamic Query Scheduling in Data
Integration Systems. In ICDE. San Diego, USA, 425-434.

[13] Bruno, N., et al. 2001. STHoles: a multidimensional workload-
aware histogram. In SIGMOD. Santa Barbara, USA, 211-222.

[14] Bruno, N., et al. 2011. AutoAdmin Project at Microsoft
Research: Lessons Learned. IEEE Data Eng. Bull, 34(4): 12-
19.

[15] Bruno, N., et al. 2013. Continuous Cloud-Scale Query
Optimization and Processing. PVLDB, 6(11): 961-972.

[16] Cao, L. and Rundensteiner, E.A. 2013. High Performance
Stream Query Processing With Correlation-Aware Partitioning.
PVLDB, 7(4): 265-276.

[17] Chaudhuri, S., et al. 2008. A Pay-As-You-Go Framework for
Query Execution Feedback. PVLDB, 1(1): 1141-1152.

[18] Chaudhuri, S. 2009. Query Optimizers: Time to Rethink the
Contract? In SIGMOD. Providence, USA, 961-968.

[19] Chaudhuri, S., et al. 2009. Exact Cardinality Query
Optimization for Optimizer Testing. PVLDB, 2(1): 994-1005.

[20] Chen, C.M. and Roussopoulos, N. 1994. Adaptive Selectivity
Estimation Using Query Feedback. In SIGMOD. Minneapolis,
USA, 161-172.

[21] Chu, F., Halpern, J., Gehrke, J. 2002. Least expected cost
query optimization: what can we expect? In PODS. Madison,
USA, 293-302.

[22] Cole, R.L. and Graefe, G. 1994. Optimization of Dynamic
Query Evaluation Plans. In SIGMOD. Minneapolis, 150-160.

[23] Deshpande, A. 2004. An Initial Study of Overheads of Eddies.
SIGMOD Record, 33(1): 44-49.

[24] Deshpande, A., et al. 2007. Adaptive Query Processing.
Foundations and Trends in Databases, 1(1): 1-140.

[25] Dutt, A. and Haritsa, J. 2014. Plan bouquets: query processing
without selectivity estimation. In SIGMOD. Snowbird, USA,
1039–1050.

[26] Ergenç, B., et al. 2007. Robust Placement of Mobile Relational
Operators for Large Scale Distributed Query Optimization. In
PDCAT. Adelaide, Australia, 227-235.

[27] Evrendilek, C., et al. 1997. Multidatabase Query Optimization.
Distributed and Parallel Databases, 5(1):77-114.

[28] Ghazal, A., et al. 2012. Adaptive Optimizations of Recursive
Queries in Teradata. In SIGMOD. Scottsdale, USA, 851-860.

[29] Graefe, G. and Ward, K. 1989. Dynamic query evaluation
plans. In SIGMOD. Portland, USA, 358-366.

[30] Graefe, G., et al. 2009. Visualizing the Robustness of Query
Execution. In CIDR. Asilomar, USA.

[31] Graefe, G., et al. 2010. Robust Query Processing. Dagstuhl

Workshop Summary 10381, Wadern, Germany.
[32] Graefe, G. 2011. Robust Query Processing (Research Panel). In

ICDE. Hannover, Germany, 1361.
[33] Graefe, G., et al. 2012. Robust Query Processing. Dagstuhl

Workshop Summary 12321, Wadern, Germany.
[34] Gounaris, A., et al. 2002. Adaptive Query Processing: A

Survey. In BNCOD. Sheffield, UK, 11-25.
[35] Gounaris, A., et al. 2013. Adaptive Query Processing in

Distributed Settings. Advanced Query Processing, Vol. 1: 211-
236.

[36] Hameurlain, A. and Morvan, F. 2002. CPU and Incremental
Memory Allocation in Dynamic Parallelization of SQL
Queries. Journal of Parallel Computing, 28(4): 525-556.

[37] Han, W., et al. 2007. Progressive Optimization in a Shared-
Nothing Parallel Database. In SIGMOD. Beijing, 809-820.

[38] Harish, D., et al.. 2007. On the Production of Anorexic Plan
Diagrams. In VLDB. Vienna, Austria, 1081-1092.

[39] Harish, D., et al. 2008. Identifying Robust Plans through Plan
Diagram Reduction. PVLDB, 1(1): 1124-1140.

[40] Herodotou, H. and Babu, S. Xplus. 2010. A SQL-Tuning-
Aware Query Optimizer. PVLDB, 3(1): 1149-1160.

