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renormalization of the stress-energy tensor and the Casimir effect

Andrei Belokogne* and Antoine Folacci'

Equipe Physique Théorique - Projet COMPA, SPE, UMR 6134 du CNRS et de I’Université de Corse,
Université de Corse, BP 52, F-20250 Corte, France
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We discuss Stueckelberg massive electromagnetism on an arbitrary four-dimensional curved spacetime
and, in particular, (i) the gauge invariance of the classical theory and its covariant quantization; (ii) the wave
equations for the massive spin-1 field A, for the auxiliary Stueckelberg scalar field @ and for the ghost fields
C and C*; (iii) Ward identities; (iv) the Hadamard representation of the various Feynman propagators and the
covariant Taylor series expansions of the corresponding coefficients. This permits us to construct, for a
Hadamard quantum state, the expectation value of the renormalized stress-energy tensor associated with the
Stueckelberg theory. We provide two alternative but equivalent expressions for this result. The first one is
obtained by removing the contribution of the “Stueckelberg ghost” ® and only involves state-dependent and
geometrical quantities associated with the massive vector field A,. The other one involves contributions
coming from both the massive vector field and the auxiliary Stueckelberg scalar field, and it has been
constructed in such a way that, in the zero-mass limit, the massive vector field contribution reduces smoothly
to the result obtained from Maxwell’s theory. As an application of our results, we consider the Casimir effect
outside a perfectly conducting medium with a plane boundary. We discuss the results obtained using
Stueckelberg but also de Broglie-Proca electromagnetism, and we consider the zero-mass limit of the vacuum
energy in both theories. We finally compare the de Broglie-Proca and Stueckelberg formalisms and highlight
the advantages of the Stueckelberg point of view, even if, in our opinion, the de Broglie-Proca and

Stueckelberg approaches of massive electromagnetism are two faces of the same field theory.

DOI: 10.1103/PhysRevD.93.044063

I. INTRODUCTION

It is generally assumed that the electromagnetic inter-
action is mediated by a massless photon. This seems largely
justified (i) by the countless theoretical and practical
successes of Maxwell’s theory of electromagnetism and
of its extension in the framework of quantum field theory as
well as (ii) by the stringent upper limits on the photon mass
(see p. 559 of Ref. [1] and references therein) which have
been obtained by various terrestrial and extraterrestrial
experiments (currently, one of the most reliable results
provides for the photon mass m the limit m < 107!8 eV ~
2 x 107 kg [2]).

Despite this, physicists are seriously considering the
possibility of a massive but, of course, ultralight photon
and are very interested by the associated non-Maxwellian
theories of electromagnetism (for recent reviews on the
subject, see Refs. [3,4]). Indeed, the incredibly small value
mentioned above does not necessarily imply that the
photon mass is exactly zero, and from a theoretical point
of view, massive electromagnetism can be rather easily
included in the Standard Model of particle physics.
Moreover, in order to test the masslessness of the photon
or, more precisely, to impose experimental constraints on
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its mass, it is necessary to have a good understanding of the
various massive non-Maxwellian theories. Among these,
two theories are particularly important, and we intend to
discuss them at more length in our article:

(i) The most popular one, which is the simplest gen-
eralization of Maxwell’s electromagnetism, is
mainly due to de Broglie (note that the idea of an
ultralight massive photon is already present in de
Broglie’s doctoral thesis [5,6] and has been devel-
oped by him in modern terms in a series of works
[7-9] where he has considered the theory from a
Lagrangian point of view and has explicitly shown
the modifications induced by the photon mass for
Maxwell’s equations) but is attributed in the liter-
ature to its “PhD student” Proca (for the series of his
original articles dating from 1930 to 1938 which led
him to introduce in Ref. [10] the so-called Proca
equation for a massive vector field, see Ref. [11], but
note, however, that the main aim of Proca was the
description of spin-1/2 particles inspired by the
neutrino theory of light due to de Broglie). Here, it is
worth pointing out that, due to the mass term, the de
Broglie-Proca theory is not a gauge theory, and this
has some important consequences when we com-
pare, in the limit m? — 0, the results obtained via the
de Broglie-Proca theory with those derived from
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Maxwell’s electromagnetism. It is also important to
recall that, in general, it is the de Broglie-Proca
theory that is used to impose experimental con-
straints on the photon mass [2—4].

(i) The most aesthetically appealing one which, con-
trarily to the de Broglie-Proca theory preserves the
local U(1) gauge invariance of Maxwell’s electro-
magnetism, has been proposed by Stueckelberg (see
Refs. [12,13] for the original articles on the subject
and also Ref. [14] for a nice recent review). The
construction of such a massive gauge theory can be
achieved by coupling appropriately an auxiliary
scalar field to the massive spin-1 field. This theory
is unitary and renormalizable and can be included in
the Standard Model of particle physics [14]. More-
over, it is interesting to note that extensions of the
Standard Model based on string theory predict the
existence of a hidden sector of particles which could
explain the nature of dark matter. Among these
exotic particles, there exists in particular a dark
photon, the mass of which arises also via the
Stueckelberg mechanism (see, e.g., Ref. [15]). This
“heavy” photon may be detectable in low energy
experiments (see, e.g., Refs [16-19]). It is also worth
pointing out that the Stueckelberg procedure is not
limited to vector fields. It has been recently extended
to “restore” the gauge invariance of various massive
field theories (see, e.g., Refs. [20,21] which discuss
the case of massive antisymmetric tensor fields and,
e.g., Ref. [22] where massive gravity is considered).

In the two following paragraphs, we shall briefly review
these two theories at the classical level.

De Broglie-Proca massive electromagnetism is described
by a vector field A, and its action S = S[A,,, g,, ], which is
directly obtained from the original Maxwell Lagrangian by
adding a mass contribution, is given by

1 1
S—/ d*x\/=g|-=F"F,, —-m?A*A,|. (1)
" 4 2

Here, m is the mass of the vector field Aw and the
associated field strength F,, is defined as usual by

Fu=V,A, -V,A,=,A, -0,A, (2)

Let us note that, while Maxwell’s theory is invariant under
the gauge transformation

A, = A=A, +Y,A (3)

for an arbitrary scalar field A, this gauge invariance is
broken for the de Broglie-Proca theory due to the mass
term. The extremization of (1) with respect to A, leads to
the Proca equation V*F,, + m?A, = 0. Applying V¥ to
this equation, we obtain the Lorenz condition
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VEA, =0 (4a)

which is here a dynamical constraint (and not a gauge
condition) as well as the wave equation

DA, — m?A, — R,*A, = 0. (4b)

It should be noted that the action (1) is also directly relevant
at the quantum level because the de Broglie-Proca theory is
not a gauge theory.

Stueckelberg massive electromagnetism is described by
a vector field A, and an auxiliary scalar field @, and its
action S¢; = S¢i[A,. @. g, ], which can be constructed from
the de Broglie-Proca action (1) by using the substitution

1
A, — A, +EVM(D, (5)

is given by
S —/ d*x\/=g —lFP”“F —lm2 Aﬂ+lv”q>
4T u 47 T2 m
1
X (Au +EVM<D>] (6a)

1 1 1
= / d*x\/—g [— 5 VEAV A, + 3 (VHA,)? — 3 m*AFA,
M

1 1
— SRy AAT— VO, mAﬂvﬂ(p] . (6b)

It should be noted that, at the classical level, the vector field
A# and the scalar field @ are coupled [see, in Eq. (6a),
the last term —mA*V ,®]. Here, it is important to note that
Stueckelberg massive electromagnetism is invariant under
the gauge transformation

A, - A=A, +V,A, (7a)
D> =0 —mA, (7b)

for an arbitrary scalar field A, so the local U(1) gauge
symmetry of Maxwell’s electromagnetism remains unbro-
ken for the spin-1 field of the Stueckelberg theory. As a
consequence, in order to treat this theory at the quantum
level (see below), it is necessary to add to the action (6)
a gauge-breaking term and the compensating ghost
contribution.

Here, it seems important to highlight some considera-
tions which will play a crucial role in this article. Let us
note that the de Broglie-Proca theory can be obtained from
Stueckelberg electromagnetism by taking

®=0. (8)
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We can therefore consider that the de Broglie-Proca theory
is nothing other than the Stueckelberg gauge theory in the
particular gauge (8). However, it is worth noting that this is
a “bad” choice of gauge leading to some complications. In
particular:

(1) Due to the constraint (4a), the Feynman propagator
associated with the vector field A, does not admit a
Hadamard representation (see below), and, as a
consequence, the quantum states of the de
Broglie-Proca theory are not of Hadamard type.
This complicates the regularization and renormali-
zation procedures.

(i) In the limit m* — 0, singularities occur, and a lot
of physical results obtained in the context of the de
Broglie-Proca theory do not coincide with the
corresponding results obtained with Maxwell’s
theory.

