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We discuss Stueckelberg massive electromagnetism on an arbitrary four-dimensional curved spacetime
and, in particular, (i) the gauge invariance of the classical theory and its covariant quantization; (ii) the wave
equations for the massive spin-1 fieldAμ, for the auxiliary Stueckelberg scalar fieldΦ and for the ghost fields
C andC�; (iii)Ward identities; (iv) the Hadamard representation of the various Feynman propagators and the
covariant Taylor series expansions of the corresponding coefficients. This permits us to construct, for a
Hadamard quantum state, the expectation value of the renormalized stress-energy tensor associated with the
Stueckelberg theory. We provide two alternative but equivalent expressions for this result. The first one is
obtained by removing the contribution of the “Stueckelberg ghost”Φ and only involves state-dependent and
geometrical quantities associated with the massive vector field Aμ. The other one involves contributions
coming from both the massive vector field and the auxiliary Stueckelberg scalar field, and it has been
constructed in such away that, in the zero-mass limit, themassive vector field contribution reduces smoothly
to the result obtained fromMaxwell’s theory. As an application of our results, we consider the Casimir effect
outside a perfectly conducting medium with a plane boundary. We discuss the results obtained using
Stueckelberg but also deBroglie-Proca electromagnetism, andwe consider the zero-mass limit of thevacuum
energy in both theories.We finally compare the de Broglie-Proca and Stueckelberg formalisms and highlight
the advantages of the Stueckelberg point of view, even if, in our opinion, the de Broglie-Proca and
Stueckelberg approaches of massive electromagnetism are two faces of the same field theory.

DOI: 10.1103/PhysRevD.93.044063

I. INTRODUCTION

It is generally assumed that the electromagnetic inter-
action is mediated by a massless photon. This seems largely
justified (i) by the countless theoretical and practical
successes of Maxwell’s theory of electromagnetism and
of its extension in the framework of quantum field theory as
well as (ii) by the stringent upper limits on the photon mass
(see p. 559 of Ref. [1] and references therein) which have
been obtained by various terrestrial and extraterrestrial
experiments (currently, one of the most reliable results
provides for the photon mass m the limit m ≤ 10−18 eV ≈
2 × 10−54 kg [2]).
Despite this, physicists are seriously considering the

possibility of a massive but, of course, ultralight photon
and are very interested by the associated non-Maxwellian
theories of electromagnetism (for recent reviews on the
subject, see Refs. [3,4]). Indeed, the incredibly small value
mentioned above does not necessarily imply that the
photon mass is exactly zero, and from a theoretical point
of view, massive electromagnetism can be rather easily
included in the Standard Model of particle physics.
Moreover, in order to test the masslessness of the photon
or, more precisely, to impose experimental constraints on

its mass, it is necessary to have a good understanding of the
various massive non-Maxwellian theories. Among these,
two theories are particularly important, and we intend to
discuss them at more length in our article:

(i) The most popular one, which is the simplest gen-
eralization of Maxwell’s electromagnetism, is
mainly due to de Broglie (note that the idea of an
ultralight massive photon is already present in de
Broglie’s doctoral thesis [5,6] and has been devel-
oped by him in modern terms in a series of works
[7–9] where he has considered the theory from a
Lagrangian point of view and has explicitly shown
the modifications induced by the photon mass for
Maxwell’s equations) but is attributed in the liter-
ature to its “PhD student” Proca (for the series of his
original articles dating from 1930 to 1938 which led
him to introduce in Ref. [10] the so-called Proca
equation for a massive vector field, see Ref. [11], but
note, however, that the main aim of Proca was the
description of spin-1=2 particles inspired by the
neutrino theory of light due to de Broglie). Here, it is
worth pointing out that, due to the mass term, the de
Broglie-Proca theory is not a gauge theory, and this
has some important consequences when we com-
pare, in the limitm2 → 0, the results obtained via the
de Broglie-Proca theory with those derived from
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Maxwell’s electromagnetism. It is also important to
recall that, in general, it is the de Broglie-Proca
theory that is used to impose experimental con-
straints on the photon mass [2–4].

(ii) The most aesthetically appealing one which, con-
trarily to the de Broglie-Proca theory preserves the
local Uð1Þ gauge invariance of Maxwell’s electro-
magnetism, has been proposed by Stueckelberg (see
Refs. [12,13] for the original articles on the subject
and also Ref. [14] for a nice recent review). The
construction of such a massive gauge theory can be
achieved by coupling appropriately an auxiliary
scalar field to the massive spin-1 field. This theory
is unitary and renormalizable and can be included in
the Standard Model of particle physics [14]. More-
over, it is interesting to note that extensions of the
Standard Model based on string theory predict the
existence of a hidden sector of particles which could
explain the nature of dark matter. Among these
exotic particles, there exists in particular a dark
photon, the mass of which arises also via the
Stueckelberg mechanism (see, e.g., Ref. [15]). This
“heavy” photon may be detectable in low energy
experiments (see, e.g., Refs [16–19]). It is also worth
pointing out that the Stueckelberg procedure is not
limited to vector fields. It has been recently extended
to “restore” the gauge invariance of various massive
field theories (see, e.g., Refs. [20,21] which discuss
the case of massive antisymmetric tensor fields and,
e.g., Ref. [22] where massive gravity is considered).

In the two following paragraphs, we shall briefly review
these two theories at the classical level.
De Broglie-Proca massive electromagnetism is described

by a vector field Aμ, and its action S ¼ S½Aμ; gμν�, which is
directly obtained from the original Maxwell Lagrangian by
adding a mass contribution, is given by

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
m2AμAμ

�
: ð1Þ

Here, m is the mass of the vector field Aμ, and the
associated field strength Fμν is defined as usual by

Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ: ð2Þ

Let us note that, while Maxwell’s theory is invariant under
the gauge transformation

Aμ → A0
μ ¼ Aμ þ∇μΛ ð3Þ

for an arbitrary scalar field Λ, this gauge invariance is
broken for the de Broglie-Proca theory due to the mass
term. The extremization of (1) with respect to Aμ leads to
the Proca equation ∇νFμν þm2Aμ ¼ 0. Applying ∇μ to
this equation, we obtain the Lorenz condition

∇μAμ ¼ 0 ð4aÞ

which is here a dynamical constraint (and not a gauge
condition) as well as the wave equation

□Aμ −m2Aμ − Rμ
νAν ¼ 0: ð4bÞ

It should be noted that the action (1) is also directly relevant
at the quantum level because the de Broglie-Proca theory is
not a gauge theory.
Stueckelberg massive electromagnetism is described by

a vector field Aμ and an auxiliary scalar field Φ, and its
action SCl ¼ SCl½Aμ;Φ; gμν�, which can be constructed from
the de Broglie-Proca action (1) by using the substitution

Aμ → Aμ þ
1

m
∇μΦ; ð5Þ

is given by

SCl ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
m2

�
Aμ þ 1

m
∇μΦ

�

×

�
Aμ þ

1

m
∇μΦ

��
ð6aÞ

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μAν∇μAν þ

1

2
ð∇μAμÞ2 −

1

2
m2AμAμ

−
1

2
RμνAμAν−

1

2
∇μΦ∇μΦ −mAμ∇μΦ

�
: ð6bÞ

It should be noted that, at the classical level, the vector field
Aμ and the scalar field Φ are coupled [see, in Eq. (6a),
the last term −mAμ∇μΦ]. Here, it is important to note that
Stueckelberg massive electromagnetism is invariant under
the gauge transformation

Aμ → A0
μ ¼ Aμ þ∇μΛ; ð7aÞ

Φ → Φ0 ¼ Φ −mΛ; ð7bÞ

for an arbitrary scalar field Λ, so the local Uð1Þ gauge
symmetry of Maxwell’s electromagnetism remains unbro-
ken for the spin-1 field of the Stueckelberg theory. As a
consequence, in order to treat this theory at the quantum
level (see below), it is necessary to add to the action (6)
a gauge-breaking term and the compensating ghost
contribution.
Here, it seems important to highlight some considera-

tions which will play a crucial role in this article. Let us
note that the de Broglie-Proca theory can be obtained from
Stueckelberg electromagnetism by taking

Φ ¼ 0: ð8Þ
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We can therefore consider that the de Broglie-Proca theory
is nothing other than the Stueckelberg gauge theory in the
particular gauge (8). However, it is worth noting that this is
a “bad” choice of gauge leading to some complications. In
particular:

(i) Due to the constraint (4a), the Feynman propagator
associated with the vector field Aμ does not admit a
Hadamard representation (see below), and, as a
consequence, the quantum states of the de
Broglie-Proca theory are not of Hadamard type.
This complicates the regularization and renormali-
zation procedures.

(ii) In the limit m2 → 0, singularities occur, and a lot
of physical results obtained in the context of the de
Broglie-Proca theory do not coincide with the
corresponding results obtained with Maxwell’s
theory.

In this article, we intend to focus on the Stueckelberg
theory at the quantum level, and we shall analyze its
energetic content with possible applications to the Casimir
effect (in this paper) and to cosmology of the very early
universe (in a next paper) in mind. More precisely,
we shall develop the formalism permitting us to construct,
for a normalized Hadamard quantum state jψi of the
Stueckelberg theory, the quantity hψ jT̂μνjψiren which
denotes the renormalized expectation value of the stress-
energy-tensor operator. It is well known that such an
expectation value is of fundamental importance in quantum
field theory in curved spacetime (see, e.g., Refs. [23–27]).
Indeed, it permits us to analyze the quantum state jψi
without any reference to its particle content, and, moreover,
it acts as a source in the semiclassical Einstein equations
Gμν ¼ 8πhψ jT̂μνjψiren which govern the backreaction of
the quantum field theory on the spacetime geometry.
Let us recall that the stress-energy tensor T̂μν is an

operator quadratic in the quantum fields which is, from the
mathematical point of view, an operator-valued distribu-
tion. As a consequence, this operator is ill defined, and the
associated expectation value hψ jT̂μνjψi is formally infinite.
In order to extract from this expectation value a finite
and physically acceptable contribution which could act as
the source in the semiclassical Einstein equations, it is
necessary to regularize it and then to renormalize all the
coupling constants. For a description of the various
techniques of regularization and renormalization in the
context of quantum field theory in curved spacetime
(adiabatic regularization method, dimensional regulariza-
tion method, ζ-function approach, point-splitting methods,
…), see Refs. [23–27] and references therein.
In this paper, we shall deal with Stueckelberg electro-

magnetism by using the so-called Hadamard renormaliza-
tion procedure (for a rigorous axiomatic presentation of this
approach, we refer to the monographs of Wald [26] and
Fulling [25]). Here, we just recall that it is an extension of

the point-splitting method [23,28,29] which has been
developed in connection with the Hadamard representation
of the Green functions (see, e.g., Refs. [30–42] and, more
particularly, Refs. [32,33,35,38,39] where gauge theories
are considered).
Our article is organized as follows. In Sec. II, we

review the covariant quantization of Stueckelberg massive
electromagnetism on an arbitrary four-dimensional curved
spacetime (gauge-breaking action and associated ghost
contribution; wave equations for the massive spin-1 field
Aμ, for the auxiliary Stueckelberg scalar field Φ and for the
ghost fields C and C�; Feynman propagators and Ward
identities). In Sec. III, we focus on the particular gauge for
which the various Feynman propagators and the associated
Hadamard Green functions admit Hadamard representa-
tion, or, in other words, we consider quantum states of
Hadamard type. We also construct the covariant Taylor
series expansions of the geometrical and state-dependent
coefficients involved in the Hadamard representation of the
Green functions. In Sec. IV, we obtain, for a Hadamard
quantum state, the renormalized expectation value of the
stress-energy-tensor operator, and we discuss carefully its
geometrical ambiguities. In fact, we provide two alternative
but equivalent expressions for this renormalized expect-
ation value. The first one is obtained by removing the
contribution of the auxiliary scalar fieldΦ (here, it plays the
role of a kind of ghost field) and only involves state-
dependent and geometrical quantities associated with the
massive vector field Aμ. The other one involves contribu-
tions coming from both the massive vector field and the
auxiliary Stueckelberg scalar field, and it has been con-
structed in such a way that, in the zero-mass limit, the
massive vector field contribution reduces smoothly to the
result obtained from Maxwell’s theory. In Sec. V, as an
application of our results, we consider in the Minkowski
spacetime the Casimir effect outside of a perfectly con-
ducting medium with a plane boundary wall separating it
from free space. We discuss the results obtained using
Stueckelberg but also de Broglie-Proca electromagnetism,
and we consider the zero-mass limit of the vacuum energy
in both theories. Finally, in a conclusion (Sec. VI), we
provide a step-by-step guide for the reader wishing to use
our formalism, we briefly discuss and compare the de
Broglie-Proca and Stueckelberg approaches in the light of
the results obtained in our paper, and we highlight the
advantages of the latter. In a short Appendix, we have
gathered some important results which are helpful to do the
calculations of Secs. III and IV, and, in particular, (i) we
define the geodetic interval σðx; x0Þ, the Van Vleck-Morette
determinant Δðx; x0Þ and the bivector of parallel transport
gμν0 ðx; x0Þ which play a crucial role along our article, and
(ii) we discuss the concept of covariant Taylor series
expansions.
It should be noted that, in this paper, we consider a four-

dimensional curved spacetime ðM; gμνÞ with no boundary
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(∂M ¼ Ø), and we use units with ℏ ¼ c ¼ G ¼ 1 and
the geometrical conventions of Hawking and Ellis [43]
concerning the definitions of the scalar curvature R, the
Ricci tensor Rμν and the Riemann tensor Rμνρσ as well as
the commutation of covariant derivatives. It is moreover
important to note that we provide the covariant Taylor
series expansions of the Hadamard coefficients in irreduc-
ible form by using the algebraic proprieties of the Riemann
tensor (and more particularly the cyclicity relation and its
consequences) as well as the Bianchi identity.

II. QUANTIZATION OF STUECKELBERG
ELECTROMAGNETISM

In this section, we review the covariant quantization
of Stueckelberg electromagnetism on an arbitrary four-
dimensional curved spacetime. The gauge-breaking term
considered includes an arbitrary gauge parameter ξ, and all
the results concerning the wave equations for the massive
vector field Aμ, for the auxiliary scalar fieldΦ, for the ghost
fields C and C� and for all the associated Feynman
propagators as well as the Ward identities are expressed
in terms of ξ.

A. Quantum action

At the quantum level, the action defining Stueckelberg
massive electromagnetism is given by (see, e.g., Ref. [14])

S½Aμ;Φ; C; C�; gμν� ¼ SCl½Aμ;Φ; gμν� þ SGB½Aμ;Φ; gμν�
þ SGh½C;C�; gμν�; ð9Þ

where we have added to the classical action (6) the gauge-
breaking term

SGB ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2ξ
ð∇μAμ þ ξmΦÞ2

�
ð10Þ

and the compensating ghost action

SGh ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½∇μC�∇μCþ ξm2C�C�: ð11Þ

By collecting the fields in the explicit expression (9), the
quantum action can be written in the form

S½Aμ;Φ; C; C�; gμν� ¼ SA½Aμ; gμν� þ SΦ½Φ; gμν�
þ SGh½C;C�; gμν�; ð12Þ

where

SA ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν

−
1

2
m2AμAμ −

1

2ξ
ð∇μAμÞ2� ð13aÞ

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μAν∇μAν −

1

2
RμνAμAν

−
1

2
m2AμAμ þ

1

2

�
1 −

1

ξ

�
ð∇μAμÞ2

�
ð13bÞ

and

SΦ ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μΦ∇μΦ −

1

2
ξm2Φ2

�
; ð14Þ

SGh remaining unchanged and still given by Eq. (11). It is
worth noting that the term −mAμ∇μΦ coupling the fields
Aμ and Φ in the classical action (6b) has disappeared;
because spacetime is assumed with no boundary, it is
neutralized by the term −mΦ∇μAμ in the gauge-breaking
action (10).
The functional derivatives with respect to the fields Aμ,

Φ, C and C� of the quantum action (9) or (12) will allow us
to obtain, in Sec. II B, the wave equations for all the fields
and to discuss, in Sec. IVA, the conservation of the stress-
energy tensor associated with Stueckelberg electromagnet-
ism. They are given by

1ffiffiffiffiffiffi−gp δS
δAμ

¼ ½gμν□ − ð1 − 1=ξÞ∇μ∇ν−Rμν −m2gμν�Aν

ð15Þ

for the vector field Aμ,

1ffiffiffiffiffiffi−gp δS
δΦ

¼ ½□ − ξm2�Φ ð16Þ

for the auxiliary scalar field Φ, as well as

1ffiffiffiffiffiffi−gp δRS
δC

¼ −½□ − ξm2�C� ð17Þ

and

1ffiffiffiffiffiffi−gp δLS
δC� ¼ −½□ − ξm2�C ð18Þ

for the ghost fields C and C�. It should be noted that, due
to the fermionic behavior of the ghost fields, we have
introduced in Eq. (17) the right functional derivative and in
Eq. (18) the left functional derivative.