[41] Hong, W. and Stonebraker, M.1993. Optimization of Parallel
Query Execution Plans in XPRS. Distributed and Parallel

Databases, 1(1): 9–32.
[42] Ioannidis, Y. and Christodoulakis, S. 1991. On the Propagation

of Errors in the Size of Join Results. In SIGMOD. Denver,
USA, 168-177.

[43] Ioannidis, Y. 2003. The History of Histograms (abridged). In
VLDB. Berlin, Germany, 19-30.

[44] Ives, Z. G., et al. 1999. An Adaptive Query Execution System
for Data Integration. In SIGMOD. Philadelphia, USA, 299-310.

[45] Ives, Z.G., et al. 2004. Adapting to Source Properties in
Processing Data Integration Queries. In SIGMOD. Paris,
France, 395-406.

[46] Kabra, N. and DeWitt, D. 1998. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
SIGMOD. Seattle, USA, 106-117.

[47] Larson, P., et al. 2007. Cardinality Estimation Using Sample
Views with Quality Assurance. In SIGMOD. Beijing, 175-186.

[48] Lipton, R.J., et al. 1990. Practical Selectivity Estimation
through Adaptive Sampling. In SIGMOD. Atlantic City, 1-11.

[49] Mannino, M., et al. 1988. Statistical profile estimation in
database systems. ACM Computing Surveys, 20(3): 191-221.

[50] Markl, V., et al. 2004. Robust Query Processing through
Progressive Optimization. SIGMOD. Paris, France, 659-670.

[51] Markl, V., et al. 2007. Consistent Selectivity Estimation via
Maximum Entropy. VLDB Journal, 16(1): 55-76.

[52] Morvan, F. and Hameurlain, A. 2009. Dynamic Query
Optimization: Towards Decentralized Methods. International

Journal of Intelligent Information and Database Systems, 4(3):
461-482.

[53] Neumann, T. and Calindo-Legaria, C. 2013.Taking the Edge
off Cardinality Estimation Errors using Incremental Execution.
In BTW. Magdeburg, Germany, 73-92.

[54] Nehme, R.V., et al. 2009. Query Mesh: Multi-Route Query
Processing Technology (Demo). PVLDB, 2(2): 1530-1533.

[55] Nehme, R.V., et al. 2013. Multi-Route Query Processing and
Optimization. Journal of Computer and System Sciences,
79(3): 312-329.

[56] Olken, F. and Rotem, D. 1986. Simple Random Sampling from
Relational Databases. In VLDB. Kyoto, Japan, 160-169.

[57] Picasso Database Query Optimizer Visualizer.
http://dsl.serc.iisc.ernet.in/projects/PICASSO/

[58] Polyzotis, N. 2005. Selectivity-based partitioning: a divide-
and-union paradigm for effective query optimization. In CIKM.
Bremen, Germany, 720-727.

[59] Raman, V., et al. 2003. Using State Modules for Adaptive
Query Processing. In ICDE. Bangalore, India, 353-364.

[60] Reddy, N. and Harista, J. 2005. Analyzing Plan Diagrams of
Database Query Optimizers. In VLDB. Trondheim, Norway,
1228-1239.

[61] Selinger, P.G., et al. 1979. Access Path Selection in a
Relational DBMS. In SIGMOD. Boston, USA, 23-34.

[62] Srivastava, Uet al. 2006. ISOMER: Consistent Histogram
Construction Using Query Feedback. In ICDE. Atlanta, 39.

[63] Stillger, M., et al.2001. LEO-DB2’s Learning Optimizer.
VLDB. Roma, Italy, 19-28.

[64] Tian, F. and DeWitt, D.J. 2003. Tuple Routing Strategies for
Distributed Eddies. In VLDB. Berlin, Germany, 333-344.

[65] Tzoumas, K., et al. 2010. Sharing-Aware Horizontal
Partitioning for Exploiting Correlations during Query
Processing. PVLDB, 3(1): 542-553.

[66] Tzoumas, K., et al. 2011. Lightweight Graphical Models for
Selectivity Estimation without Independence Assumptions.
PVLDB, 4(11): 852-863.

[67] Tzoumas, K., et al. 2013. Efficient Adapting Graphical Models
for Selectivity Estimation. VLDB Journal, 22(1): 3-27.

[68] Wilschut, A. N. and Apers, P. M. G. 1991. Dataflow Query
Execution in a Parallel Main-Memory Environment. In PDIS,
Miami Beach, USA, 68–77.

[69] Wiener, J.L., et al. 2009. Benchmarking Query Execution
Robustness. In TPC Technology Conference on Performance
Evaluation & Benchmarking. Lyon, France, 153-166.

[70] Zhou, Y., et al. 2005. An Adaptable Distributed Query
Processing Architecture. Knowledge and Data Engineering.
53(3): 283-309.