In this article, we intend to focus on the Stueckelberg
theory at the quantum level, and we shall analyze its
energetic content with possible applications to the Casimir
effect (in this paper) and to cosmology of the very early
universe (in a next paper) in mind. More precisely,
we shall develop the formalism permitting us to construct,
for a normalized Hadamard quantum state |w) of the
Stueckelberg theory, the quantity (1//|Tﬂy|q/>ren which
denotes the renormalized expectation value of the stress-
energy-tensor operator. It is well known that such an
expectation value is of fundamental importance in quantum
field theory in curved spacetime (see, e.g., Refs. [23-27]).
Indeed, it permits us to analyze the quantum state [y)
without any reference to its particle content, and, moreover,
it acts as a source in the semiclassical Einstein equations
G, = 8ﬂ<1//|TW|z//>ren which govern the backreaction of
the quantum field theory on the spacetime geometry.

Let us recall that the stress-energy tensor T;w is an
operator quadratic in the quantum fields which is, from the
mathematical point of view, an operator-valued distribu-
tion. As a consequence, this operator is ill defined, and the
associated expectation value <w\7"ﬂ,,|l//> is formally infinite.
In order to extract from this expectation value a finite
and physically acceptable contribution which could act as
the source in the semiclassical Einstein equations, it is
necessary to regularize it and then to renormalize all the
coupling constants. For a description of the various
techniques of regularization and renormalization in the
context of quantum field theory in curved spacetime
(adiabatic regularization method, dimensional regulariza-
tion method, {-function approach, point-splitting methods,
...), see Refs. [23-27] and references therein.

In this paper, we shall deal with Stueckelberg electro-
magnetism by using the so-called Hadamard renormaliza-
tion procedure (for a rigorous axiomatic presentation of this
approach, we refer to the monographs of Wald [26] and
Fulling [25]). Here, we just recall that it is an extension of
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the point-splitting method [23,28,29] which has been
developed in connection with the Hadamard representation
of the Green functions (see, e.g., Refs. [30—42] and, more
particularly, Refs. [32,33,35,38,39] where gauge theories
are considered).

Our article is organized as follows. In Sec. II, we
review the covariant quantization of Stueckelberg massive
electromagnetism on an arbitrary four-dimensional curved
spacetime (gauge-breaking action and associated ghost
contribution; wave equations for the massive spin-1 field
Ay, for the auxiliary Stueckelberg scalar field @ and for the
ghost fields C and C*; Feynman propagators and Ward
identities). In Sec. III, we focus on the particular gauge for
which the various Feynman propagators and the associated
Hadamard Green functions admit Hadamard representa-
tion, or, in other words, we consider quantum states of
Hadamard type. We also construct the covariant Taylor
series expansions of the geometrical and state-dependent
coefficients involved in the Hadamard representation of the
Green functions. In Sec. IV, we obtain, for a Hadamard
quantum state, the renormalized expectation value of the
stress-energy-tensor operator, and we discuss carefully its
geometrical ambiguities. In fact, we provide two alternative
but equivalent expressions for this renormalized expect-
ation value. The first one is obtained by removing the
contribution of the auxiliary scalar field ® (here, it plays the
role of a kind of ghost field) and only involves state-
dependent and geometrical quantities associated with the
massive vector field A,. The other one involves contribu-
tions coming from both the massive vector field and the
auxiliary Stueckelberg scalar field, and it has been con-
structed in such a way that, in the zero-mass limit, the
massive vector field contribution reduces smoothly to the
result obtained from Maxwell’s theory. In Sec. V, as an
application of our results, we consider in the Minkowski
spacetime the Casimir effect outside of a perfectly con-
ducting medium with a plane boundary wall separating it
from free space. We discuss the results obtained using
Stueckelberg but also de Broglie-Proca electromagnetism,
and we consider the zero-mass limit of the vacuum energy
in both theories. Finally, in a conclusion (Sec. VI), we
provide a step-by-step guide for the reader wishing to use
our formalism, we briefly discuss and compare the de
Broglie-Proca and Stueckelberg approaches in the light of
the results obtained in our paper, and we highlight the
advantages of the latter. In a short Appendix, we have
gathered some important results which are helpful to do the
calculations of Secs. III and IV, and, in particular, (i) we
define the geodetic interval o(x, x"), the Van Vleck-Morette
determinant A(x,x") and the bivector of parallel transport
g (x,x") which play a crucial role along our article, and
(i) we discuss the concept of covariant Taylor series
expansions.

It should be noted that, in this paper, we consider a four-
dimensional curved spacetime (M, g,,) with no boundary
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(OM = @), and we use units with A=c =G =1 and
the geometrical conventions of Hawking and Ellis [43]
concerning the definitions of the scalar curvature R, the
Ricci tensor R,, and the Riemann tensor R, ,, as well as
the commutation of covariant derivatives. It is moreover
important to note that we provide the covariant Taylor
series expansions of the Hadamard coefficients in irreduc-
ible form by using the algebraic proprieties of the Riemann
tensor (and more particularly the cyclicity relation and its
consequences) as well as the Bianchi identity.

II. QUANTIZATION OF STUECKELBERG
ELECTROMAGNETISM

In this section, we review the covariant quantization
of Stueckelberg electromagnetism on an arbitrary four-
dimensional curved spacetime. The gauge-breaking term
considered includes an arbitrary gauge parameter &, and all
the results concerning the wave equations for the massive
vector field A, for the auxiliary scalar field @, for the ghost
fields C and C* and for all the associated Feynman
propagators as well as the Ward identities are expressed
in terms of &.

A. Quantum action

At the quantum level, the action defining Stueckelberg
massive electromagnetism is given by (see, e.g., Ref. [14])

S[AH, oD, C, CH, g,w] = Sq [Aﬂ, oD, gﬂy] + Sge [AM’ oD, gﬂy}
+ Sen[C. C*. g )

where we have added to the classical action (6) the gauge-
breaking term

1
SGB —/ d*x\/=g|— = (VFA, + EmD)? (10)
M 2
and the compensating ghost action
Seh = / d“x,/—g[V”C*VﬂC + Em*C*C). (11)
M

By collecting the fields in the explicit expression (9), the
quantum action can be written in the form
S[A/u o,C,Cr, gﬂl/] =S4 [Aw gﬂl/} + So [q)’ g;w]
+ San[C. C. g, (12)

where

1
Sy = / d*x\/—g {——FWFW
M 4

I, 1
—ZmlArA — —
m "o

. (e, )]

(13a)
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1 1
= / d4x\/ —g |:— EV”A”V”A,, - ERW,A’MAD
M

1

1 1
—SmRAA, + (1 - E) (V”Aﬂ)z} (13b)

and

Sq):/ d4x\/—g{—lvﬂd5vﬂd5—l§m2¢)2}, (14)
" 2 2

Scn remaining unchanged and still given by Eq. (11). It is
worth noting that the term —mA*V,@ coupling the fields
A, and @ in the classical action (6b) has disappeared;
because spacetime is assumed with no boundary, it is
neutralized by the term —m®V*A, in the gauge-breaking
action (10).

The functional derivatives with respect to the fields A”,
@, C and C* of the quantum action (9) or (12) will allow us
to obtain, in Sec. II B, the wave equations for all the fields
and to discuss, in Sec. IV A, the conservation of the stress-
energy tensor associated with Stueckelberg electromagnet-
ism. They are given by

1 &S
2L = (g0~ (1 - 1/ VAVE—R — m2gvA,
/=g 5AM
(15)
for the vector field A,
1 &8
\/—_5_(D: [D—§m2]¢ (16)
-9
for the auxiliary scalar field @, as well as
1 6gS
s~ IB-enic (17)
and
1 6.8
—=se = IO -emIc (18)

for the ghost fields C and C*. It should be noted that, due
to the fermionic behavior of the ghost fields, we have
introduced in Eq. (17) the right functional derivative and in
Eq. (18) the left functional derivative.

B. Wave equations
The extremization of the quantum action (9) or (12)
permits us to obtain the wave equations for the fields A,

@, C and C*. The vanishing of the functional derivatives
(15)—(18) provides
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[0 = (1= 1/&) VAV — R — m2g™|A, =0 (19)
for the vector field Aw
O-¢ém?® =0 (20)
for the auxiliary scalar field @, as well as
[O-¢m?]C=0 and [O-¢&m?C*=0 (21)
for the ghost fields C and C*.