B. Wave equations

The extremization of the quantum action (9) or (12)
permits us to obtain the wave equations for the fields Aμ,
Φ, C and C�. The vanishing of the functional derivatives
(15)–(18) provides

ANDREI BELOKOGNE and ANTOINE FOLACCI PHYSICAL REVIEW D 93, 044063 (2016)

044063-4



½gμν□ − ð1 − 1=ξÞ∇μ∇ν − Rμν −m2gμν�Aν ¼ 0 ð19Þ

for the vector field Aμ,

½□ − ξm2�Φ ¼ 0 ð20Þ

for the auxiliary scalar field Φ, as well as

½□ − ξm2�C ¼ 0 and ½□ − ξm2�C� ¼ 0 ð21Þ

for the ghost fields C and C�.

C. Feynman propagators and Ward identities

From now on, we shall assume that the Stueckelberg
field theory previously described has been quantized and
is in a normalized quantum state jψi. The Feynman
propagator

GA
μν0 ðx; x0Þ ¼ ihψ jTAμðxÞAν0 ðx0Þjψi ð22Þ

associated with the field Aμ (here, T denotes time ordering)
is, by definition, a solution of

½gμν□x − ð1 − 1=ξÞ∇ν∇μ − Rμ
ν −m2gμν�GA

νρ0 ðx; x0Þ
¼ −gμρ0δ4ðx; x0Þ ð23Þ

with δ4ðx; x0Þ ¼ ½−gðxÞ�−1=2δ4ðx − x0Þ. Similarly, the
Feynman propagator

GΦðx; x0Þ ¼ ihψ jTΦðxÞΦðx0Þjψi ð24Þ

associated with the scalar field Φ satisfies

½□x − ξm2�GΦðx; x0Þ ¼ −δ4ðx; x0Þ; ð25Þ

and the Feynman propagator

GGhðx; x0Þ ¼ ihψ jTC�ðxÞCðx0Þjψi ð26Þ

associated with the ghost fields C and C� satisfies

½□x − ξm2�GGhðx; x0Þ ¼ −δ4ðx; x0Þ: ð27Þ

The three propagators are related by two Ward identities.
The first one is a nonlocal relation linking the propagators
GA

μν0 ðx; x0Þ and GGhðx; x0Þ. It can be obtained by extending
the approach of DeWitt and Brehme in Ref. [44] as follows:
we take the covariant derivative ∇μ of Eq. (23) and the
covariant derivative ∇ρ0 of Eq. (27); then, by commuting
suitably the various covariant derivatives involved and
by using the relation ∇μ½gμρ0δ4ðx; x0Þ� ¼ −∇ρ0δ

4ðx; x0Þ,
we obtain the formal relation

ð1=ξÞ∇μGA
μν0 ðx; x0Þ þ∇ν0GGhðx; x0Þ

¼ ð1 − 1=ξÞ½□x − ξm2�−1½∇μfRμ
ρGA

ρν0 ðx; x0Þg�: ð28Þ

It should be noted that the nonlocal term in the right-hand
side of this equation is associated with the nonminimal
term ð1 − 1=ξÞ∇ν∇μ appearing in the wave equation (23)
and includes appropriate boundary conditions. The second
Ward identity can be obtained directly from the wave
equations (25) and (27) by using arguments of uniqueness.
We have

GΦðx; x0Þ −GGhðx; x0Þ ¼ 0: ð29Þ

III. HADAMARD EXPANSIONS OF THE GREEN
FUNCTIONS OF STUECKELBERG

ELECTROMAGNETISM

From now on, we assume that ξ ¼ 1. (For ξ ≠ 1, the
various Feynman propagators cannot be represented in the
Hadamard form.) For this choice of gauge parameter,
the wave equations (23), (25) and (27) for the Feynman
propagators GA

μν0 ðx; x0Þ, GΦðx; x0Þ and GGhðx; x0Þ reduce to

½gμν□x − Rμ
ν −m2gμν�GA

νρ0 ðx; x0Þ ¼ −gμρ0δ4ðx; x0Þ; ð30Þ

½□x −m2�GΦðx; x0Þ ¼ −δ4ðx; x0Þ ð31Þ

and

½□x −m2�GGhðx; x0Þ ¼ −δ4ðx; x0Þ: ð32Þ

As far as the Ward identity (28) is concerned, it takes now
the local form

∇μGA
μν0 ðx; x0Þ þ∇ν0GGhðx; x0Þ ¼ 0; ð33Þ

while the Ward identity (29) remains unchanged. Because
this last relation expresses the equality of the Feynman
propagators associated with the auxiliary scalar field and
the ghost fields, we shall often use a generic form for
these propagators (and for their Hadamard representation
discussed below) where the labels Φ and Gh are omitted.
and we shall write

Gðx; x0Þ ¼ GΦðx; x0Þ ¼ GGhðx; x0Þ: ð34Þ

For ξ ¼ 1 the nonminimal term in the wave equation
for GA

μν0 ðx; x0Þ has disappeared [compare Eq. (30) with
Eq. (23)]. As consequence, we can consider a Hadamard
representation for this propagator as well as for the
propagators GΦðx; x0Þ and GGhðx; x0Þ. In other words, we
can assume that all fields of Stueckelberg theory are in a
normalized quantum state jψi of Hadamard type.

STUECKELBERG MASSIVE ELECTROMAGNETISM IN … PHYSICAL REVIEW D 93, 044063 (2016)

044063-5



A. Hadamard representation of the
Feynman propagators

The Feynman propagator GA
μν0 ðx; x0Þ associated with the

vector field Aμ can be now represented in the Hadamard
form

GA
μν0 ðx; x0Þ ¼

i
8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ iϵ

gμν0 ðx; x0Þ

þVA
μν0 ðx; x0Þ ln½σðx; x0Þ þ iϵ� þWA

μν0 ðx; x0Þ
�
;

ð35Þ

where the bivectors VA
μν0 ðx; x0Þ and WA

μν0 ðx; x0Þ are sym-

metric in the sense that VA
μν0 ðx; x0Þ ¼ VA

ν0μðx0; xÞ and

WA
μν0 ðx; x0Þ ¼ WA

ν0μðx0; xÞ and are regular for x0 → x.
Furthermore, these bivectors have the following expansions

VA
μν0 ðx; x0Þ ¼

Xþ∞

n¼0

VA
n μν0 ðx; x0Þσnðx; x0Þ; ð36aÞ

WA
μν0 ðx; x0Þ ¼

Xþ∞

n¼0

WA
n μν0 ðx; x0Þσnðx; x0Þ: ð36bÞ

Similarly, the Hadamard expansion of the Feynman propa-
gatorGðx; x0Þ associated with the auxiliary scalar fieldΦ or
the ghost fields is given by

Gðx; x0Þ ¼ i
8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ iϵ

þ Vðx; x0Þ ln½σðx; x0Þ

þ iϵ� þWðx; x0Þ
�
; ð37Þ

where the biscalars Vðx; x0Þ and Wðx; x0Þ are symmetric,
i.e., Vðx; x0Þ ¼ Vðx0; xÞ and Wðx; x0Þ ¼ Wðx0; xÞ, regular
for x0 → x and possess expansions of the form

Vðx; x0Þ ¼
Xþ∞

n¼0

Vnðx; x0Þσnðx; x0Þ; ð38aÞ

Wðx; x0Þ ¼
Xþ∞

n¼0

Wnðx; x0Þσnðx; x0Þ: ð38bÞ

In Eqs. (35) and (37), the factor iϵ with ϵ → 0þ ensures the
singular behavior prescribed by the time-ordered product
introduced in the definition of the Feynman propagators
[see Eqs. (22), (24) and (26)].
The Hadamard coefficients VA

n μν0 ðx; x0Þ andWA
n μν0 ðx; x0Þ

introduced in Eq. (36) are also symmetric and regular
bivector functions. The coefficients VA

n μν0 ðx; x0Þ satisfy the
recursion relations

2ðnþ 1Þðnþ 2ÞVA
nþ1 μν0 þ 2ðnþ 1ÞVA

nþ1 μν0;aσ
;a

− 2ðnþ 1ÞVA
nþ1 μν0Δ

−1=2ðΔ1=2Þ;aσ;a
þ ½gμρ□x − Rμ

ρ −m2gμρ�VA
n ρν0 ¼ 0 ð39aÞ

for n ∈ N with the boundary condition

2VA
0 μν0 þ 2VA

0 μν0;aσ
;a − 2VA

0 μν0Δ
−1=2ðΔ1=2Þ;aσ;a

þ ½gμρ□x − Rμ
ρ −m2gμρ�ðgρν0Δ1=2Þ ¼ 0; ð39bÞ

while the coefficients WA
n μν0 ðx; x0Þ satisfy the recursion

relations

2ðnþ 1Þðnþ 2ÞWA
nþ1 μν0 þ 2ðnþ 1ÞWA

nþ1 μν0;aσ
;a

− 2ðnþ 1ÞWA
nþ1 μν0Δ

−1=2ðΔ1=2Þ;aσ;a
þ 2ð2nþ 3ÞVA

nþ1 μν0 þ 2VA
nþ1 μν0;aσ

;a

− 2VA
nþ1 μν0Δ

−1=2ðΔ1=2Þ;aσ;a
þ ½gμρ□x − Rμ

ρ −m2gμρ�WA
n ρν0 ¼ 0 ð40Þ

for n ∈ N. It should be noted that from the recursion
relations (39) and (40) we can show that

½gμν□x − Rμ
ν −m2gμν�VA

νρ0 ¼ 0 ð41Þ

and

σ½gμν□x − Rμ
ν −m2gμν�WA

νρ0

¼ −½gμν□x − Rμ
ν −m2gμν�ðgνρ0Δ1=2Þ

− 2VA
μρ0 − 2VA

μρ0;aσ
;a þ 2VA

μρ0Δ
−1=2ðΔ1=2Þ;aσ;a: ð42Þ

These two “wave equations” permit us to prove that the
Feynman propagator (35) solves the wave equation (30).
Similarly, the Hadamard coefficients Vnðx; x0Þ and

Wnðx; x0Þ are also symmetric and regular biscalar functions.
The coefficients Vnðx; x0Þ satisfy the recursion relations

2ðnþ 1Þðnþ 2ÞVnþ1 þ 2ðnþ 1ÞVnþ1;aσ
;a

− 2ðnþ 1ÞVnþ1Δ−1=2ðΔ1=2Þ;aσ;a
þ ½□x −m2�Vn ¼ 0 ð43aÞ

for n ∈ N with the boundary condition

2V0 þ 2V0;aσ
;a − 2V0Δ−1=2ðΔ1=2Þ;aσ;a

þ ½□x −m2�Δ1=2 ¼ 0; ð43bÞ

while the coefficients Wnðx; x0Þ satisfy the recursion
relations
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2ðnþ 1Þðnþ 2ÞWnþ1 þ 2ðnþ 1ÞWnþ1;aσ
;a

− 2ðnþ 1ÞWnþ1Δ−1=2ðΔ1=2Þ;aσ;a þ 2ð2nþ 3ÞVnþ1

þ 2Vnþ1;aσ
;a − 2Vnþ1Δ−1=2ðΔ1=2Þ;aσ;a

þ ½□x −m2�Wn ¼ 0 ð44Þ

for n ∈ N. It should be also noted that from the recursion
relations (43) and (44) we can show that

½□x −m2�V ¼ 0 ð45Þ
and

σ½□x −m2�W ¼ −½□x −m2�Δ1=2 − 2V − 2V ;aσ
;a

þ 2VΔ−1=2ðΔ1=2Þ;aσ;a: ð46Þ

These two “wave equations” permit us to prove that the
Feynman propagator (37) solves the wave equation (31)
or (32).
The Hadamard representation of the Feynman propa-

gators permits us to straightforwardly identify their singular
and regular parts (when the coincidence limit x0 → x is
considered). We can write

GA
μν0 ðx; x0Þ ¼ GA

singμν0 ðx; x0Þ þGA
regμν0 ðx; x0Þ ð47Þ

with

GA
singμν0 ðx; x0Þ ¼

i
8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ iϵ

gμν0 ðx; x0Þ

þVA
μν0 ðx; x0Þ ln½σðx; x0Þ þ iϵ�

�
ð48aÞ

and

GA
regμν0 ðx; x0Þ ¼

i
8π2

WA
μν0 ðx; x0Þ ð48bÞ

as well as

Gðx; x0Þ ¼ Gsingðx; x0Þ þ Gregðx; x0Þ ð49Þ

with

Gsingðx; x0Þ ¼
i

8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ iϵ

þVðx; x0Þ ln½σðx; x0Þ þ iϵ�
�

ð50aÞ

and

Gregðx; x0Þ ¼
i

8π2
Wðx; x0Þ: ð50bÞ

Here, it is important to note that, due to the geometrical
nature of σðx; x0Þ, gμν0 ðx; x0Þ,Δ1=2ðx; x0Þ (see the Appendix)
and of VA

μν0 ðx; x0Þ and Vðx; x0Þ (see Sec. III C), the singular
parts (48a) and (50a) are purely geometrical objects. By
contrast, the regular parts (48b) and (50b) are state
dependent (see Sec. III D).

B. Hadamard Green functions

In the context of the regularization of the stress-energy-
tensor operator, instead of working with the Feynman
propagators, it is more convenient to use the associated
so-called Hadamard Green functions. Their representations
can be derived from those of the Feynman propagators by
using the formal identities

1

σ þ iϵ
¼ P

1

σ
− iπδðσÞ ð51Þ

and

lnðσ þ iϵÞ ¼ ln jσj þ iπΘð−σÞ: ð52Þ
Here, P is the symbol of the Cauchy principal value,
and Θ denotes the Heaviside step function. Indeed, these
identities permit us to rewrite the expression (35) of the
Feynman propagator associated with the massive vector
field Aμ as

GA
μν0 ðx; x0Þ ¼ ḠA

μν0 ðx; x0Þ þ
i
2
Gð1ÞA

μν0 ðx; x0Þ; ð53Þ

where the average of the retarded and advanced Green
functions is represented by

ḠA
μν0 ðx; x0Þ ¼

1

8π
fΔ1=2ðx; x0Þgμν0 ðx; x0Þδ½σðx; x0Þ�

−VA
μν0 ðx; x0ÞΘ½−σðx; x0Þ�g ð54Þ

and the Hadamard Green function has the representation

Gð1ÞA
μν0 ðx; x0Þ ¼ 1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ gμν0 ðx; x0Þ

þVA
μν0 ðx; x0Þ ln jσðx; x0Þj þWA

μν0 ðx; x0Þ
�
:

ð55Þ

Similarly, we have for the Feynman propagator (37)
associated with the auxiliary scalar field Φ or the ghost
fields

Gðx; x0Þ ¼ Ḡðx; x0Þ þ i
2
Gð1Þðx; x0Þ; ð56Þ
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where

Ḡðx; x0Þ ¼ 1

8π
fΔ1=2ðx; x0Þδ½σðx; x0Þ�−Vðx; x0ÞΘ½−σðx; x0Þ�g

ð57Þ

and

Gð1Þðx; x0Þ ¼ 1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ Vðx; x0Þ ln jσðx; x0Þj

þWðx; x0Þ
�
: ð58Þ

It is important to recall that the Hadamard Green function
associated with the massive vector field Aμ is defined as the
anticommutator

Gð1ÞA
μν0 ðx; x0Þ ¼ hψ jfAμðxÞ; Aν0 ðx0Þgjψi ð59Þ

and satisfies the wave equation

½gμν□x − Rμ
ν −m2gμν�Gð1ÞA

νρ0 ðx; x0Þ ¼ 0: ð60Þ

Similarly, the Hadamard Green function associated with the
auxiliary scalar field Φ is defined as the anticommutator

Gð1ÞΦðx; x0Þ ¼ hψ jfΦðxÞ;Φðx0Þgjψi ð61Þ

which is a solution of

½□x −m2�Gð1ÞΦðx; x0Þ ¼ 0; ð62Þ

while the Hadamard Green function associated with the
ghost fields is defined as the commutator

Gð1ÞGhðx; x0Þ ¼ hψ j½C�ðxÞ; Cðx0Þ�jψi ð63Þ

and satisfies the wave equation

½□x −m2�Gð1ÞGhðx; x0Þ ¼ 0: ð64Þ

The Ward identities (33) and (29) satisfied by the
Feynman propagators are also valid for the Hadamard
Green functions. We have

∇μGð1ÞA
μν0 ðx; x0Þ þ∇ν0Gð1ÞGhðx; x0Þ ¼ 0 ð65Þ

and

Gð1ÞΦðx; x0Þ − Gð1ÞGhðx; x0Þ ¼ 0: ð66Þ
Similarly, as it has been previously noted in the case of

the Feynman propagators, the Hadamard representaion
of the Hadamard Green functions permits us to

straightforwardly identify their singular and purely geo-
metrical parts as well as their regular and state-dependent
parts (when the coincidence limit x0 → x is considered). We
can write

Gð1ÞA
μν0 ðx; x0Þ ¼ Gð1ÞA

sing μν0 ðx; x0Þ þ Gð1ÞA
reg μν0 ðx; x0Þ ð67Þ

with

Gð1ÞA
sing μν0 ðx; x0Þ ¼

1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ gμν0 ðx; x0Þ

þVA
μν0 ðx; x0Þ ln jσðx; x0Þj

�
ð68aÞ

and

Gð1ÞA
reg μν0 ðx; x0Þ ¼

1

4π2
WA

μν0 ðx; x0Þ ð68bÞ

as well as

Gð1Þðx; x0Þ ¼ Gð1Þ
singðx; x0Þ þGð1Þ

regðx; x0Þ ð69Þ

with

Gð1Þ
singðx; x0Þ ¼

1

4π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þVðx; x0Þ ln jσðx; x0Þj

�

ð70aÞ

and

Gð1Þ
regðx; x0Þ ¼ 1

4π2
Wðx; x0Þ: ð70bÞ

It should be pointed out that the regular part of the
Hadamard Green function given by Eq. (68b) [respectively,
by Eq. (70b)] is proportional to that of the Feynman
propagator given by Eq. (48b) [respectively, by Eq. (50b)].

C. Geometrical Hadamard coefficients and associated
covariant Taylor series expansions

Formally, the Hadamard coefficients VA
n μν0 ðx; x0Þ or

Vnðx; x0Þ can be determined uniquely by solving the
recursion relations (39) or (43), i.e., by integrating these
recursion relations along the unique geodesic joining x to x0
(it is unique for x0 near x or more generally for x0 in a
convex normal neighborhood of x). As a consequence, all
these coefficients as well as the sums given by Eqs. (36a)
and (38a) are of purely geometric nature; i.e., they only
depend on the geometry along the geodesic joining x to x0.
From the point of view of the practical applications

considered in this work, it is sufficient to know the
expressions of the two first geometrical Hadamard coef-
ficients. Furthermore, their covariant Taylor series
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expansions are needed up to order σ1 for n ¼ 0 and σ0 for
n ¼ 1. The covariant Taylor series expansions of the
bivector coefficients VA

0 μνðx; x0Þ and VA
1 μνðx; x0Þ are given

by [see Eqs. (A7) and (A8)]

VA
0 μν ¼ gνν

0
VA
0 μν0

¼ vA
0 ðμνÞ − fð1=2ÞvA

0 ðμνÞ;a þ vA
0 ½μν�agσ;a

þ 1

2!
fvA

0 ðμνÞab þ vA
0 ½μν�a;bgσ;aσ;b þOðσ3=2Þ

ð71aÞ

and

VA
1 μν ¼ gνν

0
VA
1 μν0 ¼ vA

1 ðμνÞ þOðσ1=2Þ: ð71bÞ

Here, the explicit expressions of the Taylor coefficients can
be determined from the recursion relations (39). We have

vA
0 ðμνÞ ¼ ð1=2ÞRμν þ gμνfð1=2Þm2 − ð1=12ÞRg; ð72aÞ

vA
0 ½μν�a ¼ ð1=6ÞRa½μ;ν�; ð72bÞ

vA
0 ðμνÞab ¼ ð1=6ÞRμν;ðabÞ þ ð1=12ÞRμνRab

þ ð1=12ÞRμpqðajRν
pqjbÞ þ gμνfð1=12Þm2Rab

− ð1=40ÞR;ab − ð1=120Þ□Rab

−ð1=72ÞRRab þ ð1=90ÞRapRb
p

−ð1=180ÞRpqRa
p
b
q − ð1=180ÞRapqrRb

pqrg;
ð72cÞ

vA
1 ðμνÞ ¼ ð1=4Þm2Rμν − ð1=24Þ□Rμν − ð1=24ÞRRμν

þ ð1=8ÞRμpRν
p − ð1=48ÞRμpqrRν

pqr

þ gμνfð1=8Þm4 − ð1=24Þm2Rþ ð1=120Þ□R

þð1=288ÞR2 − ð1=720ÞRpqRpq

þð1=720ÞRpqrsRpqrsg: ð72dÞ

The covariant Taylor series expansions of the biscalar
coefficients V0ðx; x0Þ and V1ðx; x0Þ are given by [see
Eqs. (A5) and (A6)]

V0 ¼ v0 − fð1=2Þv0;agσ;a þ
1

2!
v0abσ;aσ;b þOðσ3=2Þ

ð73aÞ
and

V1 ¼ v1 þOðσ1=2Þ: ð73bÞ
Here, the explicit expressions of the Taylor coefficients can
be determined from the recursion relations (43). We have

v0 ¼ ð1=2Þm2 − ð1=12ÞR; ð74aÞ

v0ab ¼ ð1=12Þm2Rab − ð1=40ÞR;ab − ð1=120Þ□Rab

− ð1=72ÞRRab þ ð1=90ÞRapRb
p

− ð1=180ÞRpqRa
p
b
q − ð1=180ÞRapqrRb

pqr; ð74bÞ

v1 ¼ ð1=8Þm4 − ð1=24Þm2Rþ ð1=120Þ□R

þ ð1=288ÞR2 − ð1=720ÞRpqRpq

þ ð1=720ÞRpqrsRpqrs: ð74cÞ

In order to obtain the expressions of the Taylor coefficients
given by Eqs. (72) and (74), we have used some of the
properties of σðx; x0Þ, gμν0 ðx; x0Þ, Δ1=2ðx; x0Þ mentioned in
the Appendix as well as the algebraic properties of the
Riemann tensor.

D. State-dependent Hadamard coefficients and
associated covariant Taylor series expansions

1. General considerations

Unlike the geometrical Hadamard coefficients, the coef-
ficients WA

n μν0 ðx; x0Þ and Wnðx; x0Þ are neither uniquely
defined nor purely geometrical. Indeed, the coefficient
WA

0 μν0 ðx; x0Þ [respectively, W0ðx; x0Þ] is unrestrained by
the recursion relations (42) [respectively, by the recursion
relations (46)]. As a consequence, this is also true for all the
coefficients WA

n μν0 ðx; x0Þ and Wnðx; x0Þ with n ≥ 1 and for
the sums (36b) and (38b). This arbitrariness is in fact very
interesting, and it can be used to encode the quantum state
dependence of the theory in the coefficients WA

0 μν0 ðx; x0Þ
and W0ðx; x0Þ. Once they have been specified, the coef-
ficientsWA

n μν0 ðx; x0Þ andWnðx; x0Þwith n ≥ 1 as well as the

bivector WA
μν0 ðx; x0Þ and the biscalar Wðx; x0Þ are uniquely

determined.
In the following, instead of working with the state-

dependent Hadamard coefficients, we shall consider the
sums WA

μν0 ðx; x0Þ and Wðx; x0Þ, and, more precisely, we
shall use their covariant Taylor series expansions up to
order σ3=2. We have [see Eqs. (A7) and (A8)]

WA
μν ¼ gνν

0
WA

μν0

¼ sμν − fð1=2Þsμν;a þ aμνagσ;a

þ 1

2!
fsμνab þ aμνa;bgσ;aσ;b −

1

3!
fð3=2Þsμνab;c

−ð1=4Þsμν;abc þ aμνabcgσ;aσ;bσ;c þOðσ2Þ ð75Þ

and [see Eqs. (A5) and (A6)]
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W ¼ w − fð1=2Þw;agσ;a þ
1

2!
wabσ

;aσ;b

−
1

3!
fð3=2Þwab;c − ð1=4Þw;abcgσ;aσ;bσ;c þOðσ2Þ:

ð76Þ

In the expansion (75) we have introduced the notations

sμνa1���ap ≡ wA
ðμνÞa1���ap ð77aÞ

for the symmetric part of the Taylor coefficients and

aμνa1���ap ≡ wA
½μν�a1���ap ð77bÞ

for their antisymmetric part.
It is important to note that, with practical applications in

mind, it is interesting to express some of the Taylor
coefficients appearing in Eqs. (75) and (76) in terms of
the bitensors WA

μν0 ðx; x0Þ and Wðx; x0Þ. This can be done by
inverting these equations. From Eq. (75), we obtain

sμνðxÞ ¼ lim
x0→x

WA
μν0 ðx; x0Þ; ð78aÞ

aμνaðxÞ ¼
1

2
lim
x0→x

½WA
μν0;a0 ðx; x0Þ −WA

μν0;aðx; x0Þ�; ð78bÞ

sμνabðxÞ ¼
1

2
lim
x0→x

½WA
μν0;ða0b0Þðx; x0Þ þWA

μν0;ðabÞðx; x0Þ�: ð78cÞ

(Here, the coefficient aμνabc is not relevant because it does
not appear in the final expressions of the renormalized
stress-energy-tensor operator given in Sec. IV C). Similarly,
from Eq. (76), we straightforwardly establish that

wðxÞ ¼ lim
x0→x

Wðx; x0Þ; ð79aÞ

wabðxÞ ¼ lim
x0→x

W;ða0b0Þðx; x0Þ: ð79bÞ

We shall now rewrite the wave equations (60), (62) and (64)
as well as the Ward identity (65) in terms of the Taylor
coefficients of WA

μνðx; x0Þ and Wðx; x0Þ. To achieve the
calculations, we shall use extensively the properties of
σðx; x0Þ, gμν0 ðx; x0Þ, Δ1=2ðx; x0Þ mentioned in the Appendix.

2. Wave equations

By inserting the Hadamard representation (55) of the

Green function Gð1ÞA
μν0 ðx; x0Þ into the wave equation (60), we

obtain a wave equation with source for the state-dependent
Hadamard coefficient WA

μν0 ðx; x0Þ. We have

gρρ
0 ½gμν□x − Rμ

ν −m2gμν�WA
νρ0

¼ −6VA
1 μρ − 2gρρ

0
VA
1 μρ0;aσ

;a þOðσÞ
¼ −6vA

1 ðμρÞ þ ð2vA
1 ðμρÞ;a þ 8vA

1 ½μρ�aÞσ;a þOðσÞ: ð80Þ

Here, we have used the expansions of the geometrical
Hadamard coefficients given by Eqs. (36a) and (71). By
inserting the expansion (75) ofWA

μνðx; x0Þ into the left-hand
side of Eq. (80), we find the following relations:

sμρνν ¼ RpðμsρÞp þm2sμρ − 6vA
1 ðμρÞ; ð81aÞ

sμμν
ν ¼ Rpqspq þm2spp − 6vA1 p

p; ð81bÞ

aμρν;ν ¼ −Rp½μsρ�p; ð81cÞ

sμρνa;ν ¼ ð1=4Þð□sμρÞ;a þ ð1=2ÞRp
a;ðμsρÞp

− ð1=2ÞRðμja;psjρÞp − ð1=2ÞRpðμsρÞp;a

þ ð1=2ÞRp
asμρ;p − RpðμjqasjρÞp;q

− RpðμjapjρÞa − RpðμjqaajρÞpq þ ð1=2Þsμρpp;a
− ð1=2Þm2sμρ;a þ 2vA

1 ðμρÞ;a; ð81dÞ

sμμνa
;ν ¼ ð1=4Þð□sppÞ;a þ ð1=2ÞRq

aspp;q

− ð1=2ÞRpqspq;a þ Rpqr
aapqr þ ð1=2Þsppqq;a

− ð1=2Þm2spp;a þ 2vA1 p
p
;a
: ð81eÞ

Furthermore, by combining Eq. (81d) with Eq. (81a) and
Eq. (81e) with Eq. (81b), we also establish that

sμρνa;ν ¼ ð1=4Þð□sμρÞ;a þ ð1=2ÞRp
a;ðμsρÞp

− ð1=2ÞRðμja;psjρÞp þ ð1=2ÞRpðμj;asjρÞp
þ ð1=2ÞRp

asμρ;p − RpðμjqasjρÞp;q

− RpðμjapjρÞa − RpðμjqaajρÞpq − vA
1 ðμρÞ;a ð81fÞ

and

sμμνa
;ν ¼ ð1=4Þð□sppÞ;a þ ð1=2ÞRq

aspp;q

þ ð1=2ÞRpq
;aspq þ Rpqr

aapqr − vA1 p
p
;a
: ð81gÞ

Mutatis mutandis, by inserting the Hadamard represen-
tation (58) of the Green function Gð1Þðx; x0Þ into the wave
equation (62) or (64), we obtain a wave equation with
source for the state-dependent Hadamard coefficient
Wðx; x0Þ. We have

ð□x −m2ÞW ¼ −6V1 − 2V1;aσ
;a þOðσÞ

¼ −6v1 þ 2v1;aσ;a þOðσÞ: ð82Þ
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Here, we have used the expansions of the geometrical
Hadamard coefficients given by Eqs. (38a) and (73). By
inserting the expansion (76) of Wðx; x0Þ into the left-hand
side of Eq. (82), we find the following relations:

wρ
ρ ¼ m2w − 6v1; ð83aÞ

wρa
;ρ ¼ ð1=4Þð□wÞ;a þ ð1=2Þwp

p
;a

þ ð1=2ÞRp
aw;p − ð1=2Þm2w;a þ 2v1;a: ð83bÞ

Furthermore, by combining Eq. (83b) with Eq. (83a), we
also establish that

wρa
;ρ ¼ ð1=4Þð□wÞ;a þ ð1=2ÞRp

aw;p − v1;a: ð83cÞ

3. Ward identities

The first Ward identity given by Eq. (65) expressed in
terms of the Hadamard representation of the Green func-

tions Gð1ÞA
μν0 ðx; x0Þ [see Eq. (55)] and Gð1Þðx; x0Þ [see

Eq. (58)] permits us to write a relation between the
geometrical Hadamard coefficients VA