C. Feynman propagators and Ward identities

From now on, we shall assume that the Stueckelberg
field theory previously described has been quantized and
is in a normalized quantum state |y). The Feynman
propagator

Gy (x.x') = ily[TA, WA ()ly)  (22)

associated with the field A, (here, T denotes time ordering)
is, by definition, a solution of

l9,/0, = (1 =1/6)V*V, - R, — ngﬂ”]Gfp, (x,x)
= —9”0154()(7, x/) (23)

with  &%(x, x') = [—g(x)]7"/26* (x — X').
Feynman propagator

Similarly, the

G?(x,x') = i(y|TO(x)®(x')|w) (24)
associated with the scalar field @ satisfies
[0, = Em?]G? (x, x') = =6*(x,x'), (25)
and the Feynman propagator
G (x.x') = iW|TC' ()CW)w)  (26)
associated with the ghost fields C and C* satisfies
O, - &m0 (x. ) = —5*(x. ). (27)

The three propagators are related by two Ward identities.
The first one is a nonlocal relation linking the propagators
G, (x,x') and G (x, x'). It can be obtained by extending
the approach of DeWitt and Brehme in Ref. [44] as follows:
we take the covariant derivative V# of Eq. (23) and the
covariant derivative V; of Eq. (27); then, by commuting
suitably the various covariant derivatives involved and
by using the relation V#[g,,5*(x,x')] = =V, 5*(x. x'),
we obtain the formal relation
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(l/f)V/‘G;‘U, (x,x') + V, G (x,x')

= (1-1/9[0, = &m? |7 VR, Gy, (x. x)}].  (28)
It should be noted that the nonlocal term in the right-hand
side of this equation is associated with the nonminimal
term (1 —1/£)V*V, appearing in the wave equation (23)
and includes appropriate boundary conditions. The second
Ward identity can be obtained directly from the wave
equations (25) and (27) by using arguments of uniqueness.
We have

G?(x,x') — GO (x,x') = 0. (29)

III. HADAMARD EXPANSIONS OF THE GREEN
FUNCTIONS OF STUECKELBERG
ELECTROMAGNETISM

From now on, we assume that £ = 1. (For & # 1, the
various Feynman propagators cannot be represented in the
Hadamard form.) For this choice of gauge parameter,
the wave equations (23), (25) and (27) for the Feynman
propagators G4, (x, x'), G®(x,x") and G (x, x') reduce to

[gMDDX _ Rllb _ mZQMD]GA

vp'

(x,x) = —g,,6*(x.x'),  (30)

O, — m?]G®(x,x') = =6*(x, x') (31)
and
(O, — m?]GN (x,x') = —=6*(x, ). (32)

As far as the Ward identity (28) is concerned, it takes now
the local form

V”Gﬁy/(x, x') + V,G%(x,x') =0, (33)

while the Ward identity (29) remains unchanged. Because
this last relation expresses the equality of the Feynman
propagators associated with the auxiliary scalar field and
the ghost fields, we shall often use a generic form for
these propagators (and for their Hadamard representation
discussed below) where the labels ® and Gh are omitted.
and we shall write

G(x,x') = G®(x,x') = G (x,x). (34)

For £ =1 the nonminimal term in the wave equation
for Gﬁy, (x,x") has disappeared [compare Eq. (30) with
Eq. (23)]. As consequence, we can consider a Hadamard
representation for this propagator as well as for the
propagators G®(x,x’) and G"(x, x’). In other words, we
can assume that all fields of Stueckelberg theory are in a
normalized quantum state |y) of Hadamard type.
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A. Hadamard representation of the
Feynman propagators

The Feynman propagator Gﬁy, (x, x") associated with the

vector field A, can be now represented in the Hadamard
form

9w (x’ xl)

: Al/2 ; /
G () = AT (xx)
w 8z |o(x,x') + ie

—I—Vﬁy,(x, x’) h][O'(X, x’) + le} —+ W/Ijz/<xv X’)},
(35)

where the bivectors V4 (x,x’) and W4 (x,x') are sym-
Y7 %

A
=Vy,(x'.x) and
=W4 (¥.x) and are regular for x’ — x.

"

metric in the sense that V;‘U, (x,x")

A /
Wi, (x.x')
Furthermore, these bivectors have the following expansions

Vi (x.x) (36a)

ZVWV x,x")o"(x, x'),

co"(x,x').  (36b)

anuv X, x

n=0

Similarly, the Hadamard expansion of the Feynman propa-
gator G(x, x") associated with the auxiliary scalar field ® or
the ghost fields is given by

i { A2 (x,x)

Glx,x) = -
(x. ) 87> | o(x,x') + ie

+ V(x,x") In[o(x, x")
+ ie] + W(x, x’)}, (37)

where the biscalars V(x,x") and W(x,x) are symmetric,

ie, V(x,x')=V(x',x) and W(x,x") = W(x', x), regular
for x — x and possess expansions of the form
“+o0
Vixx) =Y V,(x.x)o"(x.x'), (38a)
n=0
+00
W(x.x) =Y W,(x.x')o"(x.x). (38b)
n=0

In Egs. (35) and (37), the factor ie with e — O, ensures the
singular behavior prescribed by the time-ordered product
introduced in the definition of the Feynman propagators
[see Egs. (22), (24) and (26)].

The Hadamard coefficients Vi), (x,x") and W5, (x, x')
introduced in Eq. (36) are also symmetric and regular
bivector functions. The coefficients V4 (X, X') satisfy the
recursion relations

PHYSICAL REVIEW D 93, 044063 (2016)

2(n+1)(n+2)Vi,, w +2(n+ Hva, '

_ 2(71 + )V?Hl ;u/A I/Z(Al/z);aﬁ’

+ [gﬂpr - Rﬂp - ng ]Vﬁ o) 0 (398.)
for n € N with the boundary condition
2V 2V a0 =2V AT (AL) o

+ {gﬂpr - Ryp - ngﬂp](gpu’AI/z) =0, (39b)

while the coefficients le‘ w (x,x") satisfy the recursion

relations

20+ 1D)(n+2)Wa,,
—2(n—|— >Wﬁ+1 /wA 1/2<A1/2);a0.,
+2(2n+3)v4

_ A
2Vn+1 uv

)+ 2( + I)WQJH w'; ag;a

n+1 p/ + 2V o

A~ 1/2(A1/2)' o
+ (9,0, — R,/ —m?g,/IW4 =0 (40)

npv

n+1 usa

for n € N. It should be noted that from the recursion
relations (39) and (40) we can show that

v v 2., v _
l9,/00, = R, —m“g, }pr, =0 (41)
and
olg,/0, —R,* — ngﬂ”]Wfp/

_[ngDx - Rﬂy - ngﬂy} (gvp’Al/z)
—2VA, —2VA g LoV ATI2(AIR), o (42)

These two “wave equations” permit us to prove that the
Feynman propagator (35) solves the wave equation (30).
Similarly, the Hadamard coefficients V,(x,x’) and
W, (x, x") are also symmetric and regular biscalar functions.
The coefficients V,(x, x") satisfy the recursion relations

2(” + 1)(” + 2)anrl + 2(” + l)vn+1;a0';a
- 2(” =+ I)VrH»lA_l/z(Al/Q);aa;a

+ [0, —m?|V, =0 (43a)
for n € N with the boundary condition
2V 4 2V,09 — 2V, ATV2(A12), 6%
+ [0, - m?|Al2 =0, (43b)

while the coefficients W, (x,x’) satisfy the recursion
relations
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2(" + 1)(” + 2)‘/Vn+1 + 2(” + I)Wn—kl;ag;a

- 2(” + I)Wn+1A_l/2(A1/2);a6;a + 2(21’1 + 3)Vn+1

+ 2V, 41,40 = 2V, ATV (AV2), 6

+ [0, = m* W, =0 (44)
for n € N. It should be also noted that from the recursion
relations (43) and (44) we can show that

O, —m?]V =0 (45)

and

o[, —mAW = =[O0, — m?}]AY2 =2V =2V 6
+ 2VATI2(A?), 6. (46)

These two “wave equations” permit us to prove that the
Feynman propagator (37) solves the wave equation (31)
or (32).

The Hadamard representation of the Feynman propa-
gators permits us to straightforwardly identify their singular
and regular parts (when the coincidence limit x' — x is
considered). We can write

Go,(x,x') = G}

singuv/

(x,x) + G4

/
reguy (X X) (47)
with

; 1/2 !
" i AYZ(x,x")
Glingus (X:X) = 812 {o(x, x') + ie G (X, X')

—Q—V;‘D, (x,x') In[o(x, x') + ie]} (48a)
and
i
G?egﬂl/ (x,x) = Pyl Wﬁy/ (x,x) (48b)
as well as
G(x,X') = Gng (X, X') + Greg(x, 1) (49)
with
i [ AV2(x,X)
G.. K==
smg(x x) 87[2 {U(X, )C/) + ie
+V(x,x") In[o(x, x") + ie]} (50a)
and
Greg(x.x') = é W(x,x'). (50b)
7
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Here, it is important to note that, due to the geometrical
nature of 6(x, '), g, (x,x"), AY?(x, x’) (see the Appendix)
and of V:}U, (x,x") and V(x,x") (see Sec. III C), the singular

parts (48a) and (50a) are purely geometrical objects. By
contrast, the regular parts (48b) and (50b) are state
dependent (see Sec. III D).