μν0 ðx; x0Þ and
Vðx; x0Þ as well as another one between the state-dependent
Hadamard coefficients WA

μν0 ðx; x0Þ and Wðx; x0Þ. We obtain

gνν
0 ðVA

μν0
;μ þ V ;ν0 Þ ¼ 0 ð84Þ

which is an identity between the geometrical Taylor
coefficients (72a)–(72d) and (74a)–(74c) and

gνν
0 ðWA

μν0
;μ þW;ν0 Þ ¼ −VA

1 μνσ
;μ þ V1σ;ν þOðσÞ

¼ −ðvA1 ðνaÞ − v1gνaÞσ;a þOðσÞ: ð85Þ

To establish Eq. (85), we have used the expansions of the
geometrical Hadamard coefficients given by Eqs. (36a),
(38a), (71) and (73). By inserting the expansions (75) of
WA

μνðx; x0Þ and (76) of Wðx; x0Þ into the left-hand side of
Eq. (85), we find the following relations:

aμνμ ¼ ð1=2Þspν;p þ ð1=2Þw;ν; ð86aÞ

sμνμa ¼ ð1=2Þspν;pa þ ð1=2ÞRp
asνp þ apν½a;p�

þ wνa − vA
1 ðνaÞ þ v1gνa: ð86bÞ

Furthermore, by combining Eq. (86b) with Eq. (86a), we
also establish that

sμνμa ¼ ð1=4Þspν;pa þ ð1=2ÞRp
asνp þ ð1=2Þapνa;p

− ð1=4Þw;νa þ wνa − vA1 ðνaÞ þ v1gνa: ð86cÞ

Of course, the second Ward identity given by Eq. (66)
provides trivially the equality of the Taylor coefficients of

the Hadamard coefficients associated with the auxiliary
scalar field and the ghost fields. We have

VΦ ¼ VGh ð87Þ

and

WΦ ¼ WGh: ð88Þ

IV. RENORMALIZED STRESS-ENERGY
TENSOR OF STUECKELBERG

ELECTROMAGNETISM

A. Stress-energy tensor

The functional derivation of the quantum action of the
Stueckelberg theory with respect to the metric tensor gμν
permits us to obtain the associated stress-energy tensor Tμν.
By definition, we have

Tμν ¼ 2ffiffiffiffiffiffi−gp δ

δgμν
S½Aμ;Φ; C; C�; gμν�; ð89Þ

and its explicit expression can be obtain by using that, in
the elementary variation

gμν → gμν þ δgμν ð90Þ

of the metric tensor, we have (see, for example, Ref. [45])

gμν → gμν þ δgμν; ð91aÞ
ffiffiffiffiffiffi
−g

p
→

ffiffiffiffiffiffi
−g

p þ δ
ffiffiffiffiffiffi
−g

p
; ð91bÞ

Γρ
μν → Γρ

μν þ δΓρ
μν ð91cÞ

with

δgμν ¼ −gμρgνσδgρσ; ð91dÞ

δ
ffiffiffiffiffiffi
−g

p ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν; ð91eÞ

δΓρ
μν ¼

1

2
ð−δgμν;ρ þ δgρμ;ν þ δgρν;μÞ: ð91fÞ

The stress-energy tensor derived from the action (9) is
given by

Tμν ¼ Tμν
cl þ Tμν

GB þ Tμν
Gh; ð92Þ

where the contributions of the classical and gauge-breaking
parts take the forms
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Tμν
cl ¼ Fμ

ρFνρ þm2AμAν

þ∇μΦ∇νΦþ 2mAðμ∇νÞΦ

− ð1=4ÞgμνfFρτFρτ þ 2m2AρAρ

þ2∇ρΦ∇ρΦþ 4mAρ∇ρΦg
¼ ∇ρAμ∇ρAν − 2∇ρAðμ∇νÞAρ þ∇μAρ∇νAρ

þm2AμAν þ∇μΦ∇νΦþ 2mAðμ∇νÞΦ

− ð1=2Þgμνf∇ρAτ∇ρAτ −∇ρAτ∇τAρ

þm2AρAρ þ∇ρΦ∇ρΦþ 2mAρ∇ρΦg ð93aÞ

and

Tμν
GB ¼ −2Aðμ∇νÞ∇ρAρ − 2mAðμ∇νÞΦ

− ð1=2Þgμνf−2Aρ∇ρ∇τAτ − ð∇ρAρÞ2
þm2Φ2 − 2mAρ∇ρΦg; ð93bÞ

while the contribution associated with the ghost fields is
given by

Tμν
Gh¼−2∇ðμjC�∇jνÞCþgμνf∇ρC�∇ρCþm2C�Cg: ð93cÞ

We can note the existence of terms coupling the fields Aμ

and Φ in the expression of Tμν
cl [see Eq. (93a)] as well as in

the expression of Tμν
GB [see Eq. (93b)].

We also give an alternative expression for the stress-
energy tensor which can be derived from the action (12) or
by summing Tμν

cl and Tμν
GB. This eliminates any coupling

between the fields Aμ and Φ and permits us to straight-
forwardly infer that the stress-energy tensor has three
independent contributions corresponding to the massive
vector field Aμ, the auxiliary scalar field Φ and the ghost
fields C and C�. We can write

Tμν ¼ Tμν
A þ Tμν

Φ þ Tμν
Gh ð94Þ

with

Tμν
A ¼ Fμ

ρFνρ þm2AμAν − 2Aðμ∇νÞ∇ρAρ

− ð1=4ÞgμνfFρτFρτ þ 2m2AρAρ

−4Aρ∇ρ∇τAτ − 2ð∇ρAρÞ2g
¼ ∇ρAμ∇ρAν − 2∇ρAðμ∇νÞAρ þ∇μAρ∇νAρ

þm2AμAν − 2Aðμ∇νÞ∇ρAρ

− ð1=2Þgμνf∇ρAτ∇ρAτ −∇ρAτ∇τAρ

þm2AρAρ − 2Aρ∇ρ∇τAτ − ð∇ρAρÞ2g ð95aÞ

and

Tμν
Φ ¼ ∇μΦ∇νΦ − ð1=2Þgμνf∇ρΦ∇ρΦþm2Φ2g; ð95bÞ

while the contribution associated with the ghost fields
remains unchanged [see Eq. (93c)].
By construction, the stress-energy tensor (89) [see also

its explicit expressions (92) and (94)] is conserved, i.e.,

∇νTμν ¼ 0: ð96Þ

Indeed, this property is due to the invariance of the action
(9) or (12) under spacetime diffeomorphisms and therefore
under the infinitesimal coordinate transformation

xμ → xμ þ ϵμ with jϵμj ≪ 1: ð97Þ

Under this transformation, the vector, scalar and ghost
fields as well as the background metric transform as

Aμ → Aμ þ δAμ; ð98aÞ

Φ → Φþ δΦ; ð98bÞ

C → Cþ δC; ð98cÞ

C� → C� þ δC�; ð98dÞ

gμν → gμν þ δgμν: ð98eÞ

The variations associated with the field transformations
(98) are obtained by Lie derivation with respect to the
vector −ϵμ:

δAμ ¼ L−ϵAμ ¼ −ϵρ∇ρAμ − ð∇μϵ
ρÞAρ; ð99aÞ

δΦ ¼ L−ϵΦ ¼ −ϵρ∇ρΦ; ð99bÞ

δC ¼ L−ϵC ¼ −ϵρ∇ρC; ð99cÞ

δC� ¼ L−ϵC� ¼ −ϵρ∇ρC�; ð99dÞ

δgμν ¼ L−ϵgμν ¼ −∇μϵν −∇νϵμ: ð99eÞ

The invariance of the action (9) or (12) leads to

Z
M

d4x
ffiffiffiffiffiffi
−g

p ��
1ffiffiffiffiffiffi−gp δS

δAμ

�
δAμ þ

�
1ffiffiffiffiffiffi−gp δS

δΦ

�
δΦ

þ
�

1ffiffiffiffiffiffi−gp δRS
δC

�
δCþ δC�

�
1ffiffiffiffiffiffi−gp δLS

δC�

�

þ 1

2

�
2ffiffiffiffiffiffi−gp δS

δgμν

�
δgμν

�
¼ 0 ð100Þ

which implies
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∇νTμν ¼ ½∇μAα −∇αAμ − Aμ∇ν�ð□Aν − Rν
ρAρ −m2AνÞ

þ ½∇μΦ�ð□Φ −m2ΦÞ − ð□C� −m2C�Þ½∇μC�
− ½∇μC��ð□C −m2CÞ ð101Þ

by using Eq. (99) as well as Eqs. (15)–(18). From the wave
equations associated with the massive vector field Aμ [see
Eq. (19)], the auxiliary scalar field Φ [see Eq. (20)] and the
ghost fields C and C� [see Eq. (21)], we then obtain
Eq. (96).

B. Expectation value of the stress-energy tensor

At the quantum level, all the fields involved in the
Stueckelberg theory as well as the associated stress-energy
tensor [see Eqs. (92) and (94)] are operators. From now on,
we shall denote the stress-energy-tensor operator by T̂μν

and we shall focus on the quantity hψ jT̂μνjψiwhich denotes
its expectation value with respect to the Hadamard quantum
state jψi discussed in Sec. III.
The expectation value hψ jT̂μνjψi corresponding to the

expression (92) of the stress-energy tensor is decomposed
as follows:

hψ jT̂μνjψi ¼ hψ jT̂cl
μνjψi þ hψ jT̂GB

μν jψi þ hψ jT̂Gh
μν jψi:

ð102Þ

The three terms in the right-hand side of this equation are
explicitly given by

hψ jT̂cl
μνðxÞjψi ¼

1

2
lim
x0→x

T clA ρσ0
μν ðx; x0Þ½Gð1ÞA

ρσ0 ðx; x0Þ�

þ 1

2
lim
x0→x

T clΦ
μν ðx; x0Þ½Gð1ÞΦðx; x0Þ�; ð103aÞ

hψ jT̂GB
μν ðxÞjψi ¼

1

2
lim
x0→x

T GBA ρσ0
μν ðx; x0Þ½Gð1ÞA

ρσ0 ðx; x0Þ�

þ 1

2
lim
x0→x

T GBΦ
μν ðx; x0Þ½Gð1ÞΦðx; x0Þ� ð103bÞ

and

hψ jT̂Gh
μν ðxÞjψi ¼

1

2
lim
x0→x

T Gh
μν ðx; x0Þ½Gð1ÞGhðx; x0Þ�; ð103cÞ

where T clA ρσ0
μν , T clΦ

μν , T GBA ρσ0
μν , T GBΦ

μν and T Gh
μν are the

differential operators constructed by point splitting from
the expressions (93a), (93b) and (93c). We have

T clA ρσ0
μν ¼ gνα

0
gρσ

0∇μ∇α0 þ gμρgνσ
0
gαβ

0∇α∇β0

− 2gμρgνα
0
gβσ

0∇β∇α0 þm2gμρgνσ
0

−
1

2
gμνfgρσ0gαβ0∇α∇β0 − gρα

0
gβσ

0∇β∇α0

þm2gρσ
0 g; ð104aÞ

T clΦ
μν ¼ gνν

0∇μ∇ν0 −
1

2
gμνfgαβ0∇α∇β0g; ð104bÞ

T GBA ρσ0
μν ¼ −2gμρgνα

0∇α0∇σ0

−
1

2
gμνf−∇ρ∇σ0 − 2gρα

0∇α0∇σ0 g; ð104cÞ

T GBΦ
μν ¼ −

1

2
m2gμν ð104dÞ

and

T Gh
μν ¼ −2gνν

0∇μ∇ν0 þ gμνfgαβ0∇α∇β0 þm2g: ð104eÞ

It should be noted that we have not included in Eqs. (103a)
and (103b) the contributions which can be obtained by
point splitting from the terms coupling Aμ and Φ in
Eqs. (93a) and (93b). Such contributions are not present
because, due to the absence of coupling between Aμ and Φ
in the quantum action (12), two-point correlation functions
involving both Aμ and Φ vanish identically. It should be
noted that the absence of these contributions can be also
justified in another way: in the quantum stress-energy-
tensor operator (94), any coupling between Aμ and Φ has
disappeared.
Here, some remarks are in order:
(i) When we use the point-splitting method, it is more

convenient to define the expectation value hψ jT̂μνjψi
from Hadamard Green functions rather than from
Feynman propagators. Indeed, this avoids us having
to deal with additional singular terms due to the
time-ordered product.

(ii) Of course, because of the short-distance behavior of
the Hadamard Green functions, the expressions
(103) as well as the expectation value hψ jT̂μνjψi
given in Eq. (102) are divergent and therefore
meaningless. In Sec. IV C we will regularize these
quantities.

(iii) Even if the formal expression (102) of the expect-
ation value of the stress-energy-tensor operator is
divergent, it is interesting to note that

hψ jT̂GB
μν jψi þ hψ jT̂Gh

μν jψi ¼ 0: ð105Þ

Indeed, from the definitions (103b) and (103c), we
can obtain Eq. (105) by using Eqs. (65) and (66) as
well as the wave equation (64). It should be noted
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that, as a consequence of Eq. (105), Eq. (102)
reduces to

hψ jT̂μνjψi ¼ hψ jT̂cl
μνjψi: ð106Þ

We can also give the alternative expression of the
expectation value hψ jT̂μνjψi obtained from Eq. (94). It
takes the following form,

hψ jT̂μνjψi ¼ hψ jT̂A
μνjψi þ hψ jT̂Φ

μνjψi þ hψ jT̂Gh
μν jψi;

ð107Þ

where the contributions associated with the massive vector
field Aμ and the auxiliary scalar field Φ are separated and
given by

hψ jT̂A
μνðxÞjψi ¼

1

2
lim
x0→x

T A ρσ0
μν ðx; x0Þ½Gð1ÞA

ρσ0 ðx; x0Þ� ð108aÞ

and

hψ jT̂Φ
μνðxÞjψi ¼

1

2
lim
x0→x

T Φ
μνðx; x0Þ½Gð1ÞΦðx; x0Þ�: ð108bÞ

Here, the differential operators T A ρσ0
μν and T Φ

μν are con-
structed by point splitting from the expressions (95a) and
(95b). We have

T A ρσ0
μν ¼ gνα

0
gρσ

0∇μ∇α0 þ gμρgνσ
0
gαβ

0∇α∇β0

− 2gμρgνα
0
gβσ

0∇β∇α0 þm2gμρgνσ
0

− 2gμρgνα
0∇α0∇σ0

−
1

2
gμνfgρσ0gαβ0∇α∇β0 − gρα

0
gβσ

0∇β∇α0

þm2gρσ
0 −∇ρ∇σ0 − 2gρα

0∇α0∇σ0 g ð109aÞ

and

T Φ
μν ¼ gνν

0∇μ∇ν0 −
1

2
gμνfgαβ0∇α∇β0 þm2g: ð109bÞ

It should be noted that the expressions (102) and (107) of
the expectation value hψ jT̂μνjψi are identical because the

various differential operators T clA ρσ0
μν , T clΦ

μν , T
GBA ρσ0
μν and

T GBΦ
μν appearing in (103) and T A ρσ0

μν and T Φ
μν appearing in

(108) are related by

T A ρσ0
μν ¼ T clA ρσ0

μν þ T GBA ρσ0
μν ; ð110aÞ

T Φ
μν ¼ T clΦ

μν þ T GBΦ
μν : ð110bÞ

C. Renormalized stress-energy tensor

1. Definition and conservation

As we have already noted, the expectation value
hψ jT̂μνjψi given by Eq. (102) is divergent due to the
short-distance behavior of the Green functions or, more
precisely, to the singular purely geometrical part of the
Hadamard functions given in Eqs. (68a) and (70a) (see the
terms in 1=σ and ln jσj). It is possible to construct
the renormalized expectation value of the stress-energy-
tensor operator with respect to the Hadamard quantum state
jψi by using the prescription proposed by Wald in
Refs. [26,30,31]. In Eqs. (103a)–(103c) we first discard
the singular contributions; i.e., we make the replacements

Gð1ÞA
μν0 ðx; x0Þ → Gð1ÞA

reg μν0 ðx; x0Þ ¼
1

4π2
WA

μν0 ðx; x0Þ; ð111aÞ

Gð1ÞΦðx; x0Þ → Gð1ÞΦ
reg ðx; x0Þ ¼ 1

4π2
WΦðx; x0Þ; ð111bÞ

Gð1ÞGhðx; x0Þ → Gð1ÞGh
reg ðx; x0Þ ¼ 1

4π2
WGhðx; x0Þ; ð111cÞ

and we add to the result a state-independent tensor ~Θμν

which only depends on the mass parameter and on the local
geometry and which ensures the conservation of the final
expression. In other words, we consider that the renormal-
ized expectation value of the stress-energy-tensor operator
is given by

hψ jT̂μνjψiren ¼
1

8π2
fT clA

μν ½WA� þ T clΦ
μν ½WΦ�g

þ 1

8π2
fT GBA

μν ½WA� þ T GBΦ
μν ½WΦ�g

þ 1

8π2
T Gh

μν ½WGh� þ ~Θμν ð112Þ

with

T clA
μν ½WA�ðxÞ ¼ lim

x0→x
T clA ρσ0

μν ðx; x0Þ½WA
ρσ0 ðx; x0Þ�; ð113aÞ

T clΦ
μν ½WΦ�ðxÞ ¼ lim

x0→x
T clΦ

μν ðx; x0Þ½WΦðx; x0Þ�; ð113bÞ

T GBA
μν ½WA�ðxÞ ¼ lim

x0→x
T GBA ρσ0

μν ðx; x0Þ½WA
ρσ0 ðx; x0Þ�; ð113cÞ

T GBΦ
μν ½WΦ�ðxÞ ¼ lim

x0→x
T GBΦ

μν ðx; x0Þ½WΦðx; x0Þ� ð113dÞ

and

T Gh
μν ½WGh�ðxÞ ¼ lim

x0→x
T Gh

μν ðx; x0Þ½WGhðx; x0Þ�: ð113eÞ
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Here, the differential operators T clA ρσ0
μν , T clΦ

μν , T GBA ρσ0
μν ,

T GBΦ
μν and T Gh

μν are given by Eqs. (104a)–(104e). In
Eqs. (113a)–(113e), the coincidence limits x0 → x are
obtained from the covariant Taylor series expansions
(75) and (76) by using extensively some of the results
displayed in the Appendix. The final expressions can be
simplified by using the relations (81a), (81b) and (83a) we
have previously obtained from the wave equations. We
have

T clA
μν ½WA� ¼ ð1=2Þsρρ;μν þ ð1=2Þ□sμν − sρðμ;νÞρ

− aμρ½ν;ρ� − aνρ½μ;ρ� − sρρμν þ 2sρðμνÞρ

− ð1=2Þgμνfð1=2Þ□sρρ − ð1=2Þsρτ ;ρτ
−ð1=2ÞRρτsρτ − aρτρ;τ þ sρτρτg

þ 6vA1 μν − 3gμνvA1 ρ
ρ; ð114aÞ

T clΦ
μν ½WΦ� ¼ ð1=2ÞwΦ

;μν − wΦ
μν

− ð1=2Þgμνfð1=2Þ□wΦ −m2wΦg − 3gμνv1;

ð114bÞ

T GBA
μν ½WA� ¼ RρðμsνÞρ − aμρðν;ρÞ − aνρðμ;ρÞ − 2sρðμνÞρ

− ð1=2Þgμνf−ð1=2Þsρτ ;ρτ þ ð1=2ÞRρτsρτ

þaρτρ;τ − sρτρτg; ð114cÞ

T GBΦ
μν ½WΦ� ¼ −ð1=2Þgμνm2wΦ ð114dÞ

and

T Gh
μν ½WGh� ¼ −wGh

;μν þ 2wGh
μν þ ð1=2Þgμν□wGh þ 6gμνv1:

ð114eÞ

Let us now consider the divergence of the terms given by
Eqs. (114a)–(114e). By taking into account Eqs. (81) and
(83), we obtain

ðT clA
μν ½WA� þ T GBA

μν ½WA�Þ;ν ¼ 6vA1 μν
;ν − 2vA1 ρ

ρ
;μ
; ð115aÞ

ðT clΦ
μν ½WΦ� þ T GBΦ

μν ½WΦ�Þ;ν ¼ −2v1;μ ð115bÞ

and

ðT Gh
μν ½WGh�Þ;ν ¼ 4v1;μ; ð115cÞ

and we then have

ðhψ jT̂μνjψirenÞ;ν ¼
1

8π2
f6vA1 μν − 2gμνvA1 ρ

ρ

þ2gμνv1g;ν þ ~Θμν
;ν ¼ 0: ð116Þ

It is therefore suitable to redefine the purely geometrical
tensor ~Θμν by

~Θμν → Θμν −
1

8π2
f6vA1 μν − 2gμνvA1 ρ

ρ þ 2gμνv1g; ð117Þ

where the new local tensor Θμν is assumed to be
conserved, i.e.,

Θμν
;ν ¼ 0: ð118Þ

As a consequence, the renormalized expectation value of
the stress-energy-tensor operator takes the following form,

hψ jT̂μνjψiren ¼
1

8π2
fT clA

μν ½WA� þ T GBA
μν ½WA�

−6vA1 μν þ 2gμνvA1 ρ
ρg

þ 1

8π2
fT clΦ

μν ½WΦ� þ T GBΦ
μν ½WΦ�

þ2gμνv1g þ
1

8π2
fT Gh

μν ½WGh� − 4gμνv1g
þ Θμν; ð119Þ

where the various state-dependent contributions are given
by Eqs. (114a)–(114e).

2. Cancellation of the gauge-breaking
and ghost contributions

In Sec. IV B we have mentioned that the formal con-
tributions of the gauge-breaking term hψ jT̂GB

μν jψi and the
ghost term hψ jT̂Gh

μν jψi cancel each other out [see Eq. (105)].
This still remains valid for the corresponding regularized
expectation values up to purely geometrical terms. Indeed,
by using the first Ward identity in the form (86) as well as
the second Ward identity in the form (88), we obtain

T GBA
μν ½WA� þ T GBΦ

μν ½WΦ� þ T Gh
μν ½WGh�

¼ 2vA1 μν þ gμνf−ð1=2ÞvA1 ρρ þ 3v1g: ð120Þ

Now, by using this relation in connection with Eqs. (114a)
and (114b), we can rewrite the renormalized expectation
value of the stress-energy-tensor operator given by
Eq. (119) in the form
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hψ jT̂μνjψiren ¼
1

8π2
fð1=2Þsρρ;μν þ ð1=2Þ□sμν − sρðμ;νÞρ

−aμρ½ν;ρ� − aνρ½μ;ρ� − sρρμν þ 2sρðμνÞρ

−ð1=2Þgμν½ð1=2Þ□sρρ − ð1=2Þsρτ ;ρτ
−ð1=2ÞRρτsρτ − aρτρ;τ þ sρτρτ�
þð1=2ÞwΦ

;μν − wΦ
μν

−ð1=2Þgμν½ð1=2Þ□wΦ −m2wΦ�þ2vA1 μν

−ð3=2ÞgμνvA1 ρρ − 2gμνv1g þ Θμν: ð121Þ

This expression only involves state-dependent and geo-
metrical quantities associated with the quantum fields Aμ

andΦ. We could consider it as our final result, but, in fact, it
is very important here to note that, due to the first Ward
identity, the decomposition into a part involving the
massive vector field and another part involving the aux-
iliary scalar field is not unique. In the next sections, we
shall provide two alternative expressions which, in our
opinion, are much more interesting from the physical point
of view.
From now, in order to simplify the notations and because

this does not lead to any ambiguity, we shall omit the label
Φ for the Taylor coefficients wΦ and wΦ

μν.

3. Substitution of the auxiliary scalar field
contribution and final result

It is possible to remove in Eq. (121) any reference to the
auxiliary scalar field Φ. In some sense, it plays the role of a
kind of ghost field (the so-called Stueckelberg ghost [46]),
but its contribution must be carefully taken into account. By
using Eqs. (83a), (86a) and (86b) in the form

m2w ¼ wρ
ρ þ 6v1

¼ −ð1=2Þsρτ ;ρτ − ð1=2ÞRρτsρτ

þ aρτρ;τ þ sρτρτ þ vA1 ρ
ρ þ 2v1; ð122aÞ

w;μν ¼ −sρðμj;ρjνÞ þ 2aρðμjρ;jνÞ ð122bÞ

and

wμν ¼ −ð1=2Þsρðμj;ρjνÞ − ð1=2ÞRρðμsνÞρ

þ ð1=2Þaμρ½ν;ρ� þ ð1=2Þaνρ½μ;ρ�
þ sρðμνÞρ þ vA1 μν − gμνv1; ð122cÞ

we obtain

hψ jT̂μνjψiren¼
1

8π2
fð1=2Þsρρ;μνþð1=2Þ□sμν−sρðμ;νÞρ

þð1=2ÞRρðμsνÞρ−ð1=2Þaμρðν;ρÞ−ð1=2Þaνρðμ;ρÞ
−aμρ½ν;ρ�−aνρ½μ;ρ�−sρρμνþsρðμνÞρ

−ð1=2Þgμν½ð1=2Þ□sρρ−ð1=2Þsρτ ;ρτ−aρτρ;τ�
þvA1μν−gμνvA1 ρ

ρgþΘμν: ð123Þ

We have now at our disposal an expression for the
renormalized expectation value of the stress-energy-tensor
operator associated with the full Stueckelberg theory which
only involves state-dependent and geometrical quantities
associated with the massive vector field Aμ. It is the main
result of our article.
It is interesting to note that Eq. (123) combined with

Eq. (81b) leads to

hψ jT̂ρ
ρjψiren ¼

1

8π2
f−m2sρρ − ð1=2ÞRρτsρτ

þsρτρτ þ 3vA1 ρ
ρg þ Θρ

ρ: ð124Þ

4. Another final expression involving both the vector field
Aμ and the auxiliary scalar field Φ

Even if we are satisfied with our final expression (123), it
is worth nothing that it does not reduce, in the limit
m2 → 0, to the result obtained from Maxwell’s theory.
This is not really surprising because it involves implicitly
the contribution of the auxiliary scalar field. In fact, by
replacing in Eq. (121) the term m2w given by Eq. (122a), it
is possible to split the renormalized expectation value of the
stress-energy-tensor operator in the form

hψ jT̂μνjψiren ¼ T A
μν þ T Φ

μν þ Θμν; ð125Þ

where the terms associated with the vector and scalar fields
are given by

T A
μν ¼

1

8π2
fð1=2Þsρρ;μν þ ð1=2Þ□sμν − sρðμ;νÞρ

−aμρ½ν;ρ� − aνρ½μ;ρ� − sρρμν þ 2sρðμνÞρ

−ð1=2Þgμν½ð1=2Þ□sρρ − 2aρτρ;τ�
þ2vA1 μν − gμνvA1 ρ

ρg ð126aÞ

and

T Φ
μν ¼

1

8π2
fð1=2Þw;μν − wμν

−ð1=4Þgμν□w − gμνv1g: ð126bÞ

The stress-energy tensors T A
μν and T Φ

μν are separately
conserved (this can be checked from relations obtained
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in Sec. III D), and, moreover, the expression of T Φ
μν

corresponds exactly to the renormalized expectation value
of the stress-energy-tensor operator associated with the
quantum action (14) for ξ ¼ 1 (see, e.g., Refs. [35,36]). As
a consequence, it could be rather natural to consider T A

μν

given by Eq. (126a) as the renormalized expectation value
of the stress-energy-tensor operator associated with the
massive vector field Aμ. This physical interpretation is
strengthened by noting that, in the limit m2 → 0, T A

μν

reduces to the result obtained from Maxwell’s theory (see
Sec. IV D). However, despite this, we are not really
satisfied by this artificial way to split the contributions
of the vector and scalar fields because, as we have already
noted, the first Ward identity allows us to move terms from
one contribution to the other. So, we consider that the only
nonambiguous result is the one given by Eq. (123).
It is interesting to note that Eq. (125) combined with

Eqs. (81b) and (83a) leads to

hT̂ρ
ρiren ¼ T A

ρ
ρ þ T Φ

ρ
ρ þ Θρ

ρ ð127Þ

with

T A
ρ
ρ ¼ 1

8π2
f−sρτ ;ρτ −m2sρρ − Rρτsρτ

þ2aρτρ;τ þ 2sρτρτ þ 4vA1 ρ
ρg ð128aÞ

and

T Φ
ρ
ρ ¼ 1

8π2
f−ð1=2Þ□w −m2wþ 2v1g: ð128bÞ

D. Maxwell’s theory

Let us now consider the limit m2 → 0 of T A
μν given by

Eq. (126a). By using Eq. (122a), it reduces to

T Maxwell
μν ¼ 1

8π2
fð1=2Þsρρ;μν þ ð1=2Þ□sμν − sρðμ;νÞρ

−aμρ½ν;ρ� − aνρ½μ;ρ� − sρρμν þ 2sρðμνÞρ

−ð1=2Þgμν½ð1=2Þ□sρρ − ð1=2Þsρτ ;ρτ
−ð1=2ÞRρτsρτ − aρτρ;τ þ sρτρτ�
þ2vA1 μν − gμν½ð3=2ÞvA1 ρρ þ v1�g: ð129Þ

This last expression is nothing other than the renormalized
expectation value of the stress-energy-tensor operator asso-
ciated with Maxwell’s electromagnetism (see Eq. (3.41b)
of Ref. [39]).
It is interesting to note that Eq. (129) combined with

Eq. (81b) leads to

gμνT Maxwell
μν ¼ 1

8π2
f2vA1 ρρ − 4v1g

¼ 1

8π2
f−ð1=20Þ□R − ð5=72ÞR2

þð7=30ÞRpqRpq−ð13=360ÞRpqrsRpqrsg:
ð130Þ

We recover the trace anomaly for Maxwell’s theory.

E. Ambiguities in the renormalized stress-energy tensor

1. General expression of the ambiguities

The renormalized expectation value hψ jT̂μνðxÞjψiren is
unique up to the addition of a geometrical conserved tensor
Θμν. In other words, even if it takes perfectly into account
the quantum state dependence of the theory, it is ambig-
uously defined (see, Sec. III of Ref. [31] as well as, e.g.,
comments in Refs. [25,26,41,47,48]).
As noted by Wald [31], Θμν is a local conserved tensor

of dimension ðmassÞ4 ¼ ðlengthÞ−4 which remains finite in
the massless limit. As a consequence, it can be con-
structed by functional derivation with respect to the metric
tensor from a geometrical Lagrangian of dimension
ðmassÞ4 ¼ ðlengthÞ−4. Such a Lagrangian is necessarily a
linear combination of the following four terms: m4, m2R,
R2, RpqRpq. It should be noted that we could also take into
account the term RpqrsRpqrs. But, in fact, we can eliminate
this term because, in a four-dimensional background, the
Euler number

χ ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½R2 − 4RpqRpq þ RpqrsRpqrs� ð131Þ

associated with the quadratic Gauss-Bonnet action is a
topological invariant.
The functional derivation of the action terms previously

discussed provides the conserved tensors

1ffiffiffiffiffiffi−gp δ

δgμν

Z
M

d4x
ffiffiffiffiffiffi
−g

p
m4 ¼ ð1=2Þm4gμν; ð132aÞ

1ffiffiffiffiffiffi−gp δ

δgμν

Z
M

d4x
ffiffiffiffiffiffi
−g

p
m2R ¼ −m2½Rμν − ð1=2ÞRgμν�;

ð132bÞ

ð1ÞHμν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
M

d4x
ffiffiffiffiffiffi
−g

p
R2

¼ 2R;μν − 2RRμν

þ gμν½−2□Rþ ð1=2ÞR2�; ð132cÞ
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ð2ÞHμν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
M

d4x
ffiffiffiffiffiffi
−g

p
RpqRpq

¼ R;μν −□Rμν − 2RpqRμpνq

þ gμν½−ð1=2Þ□Rþ ð1=2ÞRpqRpq�: ð132dÞ

The general expression of the local conserved tensor Θμν

can be therefore written in the form

Θμν ¼
1

8π2
fαm4gμν þ βm2½Rμν − ð1=2ÞRgμν�

þγ1
ð1ÞHμν þ γ2

ð2ÞHμνg; ð133Þ

where α, β, γ1 and γ2 are constants which can be fixed by
imposing additional physical conditions on the renormal-
ized expectation value of the stress-energy-operator tensor,
these conditions being appropriate to the problem treated.