B. Hadamard Green functions

In the context of the regularization of the stress-energy-
tensor operator, instead of working with the Feynman
propagators, it is more convenient to use the associated
so-called Hadamard Green functions. Their representations
can be derived from those of the Feynman propagators by
using the formal identities

1 | B
0—|—i€_P;_l”5(6) (51)
and
In(o + ie) = In|o| + in®(—0c). (52)

Here, P is the symbol of the Cauchy principal value,
and O denotes the Heaviside step function. Indeed, these
identities permit us to rewrite the expression (35) of the
Feynman propagator associated with the massive vector
field A, as

Gy (x.x') = G (x,x') + % GL]JA (x,x),  (53)

where the average of the retarded and advanced Green
functions is represented by

Gy 5. = g B2, (3, )3l (5, )
V(5. )0l-o(x. ) (54

and the Hadamard Green function has the representation

/2 !
(1A N 1 Al (X,X)
Gy (%) 4;;2{ o(x,x') G (%, %)

+Vi, (e x) Info(x,x)| + W}‘jp,(x,x’)}.
(55)
Similarly, we have for the Feynman propagator (37)

associated with the auxiliary scalar field @ or the ghost
fields

Glr.) = Glex) +560(x2). (56)
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where

G(x,x') = % {A2(x,x")5[o(x, X')]=V (x,x')O[—0(x, x)] }

(57)
and
1/2 x. x
G (x,x') = # {AG(;);,)) + V(x,x") In|o(x, x')|
+ W(x, x’)}. (58)

It is important to recall that the Hadamard Green function
associated with the massive vector field A " is defined as the
anticommutator

1A
G (. x) = WH{A (). A/ (Yw)  (59)
and satisfies the wave equation
v v 2 (DA !
9.8, = R,” = m°g,*]G, ;" (x,x") = 0. (60)

Similarly, the Hadamard Green function associated with the
auxiliary scalar field @ is defined as the anticommutator

G (x,x') = (w{®(x). @(¥)}w) (61)
which is a solution of
O, — m?)|GH®(x,x') =0, (62)

while the Hadamard Green function associated with the
ghost fields is defined as the commutator

G (x,x') = (y[[C* (x). C(x)]lw) (63)
and satisfies the wave equation
O, — m?)GW8 (x, x') = 0. (64)

The Ward identities (33) and (29) satisfied by the
Feynman propagators are also valid for the Hadamard
Green functions. We have

ViGy (. x') + 9, G (o x) =0 (65)

and
GD®(x,x') = GO (x,x') = 0. (66)

Similarly, as it has been previously noted in the case of
the Feynman propagators, the Hadamard representaion
of the Hadamard Green functions permits us to
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straightforwardly identify their singular and purely geo-
metrical parts as well as their regular and state-dependent
parts (when the coincidence limit x’ — x is considered). We
can write

1)A 1A 1A
GO xx) =G (e x) + G (xx) (67
with
/2 /
(A N1 [AY2(x,X) .
Ging v (x,x) = 4r? {0()@)")9#1/ (x,x')
+V}’3D/ (x,x')In |6(x,x’)|} (68a)
and
(1A N L
Greg uv/ (X,.X ) - a2 Wﬂl/ (xJC) (68b)
as well as
G (x,x') = Gl (x, ) + Glia(x, %) (69)
with
(1) 1 (A2 (x,x)
Gt ¥) = g { gy +V o)
(70a)
and
. oy L )
Greg(X,x ) = @W(X,x ) (70]3)

It should be pointed out that the regular part of the
Hadamard Green function given by Eq. (68b) [respectively,
by Eq. (70b)] is proportional to that of the Feynman
propagator given by Eq. (48b) [respectively, by Eq. (50b)].

C. Geometrical Hadamard coefficients and associated
covariant Taylor series expansions

Formally, the Hadamard coefficients V4 (%, X7) or
V,(x,x') can be determined uniquely by solving the
recursion relations (39) or (43), i.e., by integrating these
recursion relations along the unique geodesic joining x to x’
(it is unique for x’ near x or more generally for x’ in a
convex normal neighborhood of x). As a consequence, all
these coefficients as well as the sums given by Eqs. (36a)
and (38a) are of purely geometric nature; i.e., they only
depend on the geometry along the geodesic joining x to x’.

From the point of view of the practical applications
considered in this work, it is sufficient to know the
expressions of the two first geometrical Hadamard coef-
ficients. Furthermore, their covariant Taylor series
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expansions are needed up to order ¢' for n = 0 and ¢° for
n = 1. The covariant Taylor series expansions of the
bivector coefficients V§ ,, (x,x') and Vi (x,x") are given
by [see Egs. (A7) and (A8)]

A _ VYA
VO w = v VO uv

v () — {(1/2)vy ()a T v [W]a}a;a

1 N
- E {Ué (uw)ab + 1}3 [llu]a;b}a’ ol + 0(63/2)
(71a)

and

VL =gV (71b)

=0 () 0(c'?).

Here, the explicit expressions of the Taylor coefficients can
be determined from the recursion relations (39). We have

v oy = (/2R + g, {(1/2)m* = (1/12)R}.  (72a)

1}‘8 [uv]a = (1/6)Ra[}4;y], (72b)

1}8 (uv)ab = (1/6)le;(ab) + (1/12)RﬂDRuh
+ (l/lz)Rupq(a\Rypq\b) + gﬂb{(l/lz)mzRab
— (1/40)R.0, — (1/120)00R,
—(1/72)RR,;, + (1/9())1?,”,}?;,1’7
~(1/180)R R 7y = (1/180)Ry g, Ry}

(72c¢)

apqr

v} ) = (1/H)mR,, = (1/24)00R,, - (1/24)RR,,
+ (1/8)R,,R,? — (1/48)R R, 74"
+ 9 {(1/8)m* = (1/24)m?R + (1/120)0R
+(1/288)R* — (1/720)R,,R"4

+(1/T20)R gy RPI™ ). (72d)

The covariant Taylor series expansions of the biscalar
coefficients V(x,x’) and V,(x,x’) are given by [see
Egs. (AS) and (A6)]

. 1 o
Vo = vy —{(1/2)vg,, 6" + 5%1;0’“0’}’ + 0(c*?)

(73a)
and
V=, +0(c'?). (73b)

Here, the explicit expressions of the Taylor coefficients can
be determined from the recursion relations (43). We have
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v = (1/2)m? = (1/12)R, (74a)

Voap = (1/12)m*Ry, = (1/40)R.q, = (1/120)00R,
— (1/72)RR,; + (1/90)R,,R,,”
— (1/180)R y,R,7 4 — (1/180)R 4, R,  (74b)

vy = (1/8)m* = (1/24)m>R + (1/120)0R
+ (1/288)R% — (1/720)R ,, R

+ (1/720)R,,, , RPT"S.

(74c¢)

pqrs

In order to obtain the expressions of the Taylor coefficients
given by Egs. (72) and (74), we have used some of the
properties of o(x,x’), g, (x.x’), AY?(x,x") mentioned in
the Appendix as well as the algebraic properties of the
Riemann tensor.

D. State-dependent Hadamard coefficients and
associated covariant Taylor series expansions

1. General considerations

Unlike the geometrical Hadamard coefficients, the coef-
ficients WZ‘W,(X, x') and W,(x,x") are neither uniquely
defined nor purely geometrical. Indeed, the coefficient
Wi W(x,x’ ) [respectively, Wy(x,x’)] is unrestrained by
the recursion relations (42) [respectively, by the recursion
relations (46)]. As a consequence, this is also true for all the
coefficients W* (%, x") and W, (x, x") with n > 1 and for
the sums (36b) and (38b). This arbitrariness is in fact very
interesting, and it can be used to encode the quantum state
dependence of the theory in the coefficients Wg‘lw, (x,x)
and Wy(x,x"). Once they have been specified, the coef-
ficients W (X, x") and W, (x,x") with n > 1 as well as the
bivector W,/ju (x,x") and the biscalar W(x,x’) are uniquely
determined.

In the following, instead of working with the state-
dependent Hadamard coefficients, we shall consider the
sums W;‘y,(x,x’ ) and W(x,x'), and, more precisely, we
shall use their covariant Taylor series expansions up to

order 6*/%. We have [see Eqs. (A7) and (A8)]
Wﬁy - gbyl Wﬁl/
=S = {(1/2)S;4U;a + a;wa}o;a
1 - 1
+ 5 {s/,wab + aﬂua;b}d’ad’b Y (3/2)Sﬂuab;c

3!
_(1/4)Sﬂu;ahc + a;wahc}o-;ao-;bU;C + 0(62) (75)

and [see Egs. (A5) and (A6)]
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W=w-{(1/2)w,}c* + waba agb

(3/2) Wabie — (1/4>W;abc}6;aG;bG;C + 0(02)‘
(76)

3!

In the expansion (75) we have introduced the notations

s (77a)

pvay-a, = (wv)a,--a,

for the symmetric part of the Taylor coefficients and

a (77b)

pvag--a, = [’ul/]al...ap
for their antisymmetric part.