2. Ambiguities associated with the renormalization mass

So far, in order to simplify the calculations, we have
dropped the scale length λ (or, equivalently, the mass scale
M ¼ 1=λ, i.e., the so-called renormalization mass) that
should be introduced in order to make dimensionless the
argument of the logarithm in the Hadamard representation
of the Green functions. In fact, in Eqs. (35) and (37) it is
necessary to make the substitution ln½σðx; x0Þ þ iϵ� →
ln½σðx; x0Þ=λ2 þ iϵ� which leads in Eqs. (55) and (58) to
the substitution

ln jσðx; x0Þj → ln jσðx; x0Þ=λ2j: ð134Þ

This scale length induces an indeterminacy in the bitensors
WA

μν0 ðx; x0Þ and Wðx; x0Þ which corresponds to the
replacements

WA
μν0 ðx; x0Þ → WA

μν0 ðx; x0Þ − VA
μν0 ðx; x0Þ lnðλ2Þ; ð135aÞ

WΦðx; x0Þ → WΦðx; x0Þ − VΦðx; x0Þ lnðλ2Þ; ð135bÞ

WGhðx; x0Þ → WGhðx; x0Þ − VGhðx; x0Þ lnðλ2Þ; ð135cÞ

i.e., in terms of the associated Taylor coefficients, to
replacements

sμν → sμν − vA0 ðμνÞ lnðλ2Þ; ð136aÞ

aμνa → aμνa − vA0 ½μν�a lnðλ2Þ; ð136bÞ

sμνab → sμνab − ðvA0 ðμνÞab þ vA1 ðμνÞgabÞ lnðλ2Þ ð136cÞ

for the vector field Aμ and

w → w − v0 lnðλ2Þ; ð137aÞ

wab → wab − ðv0ab þ v1gabÞ lnðλ2Þ ð137bÞ

for the scalar field Φ or the ghost fields. By substituting
Eqs. (135a)–(135c) into the general expression (112) of the
renormalized expectation value of the stress-energy-tensor
operator, we obtain the general form of the ambiguity
associated with the scale length. It is given by

ΘμνðλÞ ¼ −
lnðλ2Þ
8π2

fΘclA
μν ½VA� þ ΘclΦ

μν ½VΦ�g

−
lnðλ2Þ
8π2

fΘGBA
μν ½VA� þ ΘGBΦ

μν ½VΦ�g

−
lnðλ2Þ
8π2

ΘGh
μν ½VGh� ð138Þ

with

ΘclA
μν ½VA�ðxÞ ¼ lim

x0→x
T clA ρσ0

μν ðx; x0Þ½VA
ρσ0 ðx; x0Þ�; ð139aÞ

ΘclΦ
μν ½VΦ�ðxÞ ¼ lim

x0→x
T clΦ

μν ðx; x0Þ½VΦðx; x0Þ�; ð139bÞ

ΘGBA
μν ½VA�ðxÞ ¼ lim

x0→x
T GBA ρσ0

μν ðx; x0Þ½VA
ρσ0 ðx; x0Þ�; ð139cÞ

ΘGBΦ
μν ½VΦ�ðxÞ ¼ lim

x0→x
T GBΦ

μν ðx; x0Þ½VΦðx; x0Þ� ð139dÞ

and

ΘGh
μν ½VGh�ðxÞ ¼ lim

x0→x
T Gh

μν ðx; x0Þ½VGhðx; x0Þ�; ð139eÞ

where the differential operators T clA ρσ0
μν , T GBA ρσ0

μν , T clΦ
μν ,

T GBΦ
μν and T Gh

μν are given in Eqs. (104a)–(104e). It should be
noted that ΘμνðλÞ is a purely geometrical object. This is due
to the geometrical nature of the Hadamard coefficients
VA
μν0 ðx; x0Þ and Vðx; x0Þ.
In order to obtain the explicit expression of the stress-

energy tensor ΘμνðλÞ, we can repeat the calculations of
Sec. IV C by replacingWA

μν0 by V
A
μν0,W

Φ by VΦ andWGh by

VGh. From Eqs. (114a)–(114e) it is straightforward to
obtain explicitly ΘclA

μν ½VA�, ΘclΦ
μν ½VΦ�, ΘGBA

μν ½VA�, ΘGBΦ
μν ½VΦ�

and ΘGh
μν ½VGh� by using the replacements (136) and (137).

We can then show that

ðΘclA
μν ½VA� þ ΘGBA

μν ½VA�Þ;ν ¼ 0; ð140aÞ

ðΘclΦ
μν ½VΦ� þ ΘGBΦ

μν ½VΦ�Þ;ν ¼ 0 ð140bÞ

and

ðΘGh
μν ½VGh�Þ;ν ¼ 0: ð140cÞ

ANDREI BELOKOGNE and ANTOINE FOLACCI PHYSICAL REVIEW D 93, 044063 (2016)

044063-18



Equations (140a)–(140c) are similar to Eqs. (115a)–(115c)
but now with the right-hand sides vanishing. This is due to
the fact that, unlike the wave equations (42) and (46) for
WA

μν0 , W
Φ and WGh, the wave equations for VA

μν0, V
Φ and

VGh [cf. Eqs. (41) and (45)] have no source terms. As a
consequence ΘμνðλÞ is a conserved geometrical tensor. We
can also check that

ΘGBA
μν ½VA� þ ΘGBΦ

μν ½VΦ� þ ΘGh
μν ½VGh� ¼ 0: ð141Þ

Equation (141) is similar to Eq. (120) but now with the
right-hand side vanishing. This is due to the fact that, unlike
the Ward identity (85) linking WA

μν0 and WGh, the Ward

identity (84) linking VA
μν0 and VGh has no right-hand side.

As a consequence, from Eqs. (138) and (141), we obtain

ΘμνðλÞ ¼ −
lnðλ2Þ
8π2

fΘclA
μν ½VA� þ ΘclΦ

μν ½VΦ�g: ð142Þ

The ambiguities associated with the scale length can now
be obtained explicitly from the replacements (136) and

(137). If we use the form (123) without taking into account
the geometrical terms, we obtain

ΘμνðλÞ ¼ −
lnðλ2Þ
8π2

fð1=2ÞvA0 ρρ;μν þ ð1=2Þ□vA0 μν

−vA0 ρðμ;νÞρ þ ð1=2ÞRρðμvA0 νÞρ − ð1=2ÞgρτvA
0 ½μρ�ðν;τÞ

−ð1=2ÞgρτvA
0 ½νρ�ðμ;τÞ − gρτvA

0 ½μρ�½ν;τ� − gρτvA
0 ½νρ�½μ;τ�

−vA0 ρρμν þ ð1=2ÞvA
0 ðρμÞν

ρ þ ð1=2ÞvA
0 ðρνÞμ

ρ þ vA1 μν

− gμν½ð1=4Þ□vA0 ρ
ρ − ð1=4ÞvA0 ρτ

;ρτ − ð1=2ÞvA
0 ½ρτ�

ρ;τ

þ vA1 ρ
ρ�g: ð143Þ

Similarly, if we use the alternative form (125) where the
contributions corresponding to the vector field Aμ and the
auxiliary scalar field Φ are highlighted [see Eqs. (126a) and
(126b)], we obtain

ΘμνðλÞ ¼ ΘA
μνðλÞ þ ΘΦ

μνðλÞ ð144Þ

with

ΘA
μνðλÞ ¼ −

lnðλ2Þ
8π2

fð1=2ÞvA0 ρρ;μν þ ð1=2Þ□vA0 μν−vA0 ρðμ;νÞ
ρ − gρτvA

0 ½μρ�½ν;τ� − gρτvA
0 ½νρ�½μ;τ�−v

A
0 ρ

ρ
μν

þvA
0 ðρμÞν

ρ þ vA
0 ðρνÞμ

ρ þ 2vA1 μν−gμν½ð1=4Þ□vA0 ρ
ρ − vA

0 ½ρτ�
ρ;τ þ vA1 ρ

ρ�g ð145aÞ

and

ΘΦ
μνðλÞ ¼ −

lnðλ2Þ
8π2

fð1=2Þv0;μν − v0μν−gμν½ð1=4Þ□v0 þ v1�g: ð145bÞ

Now, by using the explicit expressions (72) and (74) of the Taylor coefficients of the purely geometrical Hadamard
coefficients, we can show that Eq. (143) reduces to

ΘμνðλÞ ¼ −
lnðλ2Þ
8π2

fð1=4Þm2Rμν − ð1=20ÞR;μνþð13=120Þ□Rμν − ð1=8ÞRRμν þ ð2=15ÞRμpRν
p

þð7=20ÞRpqRμ
p
ν
q − ð1=15ÞRμpqrRν

pqr þ gμν½−ð3=8Þm4 − ð1=8Þm2R − ð1=240Þ□R

þð1=32ÞR2 − ð29=240ÞRpqRpqþð1=60ÞRpqrsRpqrs�g; ð146Þ

while Eqs. (145a) and (145b) provide

ΘA
μνðλÞ ¼ −

lnðλ2Þ
8π2

fð1=3Þm2Rμν − ð1=30ÞR;μνþð1=10Þ□Rμν − ð5=36ÞRRμν þ ð13=90ÞRμpRν
pþð31=90ÞRpqRμ

p
ν
q

−ð13=180ÞRμpqrRν
pqr þ gμν½−ð1=4Þm4 − ð1=6Þm2R − ð1=60Þ□Rþð5=144ÞR2 − ð11=90ÞRpqRpq

þð13=720ÞRpqrsRpqrs�g ð147aÞ

and
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ΘΦ
μνðλÞ ¼ −

lnðλ2Þ
8π2

f−ð1=12Þm2Rμν − ð1=60ÞR;μνþð1=120Þ□Rμν þ ð1=72ÞRRμν − ð1=90ÞRμpRν
p

þð1=180ÞRpqRμ
p
ν
q þ ð1=180ÞRμpqrRν

pqr þ gμν½−ð1=8Þm4 þ ð1=24Þm2Rþ ð1=80Þ□R

−ð1=288ÞR2 þ ð1=720ÞRpqRpq−ð1=720ÞRpqrsRpqrs�g: ð147bÞ

Of course, it is easy to check that the sum of ΘA
μνðλÞ and ΘΦ

μνðλÞ is equal to ΘμνðλÞ.
It is possible to obtain a more compact form for the stress-energy tensors (146), (147a) and (147b) by using the conserved

tensors (132a)–(132d). It should be noted that the terms in RμpRν
p, RμpqrRν

pqr and RpqrsRpqrs which are not present in
ð1ÞHμν and ð2ÞHμν can be eliminated by introducing

ð3ÞHμν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
M

d4x
ffiffiffiffiffiffi
−g

p
RpqrsRpqrs

¼ 2R;μν − 4□Rμν þ 4Rμ
pRνp − 4RpqRμpνq − 2Rμ

pqrRνpqr þ gμν½ð1=2ÞRpqrsRpqrs� ð148Þ

and by noting that, due to Eq. (131),

ð1ÞHμν − 4 ð2ÞHμν þ ð3ÞHμν ¼ 0: ð149Þ

We then have

ΘμνðλÞ ¼
lnðλ2Þ
8π2

fð3=8Þm4gμν−ð1=4Þm2½Rμν − ð1=2ÞRgμν�−ð7=240Þ ð1ÞHμν þ ð13=120Þ ð2ÞHμνg; ð150Þ

ΘA
μνðλÞ ¼

lnðλ2Þ
8π2

fð1=4Þm4gμν−ð1=3Þm2½Rμν − ð1=2ÞRgμν�−ð1=30Þ ð1ÞHμν þ ð1=10Þ ð2ÞHμνg ð151aÞ

and

ΘΦ
μνðλÞ ¼

lnðλ2Þ
8π2

fð1=8Þm4gμνþð1=12Þm2½Rμν − ð1=2ÞRgμν�þð1=240Þ ð1ÞHμν þ ð1=120Þ ð2ÞHμνg: ð151bÞ

As expected, we can note that the ambiguities associated with the scale length (or with the renormalization mass) are of the
form (133).

V. CASIMIR EFFECT

A. General considerations

In this section, we shall consider the Casimir effect for Stueckelberg massive electromagnetism in the Minkowski
spacetime ðR4; ημνÞ with ημν ¼ diagð−1;þ1;þ1;þ1Þ. We denote by ðT; X; Y; ZÞ the coordinates of an event in this
spacetime. We shall provide the renormalized vacuum expectation value of the stress-energy-tensor operator outside of a
perfectly conducting medium with a plane boundary wall at Z ¼ 0 separating it from free space (see Fig. 1). It is worth
pointing out that this problem has been studied a long time ago by Davies and Toms in the framework of de Broglie-Proca
electromagnetism [49]. We shall revisit this problem in order to compare, at the quantum level and in the case of a simple
example, de Broglie-Proca and Stueckelberg theories and to discuss their limit for m2 → 0. It should be noted that the
Casimir effect in connection with a massive photon has been considered for various geometries (see, e.g., Refs. [50–54]).
From symmetries and physical considerations, we can observe that, outside of the perfectly conducting medium, the

renormalized stress-energy tensor takes the form (see Chap. 4 of Ref. [24])

h0jT̂μνj0iren ¼
1

3
h0jT̂ρ

ρj0irenðημν − ẐμẐνÞ; ð152Þ
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where Ẑμ is the spacelike unit vector orthogonal to the wall.
As a consequence, it is sufficient to determine the trace of
the renormalized stress-energy tensor. From Eq. (124), we
have

h0jT̂ρ
ρj0iren ¼

1

8π2
f−m2sρρ þ sρτρτ þ ð3=2Þm4g

þ Θρ
ρ: ð153Þ

The term Θρ
ρ encodes the usual ambiguities discussed in

Sec. IV E. In the Minkowski spacetime it reduces to

Θρ
ρ ¼ 1

8π2
fαm4g; ð154Þ

where α is a constant. From Eq. (153) it is clear that in order
to evaluate h0jT̂ρ

ρj0iren, it is sufficient to take the coinci-
dence limit x0 → x of WA

μνðx; x0Þ and WA
μν;ðabÞðx; x0Þ [see

Eqs. (78a) and (78c) and note that, in the Minkowski
spacetime, the bivector of parallel transport gμν

0 ðx; x0Þ is
equal to the unit matrix gμν

0 ðx; x0Þ] where WA
μνðx; x0Þ is the

regular part of the Feynman propagator GA
μνðx; x0Þ corre-

sponding to the geometry of the Casimir effect.

B. Stress-energy tensor in the Minkowski spacetime

Let us first consider the vacuum expectation value of the
stress-energy-tensor operator in the ordinary Minkowski
spacetime (i.e., without the boundary wall). This will
permit us to establish some notations and, moreover, to
fix the constant α appearing in Eq. (154). Due to symmetry
considerations, we have

h0jT̂μνj0iren ¼
1

4
h0jT̂ρ

ρj0irenημν; ð155Þ

where h0jT̂ρ
ρj0iren is still given by Eqs. (153) and (154). Of

course, we must have h0jT̂μνj0iren ¼ 0, and we have
therefore

h0jT̂ρ
ρj0iren ¼ 0 ð156Þ

which plays the role of a constraint for α.
In the Minkowski spacetime, the Feynman propagator

GA
μνðx; x0Þ associated with the vector field Aμ satisfies the

wave equation (23), i.e.,

½□x −m2�GA
μνðx; x0Þ ¼ −ημνδ4ðx; x0Þ; ð157Þ

and its explicit expression is given in terms of a Hankel
function of the second kind by (see, e.g., Chap. 27 of
Ref. [55])

GA
μνðx; x0Þ ¼ −

m2

8π

1

Zðx; x0ÞH
ð2Þ
1 ½Zðx; x0Þ�ημν: ð158Þ

Here, Zðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2½σðx; x0Þ þ iϵ�

p
with 2σðx; x0Þ ¼

−ðT − T 0Þ2 þ ðX − X0Þ2 þ ðY − Y 0Þ2 þ ðZ − Z0Þ2.
We have (see Chap. 9 of Ref. [56])

Hð2Þ
1 ðzÞ ¼ J1ðzÞ − iY1ðzÞ; ð159Þ

where J1ðzÞ and Y1ðzÞ are the Bessel functions of the first
and second kinds. By using the series expansions for z → 0
(see Eqs. (9.1.10) and (9.1.11) of Ref. [56])

J1ðzÞ ¼
z
2

X∞
k¼0

ð−z2=4Þk
k!ðkþ 1Þ! ð160aÞ

and

Y1ðzÞ ¼ −
2

πz
þ 2

π
ln
�
z
2

�
J1ðzÞ −

z
2π

X∞
k¼0

½ψðkþ 1Þ

þ ψðkþ 2Þ� ð−z
2=4Þk

k!ðkþ 1Þ! ð160bÞ

[we note that Eq. (160b) is valid for j argðzÞj < π,
and we recall that the digamma function ψ is defined
by the recursion relation ψðzþ 1Þ ¼ ψðzÞ þ 1=z with
ψð1Þ ¼ −γ], we can provide the Hadamard representation
of GA

μνðx; x0Þ given by Eq. (158). We can write

−
m2

8π

1

Zðx; x0ÞH
ð2Þ
1 ½Zðx; x0Þ�

¼ i
8π2

�
Δ1=2ðx; x0Þ
σðx; x0Þ þ iϵ

þVðx; x0Þ ln½σðx; x0Þ þ iϵ� þWðx; x0Þ
�
; ð161Þ

where

Δ1=2ðx; x0Þ ¼ 1; ð162aÞ

FIG. 1. Geometry of the Casimir effect.
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Vðx; x0Þ ¼
X∞
k¼0

Vkσ
kðx; x0Þ ð162bÞ

with

Vk ¼
ðm2=2Þkþ1

k!ðkþ 1Þ! ð162cÞ

and

Wðx; x0Þ ¼
X∞
k¼0

Wkσ
kðx; x0Þ ð162dÞ

with

Wk ¼ −
ðm2=2Þkþ1

k!ðkþ 1Þ!
�
ψðkþ 1Þ þ ψðkþ 2Þ − ln

�
m2

2

��
:

ð162eÞ

By noting that

WA
μνðx; x0Þ ¼ Wðx; x0Þημν; ð163Þ

where Wðx; x0Þ is given by Eqs. (162d) and (162e), we are
now able to express h0jT̂ρ

ρj0iren. From Eqs. (78a) and (78c)
we have, respectively,

sμν ¼ m2½−1=2þ γ þ ð1=2Þ lnðm2=2Þ�ημν ð164Þ

and

sμνab ¼ m4½−5=16þ ð1=4Þγ þ ð1=8Þ lnðm2=2Þ�ημνηab:
ð165Þ

Then, from Eq. (153), we obtain

h0jT̂ρ
ρj0iren¼

m4

8π2
fαþ9=4−3γ−ð3=2Þlnðm2=2Þg; ð166Þ

and, necessarily, by using Eq. (156), we have the constraint

α ¼ −9=4þ 3γ þ ð3=2Þ lnðm2=2Þ: ð167Þ

C. Stress-energy tensor for the Casimir effect

Let us now come back to our initial problem. The
Feynman propagator previously considered is modified
by the presence of the plane boundary wall. The new
Feynman propagator ~GA

μνðx; x0Þ can be constructed by the
method of images if we assume, in order to simplify our
problem, a perfectly reflecting wall. It should be noted that
this particular boundary condition is questionable from the
physical point of view. It is logical for the transverse

components of the electromagnetic field but much less
natural for its longitudinal component. Indeed, for this
component, we could also consider perfect transmission
instead of complete reflection (see Refs. [49,50,57]). We
shall now consider that the Feynman propagator is given by

~GA
μνðx; x0Þ ¼ GA

μνðx; x0Þ − qνGA
μνðx; ~x0Þ: ð168Þ

Here, x0μ ¼ ðT 0; X0; Y 0; Z0Þ and ~x0μ ¼ ðT 0; X0; Y 0;−Z0Þ,
while qν ¼ ð1 − 2δ3νÞ. It is important to note that, in
Eq. (168), the index ν is not summed. Furthermore, we
remark that the term GA

μνðx; ~x0Þ which is obtained by
replacing x0 by ~x0 in Eq. (158) as well as its derivatives
are regular in the limit x0 → x.
By following the steps of Sec. V B and using the relation

KνðzÞ ¼ −ð1=2Þiπe−iπν=2Hð2Þ
ν ðze−iπ=2Þ ð169Þ

which is valid for −π=2 ≤ argðzÞ ≤ π as well as the
properties of the modified Bessel functions of the second
kind K1, K2 and K3 (see Chap. 9 of Ref. [56]), it is easy to
show that the Taylor coefficients sμν and sμνab involved in
h0jT̂ρ

ρj0iren are now given by

sμν ¼ m2½−1=2þ γ þ ð1=2Þ lnðm2=2Þ�ημν
− ðm=ZÞK1ð2mZÞqνημν ð170Þ

and

sμνab ¼ m4½−5=16þ ð1=4Þγ þ ð1=8Þ lnðm2=2Þ�ημνηab
− ½ðm2=Z2ÞK2ð2mZÞqνημνð2η3aη3b − ð1=2ÞηabÞ
þðm3=ZÞK1ð2mZÞqνημνη3aη3b�: ð171Þ

By inserting Eqs. (170) and (171) in the expression (153)
and using the value of α fixed by Eq. (167), we obtain

h0jT̂ρ
ρj0iren ¼

3

8π2

�
m2

Z2
K2ð2mZÞ þm3

Z
K1ð2mZÞ

�
; ð172Þ

and from Eq. (152) we have

h0jT̂μνj0iren ¼
1

8π2

�
m2

Z2
K2ð2mZÞ þm3

Z
K1ð2mZÞ

�

× ðημν − ẐμẐνÞ: ð173Þ

It is very important to note that this result coincides exactly
with the result obtained by Davies and Toms in the
framework of de Broglie-Proca electromagnetism [49].
In the limit m2 → 0 and for Z ≠ 0, we obtain

h0jT̂μνj0iren ¼
1

16π2
1

Z4
ðημν − ẐμẐνÞ: ð174Þ
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In the massless limit, the vacuum expectation value of the
renormalized stress-energy tensor associated with the
Stueckelberg theory diverges like Z−4 as the boundary
surface is approached. This result contrasts with that
obtained from Maxwell’s theory (see also Ref. [49]).
Indeed, for this theory, the renormalized stress-energy-
tensor operator vanishes identically. In order to extract that
result from the Stuckelberg theory, we will now repeat the
previous calculations from the expressions (125) and (126)
[as well as (127) and (128)] given in Sec. IV C 4, where we
have proposed an artificial separation of the contributions
associated with the vector field Aμ and the auxiliary scalar
field Φ.

D. Separation of the contributions associated with the
vector field Aμ and the auxiliary scalar field Φ

In the Minkowski spacetime, Eqs. (127) and (128)
reduce to

h0jT̂ρ
ρj0iren ¼ T A

ρ
ρ þ T Φ

ρ
ρ þ Θρ

ρ ð175Þ

with

T A
ρ
ρ ¼ 1

8π2
f−sρτ ;ρτ −m2sρρþ2aρτρ;τ þ 2sρτρτ þ 2m4g

ð176Þ

and

T Φ
ρ
ρ ¼ 1

8π2
f−ð1=2Þ□w −m2wþ ð1=4Þm4g: ð177Þ

The term Θρ
ρ encodes the usual ambiguities discussed in

Sec. IV E. We can split it in the form

Θρ
ρ ¼ ΘA

ρ
ρ þ ΘΦ

ρ
ρ ð178aÞ

with

ΘA
ρ
ρ ¼ 1

8π2
fαAm4g ð178bÞ

and

ΘΦ
ρ
ρ ¼ 1

8π2
fαΦm4g; ð178cÞ

where αA and αΦ are two constants associated, respectively,
with the contributions of the vector field Aμ and the
auxiliary scalar field Φ. We can then replace Eq. (175) by

h0jT̂ρ
ρj0iren ¼ h0jT̂A

ρ
ρj0iren þ h0jT̂Φ

ρ
ρj0iren ð179Þ

with

h0jT̂A
ρ
ρj0iren ¼ T A

ρ
ρ þ ΘA

ρ
ρ ð180Þ

and

h0jT̂Φ
ρ
ρj0iren ¼ T Φ

ρ
ρ þ ΘΦ

ρ
ρ; ð181Þ

where the contributions associated with the vector field Aμ

and the auxiliary scalar field Φ are separated. At first sight,
T A

ρ
ρ seems complicated because it involves Taylor coef-

ficients of orders σ1=2 and σ1 of WA
μνðx; x0Þ. In fact, its

expression can be simplified by replacing the sum aρτρ;τ þ
sρτρτ from the relation (86b), and we obtain

T A
ρ
ρ ¼ 1

8π2
f−m2sρρ þ 2m2wþ ð1=2Þm4g ð182Þ

which only involves the first Taylor coefficients sμν and w
of order σ0. So, in order to evaluate h0jT̂ρ

ρj0iren given by
Eq. (175), it is sufficient to take the coincidence limit
x0 → x of the state-dependent Hadamard coefficients
WA

μνðx; x0Þ and Wðx; x0Þ associated with the Feynman
propagators GA

μνðx; x0Þ and GΦðx; x0Þ corresponding to
the geometry of the Casimir effect.
At first, we must fix the constants αA and αΦ appearing in

Eq. (178). This can be achieved by imposing, in the
Minkowski spacetime without boundary, the vanishing of
h0jT̂A

ρ
ρj0iren given by Eq. (180) and h0jT̂Φ

ρ
ρj0iren given by

Eq. (181). In this spacetime, everything related to the
Feynman propagator GA

μνðx; x0Þ has been already given in
Sec. V B, while the Feynman propagator GΦðx; x0Þ
associated with the scalar field Φ satisfies the wave
equation (25) and is explicitly given by

GΦðx; x0Þ ¼ −
m2

8π

1

Zðx; x0ÞH
ð2Þ
1 ½Zðx; x0Þ�: ð183Þ

By using Eqs. (161) and (162), it is easy to see that this
propagator can be represented in the Hadamard form and to
obtain

w ¼ m2½−1=2þ γ þ ð1=2Þ lnðm2=2Þ�: ð184Þ

We are now able to express h0jT̂ρ
ρj0iren. From Eqs. (180),

(181), (182), (177) and (178), we obtain

h0jT̂A
ρ
ρj0iren ¼

m4

8π2
fαA þ 3=2 − 2γ − lnðm2=2Þg ð185Þ

and

h0jT̂Φ
ρ
ρj0iren ¼

m4

8π2
fαΦ þ 3=4 − γ − ð1=2Þ lnðm2=2Þg;

ð186Þ
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and, necessarily, the vanishing of these traces provides the
two constraints

αA ¼ −3=2þ 2γ þ lnðm2=2Þ ð187aÞ

and

αΦ ¼ −3=4þ γ þ ð1=2Þ lnðm2=2Þ: ð187bÞ

We now come back to the Casimir effect. The two
Feynman propagators previously considered are modified
by the presence of the plane boundary wall. The new
Feynman propagators can be constructed by the method of
images. Of course, the propagator of the vector field Aμ is
still given by Eq. (168), while we have

~GΦðx; x0Þ ¼ GΦðx; x0Þ − GΦðx; ~x0Þ ð188Þ

for the propagator of the scalar fieldΦ. In the context of the
Casimir effect, Eq. (184) must be replaced by

w ¼ m2½−1=2þ γ þ ð1=2Þ lnðm2=2Þ�
− ðm=ZÞK1ð2mZÞ; ð189Þ

and sμν is given by Eq. (170). By inserting Eqs. (170) and
(189) in Eqs. (182) and (177) and taking into account the
constraints (187a) and (187b), we obtain from Eq. (180)

h0jT̂A
ρ
ρj0iren ¼ 0 ð190Þ

and from Eq. (181)

h0jT̂Φ
ρ
ρj0iren ¼

3

8π2

�
m2

Z2
K2ð2mZÞ þm3

Z
K1ð2mZÞ

�
:

ð191Þ
From Eq. (152) we can then see that the vacuum expect-
ation value of the stress-energy-tensor operator associated
with the vector field Aμ is such that

h0jT̂A
μνj0iren ¼ 0; ð192Þ

while the vacuum expectation value of the stress-energy-
tensor operator associated with the auxiliary scalar field Φ
is given by

h0jT̂Φ
μνj0iren ¼

1

8π2

�
m2

Z2
K2ð2mZÞ þm3

Z
K1ð2mZÞ

�

× ðημν − ẐμẐνÞ: ð193Þ

Of course, the sum of these two contributions permits us to
recover the result (173) of Sec. V C which is also the result
obtained by Davies and Toms in the framework of de
Broglie-Proca electromagnetism [49]. It is moreover

interesting to note that the contribution (192) associated
with the vector field Aμ and which has been artificially
separated from the scalar field contribution (see Sec. IV C 4)
vanishes identically for any value of the mass parameter m.
This result coincides exactly with that obtained from
Maxwell’s theory (see also Ref. [49]).