It is important to note that, with practical applications in
mind, it is interesting to express some of the Taylor
coefficients appearing in Egs. (75) and (76) in terms of
the bitensors Wﬁv, (x,x") and W(x, x"). This can be done by

inverting these equations. From Eq. (75), we obtain

8,(x) = th (X)), (78a)
1 A
pva (x) - E)}l_rg[w;w’ sd’ (x X ) ;w u(x X )] (78b)
1
Sﬂ’/“b( ) = Eilir)lc[ AL/ J(d'd") <x’x,) + Wﬁu’;(ub) (X, xl)]' (780)

(Here, the coefficient a,, . is not relevant because it does
not appear in the final expressions of the renormalized
stress-energy-tensor operator given in Sec. IV C). Similarly,
from Eq. (76), we straightforwardly establish that

w(x) = )%/iLI}CW(x, X, (79a)
Wuh( ) = 11mW(a ) (x x) (79b)

X' —>x

We shall now rewrite the wave equations (60), (62) and (64)
as well as the Ward identity (65) in terms of the Taylor
coefficients of W4, (x,x’) and W(x,x’). To achieve the
calculations, we shall use extensively the properties of
o(x,x'), gy (x,x'), AY?(x,x') mentioned in the Appendix.

2. Wave equations
By inserting the Hadamard representation (55) of the
Green function G (x x') into the wave equation (60), we

obtain a wave equatlon with source for the state-dependent
Hadamard coefficient Wﬁy, (x,x"). We have

PHYSICAL REVIEW D 93, 044063 (2016)

9, 19,"0x — R, —m?g," ]W’;‘p
=6V}, =29, V’i‘ﬂp,aaa—l— O(o)
= —61)l ) (21}1 () + 81}{x W]a)g;a + O0(0). (80)

Here, we have used the expansions of the geometrical
Hadamard coefficients given by Eqgs. (36a) and (71). By
inserting the expansion (75) of W4, (x, x') into the left-hand
side of Eq. (80), we find the following relations:

Sups” = R (,8,), + mst) — 6] (up)? (81a)
st = RV, + mPs P —6vf 7, (81b)
aﬂpy;” = —Rp[ﬂsp]p, (81(3)
sy/)ya;y = (1/4)([‘5”/)) (]/2) {(uSp)p
- (1/2)R ﬂ|u;ps\p (l/z)RP (uSp)p:a
+ (1/2)R? 48y p = RY () 1515 pig
RYyyapipya = R w? ,@1p)pg + (1/2)8,0p"
— (1/2)m?s, + 204 (o)’ (81d)
i = (1405, + (1/2)R%y5,7
— (I/Z)R’"’S .+ RPY a Qpgr (I/Z)SP”qq;a
- (1/2)m2sp”;u + 204 o (81e)

Furthermore, by combining Eq. (81d) with Eq. (81a) and
Eq. (81e) with Eq. (81b), we also establish that

Supva” = (1/4)(Osy) . + (1/2)RP 4.(u5,)p

= (1/2)Rua?sp)p + (1/2)R? (a8)0),

+ (1/2)R? 48,pp = R (4 1S 1) g

= R apipya = RP (? ,a)p)pg — V7 (up)ia (81f)
and
sy”ya;y = (1/4)(53‘1)”);“ + (1/2)Rqaspp;q

+ (1/2)qu;aqu -l-Rp"raapq,—vf]‘pp,a. (81g)

Mutatis mutandis, by inserting the Hadamard represen-
tation (58) of the Green function G")(x,x’) into the wave
equation (62) or (64), we obtain a wave equation with
source for the state-dependent Hadamard coefficient
W(x,x'). We have

(O, = m*))W = =6V, =2V, .,6 + O(o)
= —6v; + 20,06 + O(0). (82)
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Here, we have used the expansions of the geometrical
Hadamard coefficients given by Egs. (38a) and (73). By
inserting the expansion (76) of W(x,x’) into the left-hand
side of Eq. (82), we find the following relations:

w, = m*w — 60y, (83a)
W/)a;p = (1/4)(|:|W),a + (]/2)pr;a
+ (I/Z)Rpaw;p - (1/2)mzw;a + 2014 (83b)

Furthermore, by combining Eq. (83b) with Eq. (83a), we
also establish that

wpo” = (1/4)(Ow),, + (1/2)RP;w,, = v14.  (83¢)

3. Ward identities

The first Ward identity given by Eq. (65) expressed in
terms of the Hadamard representation of the Green func-

tions GI(IL),A(x,x’) [see Eq. (55)] and G(x,x') [see
Eq. (58)] permits us to write a relation between the
geometrical Hadamard coefficients Vl/jy, (x,x") and
V(x, x") as well as another one between the state-dependent

Hadamard coefficients W;‘D, (x,x") and W(x,x"). We obtain
gvy/(VﬁU’;ﬂ + V;I/) =0 (84)

which is an identity between the geometrical Taylor
coefficients (72a)—(72d) and (74a)—(74c) and

9.,/ (Wa,*+Wy) ==V}, o*+ Vo, +0(o)

= _(U?(ya) - Ulgba)a;a + 0(6) (85)
To establish Eq. (85), we have used the expansions of the
geometrical Hadamard coefficients given by Egs. (36a),
(38a), (71) and (73). By inserting the expansions (75) of

W4, (x. x') and (76) of W(x,x’) into the left-hand side of
Eq. (85), we find the following relations:

a,t = (1/2)s,,0 4 (1/2)w,, (86a)
sﬂl’”a = (]/z)slw;pa + (]/z)Rpusl/p + apu[a;p]
+Wyq — 1}? (va) + V19ua- (86b)

Furthermore, by combining Eq. (86b) with Eq. (86a), we
also establish that
s/w”a = (1/4)spu;pa + (1/2)Rpasz/p + (1/2)apva;p

- (1/4>W;va + Wy — v?(ya) + V1G4 (86(:)

Of course, the second Ward identity given by Eq. (66)
provides trivially the equality of the Taylor coefficients of
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the Hadamard coefficients associated with the auxiliary
scalar field and the ghost fields. We have

Ve = yoh (87)
and

W® = Woh, (88)

IV. RENORMALIZED STRESS-ENERGY
TENSOR OF STUECKELBERG
ELECTROMAGNETISM

A. Stress-energy tensor

The functional derivation of the quantum action of the
Stueckelberg theory with respect to the metric tensor g,
permits us to obtain the associated stress-energy tensor 7',
By definition, we have

208
vV _gégm/

and its explicit expression can be obtain by using that, in
the elementary variation

™ S[A,, ®@,C,C*, g,], (89)

G = G + G (90)

of the metric tensor, we have (see, for example, Ref. [45])

T (91a)
N RN RN (91b)
v, — 17, +67, (91c)

with
59" = =g 695 (91d)
NN (91¢)
5T, = %(—59,4;/’ 6+ 88 0). (911)

The stress-energy tensor derived from the action (9) is
given by

T =T + T + Ty (92)

where the contributions of the classical and gauge-breaking
parts take the forms

044063-11



ANDREI BELOKOGNE and ANTOINE FOLACCI
Ty = F*,F* + m*A*AY
+ VIOVYD + 2mAH VY &
— (1/4)g"{F ,,F'* + 2m?A A
+2V, OV b + 4mA VP b}
= V,AFVPAY — 2V , AWVYIAP + VFA VY AP
+ m*AFAY + VOV D + 2mAH VY @
—(1/2)¢"{V, A, VP A" =V A,V A

+m?A,A? + V,OVP® + 2mA, V' b} (93a)
and
Tty = —2AWVIV AP — 2mAHVY) &
- (l/z)gﬂy{_ZA/vavrAT - (vap)Z
+m*®* — 2mA, VY, (93b)

while the contribution associated with the ghost fields is
given by

Ty, =—-2VUC* VW C+ ¢v{V,C*V*C+m?C*C}. (93c)

We can note the existence of terms coupling the fields A,
and @ in the expression of T’C‘l” [see Eq. (93a)] as well as in
the expression of T’é”B [see Eq. (93b)].

We also give an alternative expression for the stress-
energy tensor which can be derived from the action (12) or
by summing 7% and T'5. This eliminates any coupling
between the fields A, and & and permits us to straight-
forwardly infer that the stress-energy tensor has three
independent contributions corresponding to the massive
vector field A, the auxiliary scalar field @ and the ghost
fields C and C*. We can write

™™ =TV + Ty +T§, (94)
with

T = FF,F + m*ArAY — 2AWVVV AP
— (1/4)g"{F ,.F’* 4+ 2m>A A
—4A,VPV A" - 2(V,AP)?}
= V,A'VPAY — 2V , AWVY AP + VFA VY AP
+ m*ArAY = 2AWVV AP
- (1/2)¢*{V,A,VPA" =V A VA

+mPA,AP — 24, VPV AT — (V,A)2} (95a)

and

Ty = V'oV® — (1/2)g{V, 0V + mie?}.  (95b)

PHYSICAL REVIEW D 93, 044063 (2016)

while the contribution associated with the ghost fields
remains unchanged [see Eq. (93¢)].

By construction, the stress-energy tensor (89) [see also
its explicit expressions (92) and (94)] is conserved, i.e.,

V, 7% = 0. (96)

Indeed, this property is due to the invariance of the action
(9) or (12) under spacetime diffeomorphisms and therefore
under the infinitesimal coordinate transformation

X — x* e with |e¥| < 1. (97)
Under this transformation, the vector, scalar and ghost
fields as well as the background metric transform as

A, = A, +8A,, (98a)
D - O+ 5P, (98b)
C—C+6C, (98¢)

C* — C* 4 5C*, (98d)

G = Guw + G- (98e)

The variations associated with the field transformations
(98) are obtained by Lie derivation with respect to the
vector —e:

0A, =L_A, =—e’V,A, —(V,e’)A,,  (99a)
60 =L_ D= —e'V,D, (99b)
6C=L_.C=-e'V,C, (99c¢)
0C* = L_C" = —€e’V,C*, (99d)
00 = L_eGu = —V,€,— Ve, (99e)

The invariance of the action (9) or (12) leads to

1 &S 1 88
futr=al (G, (550
(e (529
. (Lﬁ) 594 —o (100)
2\\/=969u

which implies
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V, T = [VFA, — V,A* =AMV, (TAY — RY,A? — m*AY)
+ [VF@)(O® — m2®) — (OIC* — m2C*)[VAC]
— [V+C*)(OC - m>C) (101)

by using Eq. (99) as well as Egs. (15)—(18). From the wave
equations associated with the massive vector field A, [see
Eq. (19)], the auxiliary scalar field @ [see Eq. (20)] and the
ghost fields C and C* [see Eq. (21)], we then obtain
Eq. (96).

B. Expectation value of the stress-energy tensor

At the quantum level, all the fields involved in the
Stueckelberg theory as well as the associated stress-energy
tensor [see Eqgs. (92) and (94)] are operators. From now on,
we shall denote the stress-energy-tensor operator by Tﬂb
and we shall focus on the quantity (|7, [y) which denotes
its expectation value with respect to the Hadamard quantum
state |y) discussed in Sec. III.

The expectation value (|7 wly) corresponding to the
expression (92) of the stress-energy tensor is decomposed
as follows:

WITulw) = wITolw) + wITo lw) + (Wl T ).
(102)

The three terms in the right-hand side of this equation are
explicitly given by

Ao 1., cly po 1A
I T (o)ly) =3 im T "7 (x.2)[G)" (v, )

1

2

l/imT,C,I,;" (x, x)[GV®(x, )],  (103a)
. 1. o6’ 1)A
AT Wly) = 5 Em T 77 () (G (x, )

1
+ = lim 7 (x, x)[GV®(x,x')]  (103b)

X =X

and

. 1
WITE @ly) =5 im T ()G (x, )], (103¢)

where T ,31,:‘ P T ;1;” T ,?,33 ard T ,?DB ¢ and TG0 are the
differential operators constructed by point splitting from
the expressions (93a), (93b) and (93c). We have
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Tlclll? p’ = gya/gpa/vuva’ + gppgy6/gaﬁ/vavﬁ’
_ 29”/)gyzl/d35’ v/}va] 4 ng,u/)gp{ﬂ

1 J 4 / J
- Eg’w{gpﬁ gaﬂ vavﬂ’ - gua gﬂg vﬂva’

+m2g'}, (104a)
! 1 4
T =9V, V, - 5 9ulg? Vo Vy 1, (104b)
TE’IFA e _ —2gﬂﬂgya'VG,V"’
1 / J /
a Egﬂb{_v/}vﬁ - zgpa va/vg }’ (104(:)
GBgy 1 2
T;w = _Em Guv (104d)
and
T//Cl}yh = —Zgy’/VﬂV,/ =+ gﬂy{g”ﬂlv(lvﬁ/ -+ mz}. (1046)

It should be noted that we have not included in Egs. (103a)
and (103b) the contributions which can be obtained by
point splitting from the terms coupling A, and @ in
Egs. (93a) and (93b). Such contributions are not present
because, due to the absence of coupling between A, and @
in the quantum action (12), two-point correlation functions
involving both A, and @ vanish identically. It should be
noted that the absence of these contributions can be also
justified in another way: in the quantum stress-energy-
tensor operator (94), any coupling between A, and @ has
disappeared.

Here, some remarks are in order:

(i) When we use the point-splitting method, it is more
convenient to define the expectation value (|7, |y)
from Hadamard Green functions rather than from
Feynman propagators. Indeed, this avoids us having
to deal with additional singular terms due to the
time-ordered product.

(i) Of course, because of the short-distance behavior of
the Hadamard Green functions, the expressions
(103) as well as the expectation value <w\TM,,|l//>
given in Eq. (102) are divergent and therefore
meaningless. In Sec. IV C we will regularize these
quantities.

(iii) Even if the formal expression (102) of the expect-
ation value of the stress-energy-tensor operator is
divergent, it is interesting to note that

W\ Tol lw) + (w|Thr ) = 0. (105)
Indeed, from the definitions (103b) and (103c), we
can obtain Eq. (105) by using Egs. (65) and (66) as
well as the wave equation (64). It should be noted
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that, as a consequence of Eq. (105), Eq. (102)
reduces to

WITulw) = WITolw). (106)

We can also give the alternative expression of the
expectation value <1//|TW|1//) obtained from Eq. (94). It
takes the following form,

WITWlw) = wiTnlw) + wiThlw) + (T ),
(107)

where the contributions associated with the massive vector
field A, and the auxiliary scalar field @ are separated and

given by

. 1. ”
T (x)lw) = 3 M T3 (6, )G, ()] (108a)

po’

and
N 1.
WIT (Olw) =3 Iim T (x, ) [GO2(x, ). (108b)

Here, the differential operators Tﬁf “ and 7T, are con-

structed by point splitting from the expressions (95a) and
(95b). We have

Tﬁzxﬂd = gya/gpﬂ/vuva' + gupgunlgaﬁlvavﬁ’
- zgy/)gua,gﬁﬁ/vﬂv(/ + ngﬂl)gyﬁl
- 29,/’9,/“’ v, Ve

1 / 4 / J
- Egﬂy{gpg ga/i vavﬁ’ - gpa gﬂo vﬂva’

+mig? — VPV —2g07V V) (109a)

and
! 1 )/
T =9""V,V, - Egm,{g“ﬂ V. .Vy + m*}.  (109b)

It should be noted that the expressions (102) and (107) of
the expectation value <1//|f,w|1//> are identical because the
various differential operators 7° ,C,l,j‘ r T,ilf, T ,?,,B 4P and
T 5B appearing in (103) and 7%,” and T & appearing in
(108) are related by

TaP = Tr 4 T, (110a)

T8 =T +Tw". (110b)
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C. Renormalized stress-energy tensor

1. Definition and conservation

As we have already noted, the expectation value
(w|T,,|w) given by Eq. (102) is divergent due to the
short-distance behavior of the Green functions or, more
precisely, to the singular purely geometrical part of the
Hadamard functions given in Egs. (68a) and (70a) (see the
terms in 1/o and In|o|). It is possible to construct
the renormalized expectation value of the stress-energy-
tensor operator with respect to the Hadamard quantum state
lw) by using the prescription proposed by Wald in
Refs. [26,30,31]. In Egs. (103a)—-(103c) we first discard
the singular contributions; i.e., we make the replacements

1
1)A 1)A
G (x. ) = GUA (x.%) = Wi x). (1)
(1)@ ’ (He n 1 @ ’
G (x,x') = Grg (x,%) ) sWo(x,x'),  (111b)
T
1

GG (x, x') > Gl (x. x') = — WOh(x,x'),  (Illc)

47

and we add to the result a state-independent tensor (:),w
which only depends on the mass parameter and on the local
geometry and which ensures the conservation of the final
expression. In other words, we consider that the renormal-
ized expectation value of the stress-energy-tensor operator
is given by

A 1 o, oy
1Tl )en = 55 (T (W) + Tz W)

1
+ g (T WA+ T30 W)

1 -
+ o7 T W +6, (112)
with
T WA (x) = im T3 77 (x. X) WA (x.x')]. (113a)
Ty [WP)(x) = im T (x,x') [W2(x,x')].  (113b)
T WA (x) = Bm T (e, ) WA, (v, x)]. (113c)
T [W?)(x) = i/iElT,(ff“’ (x.X)[W2(x,x)]  (113d)
and
TRW(x) = }/iiI}(TS;(X,X/)[WGh(X, ). (113e)
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Here, the differential operators 7 f,ly" v ,c,lf T ,?f are
Tw* and TG are given by Egs. (104a)—(104e). In
Egs. (113a)—(113e), the coincidence limits x' — x are
obtained from the covariant Taylor series expansions
(75) and (76) by using extensively some of the results
displayed in the Appendix. The final expressions can be
simplified by using the relations (81a), (81b) and (83a) we
have previously obtained from the wave equations. We
have