VI. CONCLUSION

In the context of quantum field theory in curved spacetime
and with possible applications to cosmology and to black
hole physics in mind, the massive vector field is frequently
studied. It should be, however, noted that, in this particular
domain, it is its description via the de Broglie-Proca theory
which ismostly considered and that there are very fewworks
dealing with the Stueckelberg point of view (see, e.g.,
Refs. [58–63], but remark that these papers are restricted
to de Sitter and anti-de Sitter spacetimes or to Roberstson-
Walker backgrounds with spatially flat sections). In this
article, in order to fill a void, we have developed the general
formalism of the Stueckelberg theory on an arbitrary four-
dimensional spacetime (quantum action, Feynman propa-
gators, Ward identities, Hadamard representation of the
Green functions), and we have particularly focussed on
the aspects linked with the construction, for a Hadamard
quantum state, of the expectation value of the renormalized
stress-energy-tensor operator. It is important to note that we
havegiven two alternative but equivalent expressions for this
result. The first one has been obtained by eliminating from a
Ward identity the contribution of the auxiliary scalar fieldΦ
(the so-called Stueckelberg ghost [46]) and only involves
state-dependent and geometrical quantities associated with
the massive vector field Aμ [see Eq. (123)]. The other one
involves contributions coming from both the massive vector
field and the auxiliary Stueckelberg scalar field [see
Eqs. (125)–(126)], and it has been constructed artificially
in such a way that these two contributions are independently
conserved and that, in the zero-mass limit, themassivevector
field contribution reduces smoothly to the result obtained
from Maxwell’s electromagnetism. It is also important to
note that, in Sec. IV E, we have discussed the geometrical
ambiguities of the expectation value of the renormalized
stress-energy-tensor operator. They are of fundamental
importance (see, e.g., in Sec. V, their role in the context
of the Casimir effect).
We intend to use our results in the near future in

cosmology of the very early universe, but we hope they
will be useful for other authors. This is why we shall now
provide a step-by-step guide for the reader who is not
especially interested by the technical details of our work but
who wishes to calculate the expectation value of the
renormalized stress-energy tensor from the expression
(123), i.e., from the expression where any reference to
the Stueckelberg auxiliary scalar field Φ has disappeared.
We shall describe the calculation from the Feynman
propagator as well as from the anticommutator function:
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(i) We assume that the Feynman propagator GA
μν0 ðx; x0Þ

which is given by Eq. (22) and satisfies the wave
equation (30) [or that the anticommutator

Gð1ÞA
μν0 ðx; x0Þ which is given by Eq. (59) and satisfies

the wave equation (60)] has been determined in a
particular gravitational background and for a Hada-
mard quantum state. In other words, we consider that
the Feynman propagator GA

μν0 ðx; x0Þ can be repre-
sented in the Hadamard form (35) [or that the

anticommutator Gð1ÞA
μν0 ðx; x0Þ can be represented in

the Hadamard form (55)].
(ii) We need the regular part of the Feynman propagator

GA
μν0 ðx; x0Þ [or that of the anticommutator

Gð1ÞA
μν0 ðx; x0Þ] at order σ. To extract it, we subtract

from the Feynman propagator GA
μν0 ðx; x0Þ its singular

part (48a) in order to obtain its regular part (48b) [or

we subtract from the anticommutator Gð1ÞA
μν0 ðx; x0Þ its

singular part (68a) in order to obtain its regular part
(68b)]. We have then at our disposal the state-
dependent Hadamard bivector WA

μν0 ðx; x0Þ. Here, it
is important to note that we do not need the full
expression of the singular part of the Green function
considered, but we can truncate it by neglecting the
terms vanishing faster than σðx; x0Þ for x0 → x. As a
consequence, we can construct the singular part
(48a) [or the singular part (68a)] by using the
covariant Taylor series expansion (A9) of Δ1=2 up
to order σ2, the covariant Taylor series expansion
(71a) of VA

0 μν up to order σ1 [see Eqs. (72a)–(72c)]
and the covariant Taylor series expansion (71b) of
VA
1 μν up to order σ0 [see Eq. (72d)].

(iii) Finally, by using Eqs. (78a)–(78c), we can construct
the expectation value of the renormalized stress-
energy tensor given by Eq. (123).

It is interesting to note that, in the literature concerning
Stueckelberg electromagnetism, some authors only focus
on the part of the action associated with the massive vector
field Aμ and which is given by Eq. (13a) (see, e.g.,
Refs. [58,61,64]). Of course, this is sufficient because they
are mainly interested, in the context of canonical quantiza-
tion, by the determination of the Feynman propagator
associated with this field. However, in order to calculate
physical quantities, it is necessary to take into account the
contribution of the auxiliary scalar field Φ. It cannot be
discarded. This is very clear in the context of the con-
struction of the renormalized stress-energy-tensor operator
as we have shown in our article and remains true for any
other physical quantity.
To conclude this article, we shall briefly compare the de

Broglie-Proca and Stueckelberg formulations of massive
electomagnetism and discuss the advantages of the
Stueckelberg formulation over the de Broglie-Proca one.

It is interesting to note the existence of a nice paper by Pitts
[65] where de Broglie-Proca and Stueckelberg approaches
of massive electromagnetism are discussed from a philo-
sophical point of view based on the machinery of the
Hamiltonian formalism (primary and secondary con-
straints, Poisson brackets, …). Here, we adopt a more
pragmatic point of view. We discuss the two formulations
in light of the results obtained in our article. In our opinion:

(i) De Broglie-Proca and Stueckelberg approaches of
massive electromagnetism are two faces of the same
theory. Indeed, the transition from de Broglie-Proca
to Stueckelberg theory is achieved via the Stueck-
elberg trick (5) which permits us, by introducing
an auxiliary scalar field Φ, to artificially restore
Maxwell’s gauge symmetry in massive electromag-
netism, but, reciprocally, the transition from Stueck-
elberg to de Broglie-Proca theory is achieved by
imposing the gauge choice Φ ¼ 0 [see Eq. (8)]. As a
consequence, it is not really surprising to obtain the
same result for the renormalized stress-energy-
tensor operator associated with the Casimir effect
(see Sec. V) when we consider this problem in the
framework of the de Broglie-Proca and Stueckelberg
formulations of massive electromagnetism. Indeed,
we can expect that this remains true for any other
quantum quantity.

(ii) However, we can note that with regularization and
renormalization in mind, it is much more interesting
to work in the framework of the Stueckelberg
formulation of massive electromagnetism. Indeed,
this permits us to have at our disposal the machinery
of the Hadamard formalism which is not the case in
the framework of the de Broglie-Proca formulation.
Indeed, due to the constraint (4a), the Feynman
propagator GA

μν0 ðx; x0Þ associated with the vector
field Aμ cannot be represented in the Hadamard
form (35).
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APPENDIX: BISCALARS, BIVECTORS
AND THEIR COVARIANT TAYLOR

SERIES EXPANSIONS

Regularization and renormalization of quantum field
theories in the Minkowski spacetime are most times based
on the representation of Green functions in momentum
space, and, in general, this greatly simplifies reasoning and
calculations. The use of such a representation is not
possible in an arbitrary gravitational background where
the lack of symmetries as well as spacetime curvature

STUECKELBERG MASSIVE ELECTROMAGNETISM IN … PHYSICAL REVIEW D 93, 044063 (2016)

044063-25



prevent us from working within the framework of the
Fourier transform. As a consequence, regularization and
renormalization in curved spacetime are necessarily based
on representations of Green functions in coordinate space,
and, moreover, they require extensively the concepts of
biscalars, bivectors and, more generally, bitensors. Thanks
to the work of some mathematicians [66–69] and of DeWitt
[23,44,55,70] and coworkers [28,29], we have at our
disposal all the tools necessary to deal with this subject.
In this short Appendix, in order to make a self-consistent

paper (i.e., to avoid the reader needing to consult the
references mentioned above), we have gathered some
important results which are directly related with the
representations of Green functions in coordinate space
and, more particularly, with the Hadamard representations
of the Green functions appearing in Stueckelberg electro-
magnetism [see Eqs. (35), (37), (55) and (58)] which is the
main subject of Sec. III and which plays a crucial role in
Sec. IV. In particular, we define the geodetic interval
σðx; x0Þ, the Van Vleck-Morette determinant Δðx; x0Þ and
the bivector of parallel transport from x to x0 denoted by
gμν0 ðx; x0Þ (see, e.g., Ref. [44]), and we moreover discuss
the concept of covariant Taylor series expansions for
biscalars and bivectors.
We first recall that 2σðx; x0Þ is the square of the geodesic

distance between x and x0 which satisfies

2σ ¼ σ;μσ;μ: ðA1Þ

We have σðx; x0Þ < 0 if x and x0 are timelike related,
σðx; x0Þ ¼ 0 if x and x0 are null related and σðx; x0Þ > 0 if x
and x0 are spacelike related. We furthermore recall that
Δðx; x0Þ is given by

Δðx; x0Þ ¼ −½−gðxÞ�−1=2 detð−σ;μν0 ðx; x0ÞÞ½−gðx0Þ�−1=2
ðA2Þ

and satisfies the partial differential equation

□xσ ¼ 4 − 2Δ−1=2Δ1=2
;μσ

;μ ðA3aÞ

as well as the boundary condition

lim
x0→x

Δðx; x0Þ ¼ 1: ðA3bÞ

The bivector of parallel transport from x to x0 is defined by
the partial differential equation

gμν0;ρσ;ρ ¼ 0 ðA4aÞ

and the boundary condition

lim
x0→x

gμν0 ðx; x0Þ ¼ gμνðxÞ: ðA4bÞ

The Hadamard coefficients VA
n μν0 ðx; x0Þ andWA

n μν0 ðx; x0Þ
introduced in Eq. (36) and which are bivectors involved in
the Hadamard representation of the Green functions (35)
and (55) or the Hadamard coefficients Vnðx; x0Þ and
Wnðx; x0Þ introduced in Eq. (38) and which are biscalars
involved in the Hadamard representation of the Green
functions (37) and (58) cannot in general be determined
exactly. They are solutions of the recursion relations (39a),
(39b) and (40) or (43a), (43b) and (44), and, following
DeWitt [44,70], we can look for the solutions of these
equations in the form of covariant Taylor series expansions
for x0 in the neighborhood of x. This is the method we use
in Sec. III. The series defining the biscalars Vnðx; x0Þ and
Wnðx; x0Þ can be written in the form

Tðx; x0Þ ¼ tðxÞ − ta1ðxÞσ;a1ðx; x0Þ

þ 1

2!
ta1a2ðxÞσ;a1ðx; x0Þσ;a2ðx; x0Þ

−
1

3!
ta1a2a3ðxÞσ;a1ðx; x0Þσ;a2ðx; x0Þσ;a3ðx; x0Þ

þ 1

4!
ta1a2a3a4ðxÞσ;a1ðx; x0Þσ;a2ðx; x0Þσ;a3ðx; x0Þ

×σ;a4ðx; x0Þ þ � � � : ðA5Þ

By construction, the coefficients ta1…apðxÞ are symmetric in
the exchange of the indices a1…ap, i.e., ta1…apðxÞ ¼
tða1…apÞðxÞ, and, moreover, by requiring the symmetry of
Tðx; x0Þ in the exchange of x and x0, i.e.,
Tðx; x0Þ ¼ Tðx0; xÞ, the coefficients tðxÞ and ta1…apðxÞ with
p ¼ 1; 2;… are constrained. The symmetry of Tðx; x0Þ
permits us to express the odd coefficients of the covariant
Taylor series expansion of Tðx; x0Þ in terms of the even
ones. We have for the odd coefficients of lowest orders (see,
e.g., Ref. [71])

ta1 ¼ ð1=2Þt;a1 ; ðA6aÞ

ta1a2a3 ¼ ð3=2Þtða1a2;a3Þ − ð1=4Þt;ða1a2a3Þ: ðA6bÞ

Similarly, the series defining the bivectors VA
n μν0 ðx; x0Þ and

WA
n μν0 ðx; x0Þ can be written in the form

Tμνðx; x0Þ ¼ gνν
0 ðx; x0ÞTμν0 ðx; x0Þ

¼ tμνðxÞ − tμνa1ðxÞσ;a1ðx; x0Þ

þ 1

2!
tμνa1a2ðxÞσ;a1ðx; x0Þσ;a2ðx; x0Þ

−
1

3!
tμνa1a2a3ðxÞσ;a1ðx; x0Þσ;a2ðx; x0Þσ;a3ðx; x0Þ

þ � � � : ðA7Þ
By construction, the coefficients tμνa1…apðxÞ are
symmetric in the exchange of indices a1…ap, i.e.,
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tμνa1…apðxÞ ¼ tμνða1…apÞðxÞ, and by requiring the symmetry of Tμν0 ðx; x0Þ in the exchange of x and x0, i.e.,
Tμν0 ðx; x0Þ ¼ Tν0μðx0; xÞ, the coefficients tμνðxÞ and tμνa1…apðxÞ with p ¼ 1; 2;… are constrained. The symmetry of
Tμν0 ðx; x0Þ permits us to express the coefficients of the covariant Taylor series expansion of Tμν0 ðx; x0Þ in terms of their
symmetric and antisymmetric parts in μ and ν. We have for the coefficients of lowest orders (see, e.g., Refs. [35,39])

tμν ¼ tðμνÞ; ðA8aÞ

tμνa1 ¼ ð1=2ÞtðμνÞ;a1 þ t½μν�a1 ; ðA8bÞ

tμνa1a2 ¼ tðμνÞa1a2 þ t½μν�ða1;a2Þ; ðA8cÞ

tμνa1a2a3 ¼ ð3=2ÞtðμνÞða1a2;a3Þ − ð1=4ÞtðμνÞ;ða1a2a3Þ þ t½μν�a1a2a3 : ðA8dÞ

In order to solve the recursion relations (39a), (39b), (40), (43a), (43b) and (44) but also to do most of the calculations in
Secs. III and IV and, in particular, to obtain the explicit expression of the renormalized stress-energy-tensor operator, it is
necessary to have at our disposal the covariant Taylor series expansions of the biscalarsΔ1=2,Δ−1=2Δ1=2

;μσ
;μ and□Δ1=2 and

of the bivectors σ;μν0 and □gμν0 but also of some bitensors such as σ;μν, gμν0;ρ and gμν0;ρ0 . Here, we provide these expansions
up to the orders necessary in this article (for higher orders, see Refs. [71,72]). We have

Δ1=2 ¼ 1þ 1

12
Ra1a2σ

;a1σ;a2 −
1

24
Ra1a2;a3σ

;a1σ;a2σ;a3 þ
�
1

80
Ra1a2;a3a4 þ

1

360
Rp

a1qa2R
q
a3pa4 þ

1

288
Ra1a2Ra3a4

�
σ;a1σ;a2σ;a3σ;a4

−
�

1

360
Ra1a2;a3a4a5 þ

1

360
Rp

a1qa2R
q
a3pa4;a5 þ

1

288
Ra1a2Ra3a4;a5

�
σ;a1σ;a2σ;a3σ;a4σ;a5 þOðσ3Þ; ðA9Þ

□Δ1=2 ¼ 1

6
Rþ

�
1

40
□Ra1a2 −

1

120
R;a1a2 þ

1

72
RRa1a2 −

1

30
Rp

a1Rpa2 þ
1

60
RpqRpa1qa2 þ

1

60
Rpqr

a1Rpqra2

�
σ;a1σ;a2

−
�
−

1

360
R;a1a2a3 þ

1

120
ð□Ra1a2Þ;a3 þ

1

144
RRa1a2;a3 −

1

45
Rp

a1Rpa2;a3 þ
1

180
Rp

q;a1R
q
a2pa3

þ 1

180
Rp

qRq
a1pa2;a3 þ

1

90
Rpqr

a1Rpqra2;a3

�
σ;a1σ;a2σ;a3 þOðσ2Þ; ðA10Þ

Δ−1=2Δ1=2
;μσ

;μ ¼ 1

6
Ra1a2σ

;a1σ;a2 þOðσ3=2Þ; ðA11Þ

σ;μν ¼ gμν −
1

3
Rμa1νa2σ

;a1σ;a2 þOðσ3=2Þ; ðA12Þ

gνν
0
σ;μν0 ¼ −gμν −

1

6
Rμa1νa2σ

;a1σ;a2 þOðσ3=2Þ; ðA13Þ

gνν
0
gμν0;ρ ¼ −

1

2
Rμνρa1σ

;a1 þ 1

6
Rμνρa1;a2σ

;a1σ;a2 þOðσ3=2Þ; ðA14Þ

gνν
0
gρρ

0
gμν0;ρ0 ¼ −

1

2
Rμνρa1σ

;a1 þ 1

3
Rμνρa1;a2σ

;a1σ;a2 þOðσ3=2Þ ðA15Þ

and

gνν
0
□gμν0 ¼

2

3
Ra1½μ;ν�σ

a1 þ
�
−
1

6
Ra1½μ;ν�a2þ

1

6
Rμνpa1R

p
a2 −

1

4
Rμpqa1Rν

pq
a2

�
σ;a1σ;a2 þOðσ3=2Þ: ðA16Þ
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