T;l,f [WA] = (1/2)5/)p;ﬂy + (I/Z)Ds;w ~ Spuw)”
-a,/,,

= (1/2)guA(1/2)0s,” = (1/2)s,:7"
—(1/2)Rs e = @)™ + 5,7 }

1= L ) = 8 + 28pu)”

+ 6v’i‘ﬂb - 3gﬂyv’i‘p/’, (114a)
T (W) = (1/2)w5, = wi,
- (1/2)9140{(1/2)[]”}‘15 - m2W¢} - 3g;wvl ’
(114b)

GB, B
T W] = R (us0)p = aﬂp(u;p) = () = 28 p(u)”
— (1/2)gu{—(1/2)s5,:" + (1/2)R*"s,,,

+a, " = 5,7}, (114c)
T[] = ~(1/2)gumw®  (114d)

and

TR WO = =iy + 2w + (1/2)gu W + 6g,, 1.
(114e)
Let us now consider the divergence of the terms given by

Egs. (114a)—(114e). By taking into account Egs. (81) and
(83), we obtain

(T WA + T WA = 60}, % =20t p . (115a)
(TS W?) + Ta* [W?))* = =20y, (115b)
and
(TS WEh)» = 4oy, (115¢)
and we then have
ATl = 55608 = 2001,
+2g,,0}* +6,," = 0. (116)
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It is therefore suitable to redefine the purely geometrical
tensor ©,, by

~ 1
®ﬂV - ®ﬂV - y {61]114”1, - 29”1/1]114/]/) + 29/41/1}1}’ (117)

where the new local tensor ©,, is assumed to be
conserved, 1.e.,

0, =0. (118)

As a consequence, the renormalized expectation value of
the stress-energy-tensor operator takes the following form,

A 1 cly GB,
<W|Tﬂv|w>ren = 8_71'2 {T}W [WA] + T/w [WA]
—61)?,” +2g,, 01,0}
1 clp GB,
t32 (T W2+ T (W)

1
+2.g/w1)1} + 8_77,'2 {T/S;IEI[WGh] - 49141/7)1}

+0 (119)

v

where the various state-dependent contributions are given
by Egs. (114a)—(114e).

2. Cancellation of the gauge-breaking
and ghost contributions

In Sec. IVB we have mentioned that the formal con-

tributions of the gauge-breaking term (z//|TE,,B|1//> and the

ghost term (1//|7A",?,f1 lw) cancel each other out [see Eq. (105)].
This still remains valid for the corresponding regularized
expectation values up to purely geometrical terms. Indeed,
by using the first Ward identity in the form (86) as well as
the second Ward identity in the form (88), we obtain

Tl A (WA + T2 [W?) + T Sh[weh)

:2U?ﬂl/+gﬂl/{_(1/2)v?pp+3U]}- (120)

Now, by using this relation in connection with Eqgs. (114a)
and (114b), we can rewrite the renormalized expectation
value of the stress-energy-tensor operator given by
Eq. (119) in the form
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N 1
<W|T/w|l//>ren = @{(]/z)sﬂ/);ﬂy + (I/Z)DS

=4 ) = O fip) = St 28pm)”

_(l/z)g/w[(l/z)ms r— (1/2)s/)7,/)1

_(1/2)R/)1 Cl /)T+s /)T]
(1/2)wg,

_ P
w ~ Sp(uw)

_|_

—(1/2 gﬂy[(l/Z)Dw - m*w?]+2vf w

(1/2)
_(3/2)gﬂyvlﬂ —2g,,01} +0,,. (121)

This expression only involves state-dependent and geo-
metrical quantities associated with the quantum fields A,
and @. We could consider it as our final result, but, in fact, it
is very important here to note that, due to the first Ward
identity, the decomposition into a part involving the
massive vector field and another part involving the aux-
iliary scalar field is not unique. In the next sections, we
shall provide two alternative expressions which, in our
opinion, are much more interesting from the physical point
of view.

From now, in order to simplify the notations and because
this does not lead to any ambiguity, we shall omit the label
@ for the Taylor coefficients w? and wy,.

3. Substitution of the auxiliary scalar field
contribution and final result

It is possible to remove in Eq. (121) any reference to the
auxiliary scalar field @. In some sense, it plays the role of a
kind of ghost field (the so-called Stueckelberg ghost [46]),
but its contribution must be carefully taken into account. By
using Egs. (83a), (86a) and (86b) in the form

m*w = wp” + 60,

(1/2)5‘ e _(1/2)RPTSpT

+ aprﬂs 4 smf” + U/i\pﬂ + 2y, (1223)
Wow = _Sp(m;pp) + Zap(mp;w) (122b)
and
Wﬂl/ = _(I/Z)Sp(/d;ply) - (1/2)Rp(ﬂsy)p
+ (1/2)61’/}[1/#’] + (l/z)avp[u;ﬂ]
+ Sp0)” T V1 = GV (122¢)
we obtain
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A 1
<W|Tﬂu|w>ren :Q{(]/Z)sp/);;w + (]/Z)Ds;w _s/)(ﬂ;u)p
+(]/2)R/}(;¢su)p— (]/Z)aﬂ/) ) (]/Z)al//}([l;p)

=L ) = g S /w+s/)( v’
—=(1/2)g,, [(1/2)0s,” = (1/2) 5,77 = a,]
+v;‘,w — gﬂyv/fp/’} +0,,. (123)

We have now at our disposal an expression for the
renormalized expectation value of the stress-energy-tensor
operator associated with the full Stueckelberg theory which
only involves state-dependent and geometrical quantities
associated with the massive vector field A,. It is the main
result of our article.

It is interesting to note that Eq. (123) combined with
Eq. (81b) leads to

T p 1 T
<V/|T/J/ |V}>ren = Q{_mzspp - (1/2)Rp Spr

+5,77 + 301 P} + 0,0 (124)

4. Another final expression involving both the vector field
A, and the auxiliary scalar field @

Even if we are satisfied with our final expression (123), it
is worth nothing that it does not reduce, in the limit
m? = 0, to the result obtained from Maxwell’s theory.
This is not really surprising because it involves implicitly
the contribution of the auxiliary scalar field. In fact, by
replacing in Eq. (121) the term m?w given by Eq. (122a), it
is possible to split the renormalized expectation value of the
stress-energy-tensor operator in the form

<W|fﬂv|w>ren = Tﬁv + T;(fu + ®ﬂl/’ (125)
where the terms associated with the vector and scalar fields
are given by

1
T/Ijv = 8_71'2 {(1/2) Sp Y (1/2)|:|s;w - Sp(ﬂ;v)p

= = L i) = 5+ 28 pu)”
_(1/2)gyy[<1/2)‘:]spp - 2aprp;r}
+204 w = gﬂyv{‘p/’} (126a)
and
& 1
me = g {(l/z)w;ﬂv W
_<1/4>gﬂu|:|w_g/wvl}' (126b)

The stress-energy tensors Tﬁy and Tffy are separately
conserved (this can be checked from relations obtained
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in Sec. IIID), and, moreover, the expression of T,‘f,,
corresponds exactly to the renormalized expectation value
of the stress-energy-tensor operator associated with the
quantum action (14) for £ = 1 (see, e.g., Refs. [35,36]). As
a consequence, it could be rather natural to consider Tﬁy
given by Eq. (126a) as the renormalized expectation value
of the stress-energy-tensor operator associated with the
massive vector field A,. This physical interpretation is
strengthened by noting that, in the limit m? — 0, Tﬁ,,
reduces to the result obtained from Maxwell’s theory (see
Sec. IV D). However, despite this, we are not really
satisfied by this artificial way to split the contributions
of the vector and scalar fields because, as we have already
noted, the first Ward identity allows us to move terms from
one contribution to the other. So, we consider that the only
nonambiguous result is the one given by Eq. (123).

It is interesting to note that Eq. (125) combined with
Egs. (81b) and (83a) leads to

(T )en =T +T%/ +0,0 (127)
with
1
TApp =32 {=s,.77 = mzsl,/’ —Rs,,
Vs
+2a,.”" 4 25,7 + 411‘{‘/)/’} (128a)
and
1
T®p = 52 {=(1/2)0Ow — m?*w + 20, }. (128b)

D. Maxwell’s theory

Let us now consider the limit m? — 0 of 77, given by

Eq. (126a). By using Eq. (122a), it reduces to

1
f]'%l/axwell = Q {(1/2)5'/,/);”” + (1/2)Dsm/ - S/)(ﬂ;b)p

— 14 — 14 —_ P P
G 1) = AL i) = 50" T 28 p(w)

—(1/2)g [(1/2)0s,” — (1/2) 5,7
_(1/2)R/)Ts/)1 - a/)rlm— =+ spr/”—]

+201,, = ul(3/2)v 7 + w11} (129)

This last expression is nothing other than the renormalized
expectation value of the stress-energy-tensor operator asso-
ciated with Maxwell’s electromagnetism (see Eq. (3.41b)
of Ref. [39]).

It is interesting to note that Eq. (129) combined with
Eq. (81Db) leads to
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1
g;wTE/II/axwell _ o {21)1?/) _ 41)1}

= #{—(I/ZO)DR - (5/72)R?

+(7/30)R,,RP?—(13/360)R ,,,RP9"* }.
(130)

We recover the trace anomaly for Maxwell’s theory.

E. Ambiguities in the renormalized stress-energy tensor

1. General expression of the ambiguities

The renormalized expectation value (y|T,, (X)) ey is
unique up to the addition of a geometrical conserved tensor
©,,. In other words, even if it takes perfectly into account
the quantum state dependence of the theory, it is ambig-
uously defined (see, Sec. III of Ref. [31] as well as, e.g.,
comments in Refs. [25,26,41,47,48]).

As noted by Wald [31], ©,, is a local conserved tensor
of dimension (mass)* = (length)~* which remains finite in
the massless limit. As a consequence, it can be con-
structed by functional derivation with respect to the metric
tensor from a geometrical Lagrangian of dimension
(mass)* = (length)~. Such a Lagrangian is necessarily a
linear combination of the following four terms: m*, m’R,
R% R pgRP4. It should be noted that we could also take into
account the term R pq”RPq”. But, in fact, we can eliminate
this term because, in a four-dimensional background, the
Euler number

X = /M d*x\/—g[R* — 4R ,,R"1 + R, R4  (131)

associated with the quadratic Gauss-Bonnet action is a
topological invariant.

The functional derivation of the action terms previously
discussed provides the conserved tensors

1 9 /
— d*x\/—gm* = (1/2)m*g*, 132a
=T (1/2) (132a)
L / d*x\/—gm*R = —m*[R* — (1/2)R¢"]
V=909 J
(132b)
Wpw = L9 / d*x/=gR*
V=909, JMm
— OR# — JRRW
+ ¢"[-20R + (1/2)R?], (132c)
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1 6
@ = — / d*x\/=gR,, R"?
V=989 Jm P

= R* — CIR™ — 2R, R
+ ¢ [-(1/2)0R + (1/2)R,,,R"].

(132d)

The general expression of the local conserved tensor ©,,
can be therefore written in the form

1
0, = P {am“gﬂy +ﬂm2[R,w — (1/2)Rg,,)

+yl (I)H/w +7/2 (2)H/w}’ (133)
where a, f3, y; and y, are constants which can be fixed by
imposing additional physical conditions on the renormal-
ized expectation value of the stress-energy-operator tensor,
these conditions being appropriate to the problem treated.

2. Ambiguities associated with the renormalization mass

So far, in order to simplify the calculations, we have
dropped the scale length 4 (or, equivalently, the mass scale
M = 1/4, i.e., the so-called renormalization mass) that
should be introduced in order to make dimensionless the
argument of the logarithm in the Hadamard representation
of the Green functions. In fact, in Egs. (35) and (37) it is
necessary to make the substitution In[o(x,x’) 4+ ie] —
In[o(x, x") /A% + ie] which leads in Egs. (55) and (58) to
the substitution

In|o(x,x')| = In|o(x,x) /A3 (134)
This scale length induces an indeterminacy in the bitensors
Wﬁy, (x,x") and W(x,x') which corresponds to the

replacements
Wa, (x,x') = Wa, (x,x') = Vi, (x, ') In(2%),  (135a)
W2 (x,x') = W®(x,x') = V®(x,x')In(4?),  (135b)
WO (x,x') = WO (x,x') — VO (x,x') In(2?),  (135¢)

ie., in terms of the associated Taylor coefficients, to
replacements

S = Suw = VG () (A, (136a)

Qg = Qg — Vi lla In(2?), (136b)

Sywab = Suab = (U8 (uyap + U1 (u)9ap) 0(2%)  (136c)
for the vector field A, and

w — w— vy 1n(4?), (137a)
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Wap = Wap — (UOab + Ulgab) 111(/12) (137b)
for the scalar field @ or the ghost fields. By substituting
Eqgs. (135a)—(135¢) into the general expression (112) of the
renormalized expectation value of the stress-energy-tensor
operator, we obtain the general form of the ambiguity
associated with the scale length. It is given by

0, (1) = ~4) (65114 + e5[v))
- o vy + @ v
) g (139
with
05 [VA](x) = m T3 "7 (x.x) [Vyy (6. )). (139)
O [V?](x) = im T (x, ¥) [V (x, X)), (139b)
O [VA](x) = Bm T3 "7 (v, ¥V, (5.2, (13%)
O [VI](x) = Im T3 (x.x)[VO(x.x)]  (139)
and
OV (x) = ImT(x, )V (x.x)]. (13%)

where the differential operators Tﬂj‘ re TE,? apo T;l,j”,
TP and T b are given in Egs. (104a)—(104e). It should be
noted that ©,, (1) is a purely geometrical object. This is due
to the geometrical nature of the Hadamard coefficients
Vi, (x,x') and V(x,x').

In order to obtain the explicit expression of the stress-
energy tensor ©,,(4), we can repeat the calculations of
Sec. IV C by replacing W, by V4, W® by V?* and W by
VO From Egs. (114a)-(114e) it is straightforward to
obtain explicitly ®5 [VA], @52 [V¥], @524 [VA4], ©n VY]
and OGN [VE"] by using the replacements (136) and (137).
We can then show that

(O [VA] + @ VA =0, (140a)
(O [V®] + ©5B [V])* = 0 (140b)

and
(@Sh[Veh))» — 0, (140¢)
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Equations (140a)—(140c) are similar to Egs. (115a)—(115c)
but now with the right-hand sides vanishing. This is due to
the fact that, unlike the wave equations (42) and (46) for
Wﬁy,, W? and WO", the wave equations for V;‘y,, V® and
VG [cf. Egs. (41) and (45)] have no source terms. As a
consequence ©,,(4) is a conserved geometrical tensor. We
can also check that

U [VA] 4+ @55 (V] + 8GN VO = 0. (141)
Equation (141) is similar to Eq. (120) but now with the
right-hand side vanishing. This is due to the fact that, unlike
the Ward identity (85) linking W7, and WO, the Ward
identity (84) linking V4, and V" has no right-hand side.
As a consequence, from Egs. (138) and (141), we obtain

0.1 =" oy ety (142)
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(137). If we use the form (123) without taking into account
the geometrical terms, we obtain

0u () ==L (12 + (1120004,
~08 pu)” T (LR (05 ), = (1/2) 708 1
~(1/2)99 i) = 90 gl QOUO[WIW]
b+ (/20 ﬂ+<1/z> ey
gﬂy[(l/4) vy, = (1/4)00,;1 —(1/2)% -
+ v} /’]}, (143)

Similarly, if we use the alternative form (125) where the
contributions corresponding to the vector field A, and the
auxiliary scalar field @ are highlighted [see Egs. (126a) and
(126b)], we obtain

0,,(4) = 04, (1) + O,(4) (144)
The ambiguities associated with the scale length can now
be obtained explicitly from the replacements (136) and  with
|
A In(2?) Ap A A VA P
®/41/</1) == 877,’2 {(1/2)00 +<1/2)D7j0;w 1}0 g/) yO [uplvi7] g/J U 0 [vp][u 0/7 uv
+U‘8 (p/t)vp + 1}‘3 (pv)yp + Zv?ﬂy_gﬂv[(l/él')l:lvépp - 1}8 Un-]p,r + Ul/)p]} (1453)
and
> In(2%)
8;411(}') == 87[2 {(1/2)1]0;/41/ - UOﬂV_gﬂU[(1/4)DUO + Ul]}' (145b)

Now, by using the explicit expressions (72) and (74) of the Taylor coefficients of the purely geometrical Hadamard

coefficients, we can show that Eq. (143) reduces to

0,,(4) = —h;(jj) {(1/4)’”2Rw - (1/20)R,,,+(13/120)00R,, — (1/8)RR,, + (2/15)R,,R
+(7/20)R,,R," ¢ = (1/15)R, 0, R,V + gm,[—(3/8)m4 —(1/8)m?R — (1/240)0JR
+(1/32)R? - (29/240)R,,RP1+(1/60)R ;. RPI™ ]}, (146)
while Eqgs. (145a) and (145b) provide
O (1) = —1‘;(222 L ((1/3)m2R,, — (1/30)Ry +(1/ 10)TIR,, — (5/36)RR,,, + (13/90)R, R, 7+ (31/90)R R, ¢
—(13/180)R,, R, 71" + gﬂy[—(1/4)m4 —(1/6)m*R — (1/60)IR+(5/144)R? — (11/90)R,,,RP4
+(13/720)R ;s RP9™]} (147a)
and
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0% (1) = —% {=(1/12)m*R,, — (1/60)R,,,+(1/120)0IR,,, + (1/72)RR,, — (1/90)R,,R,”
+(1/180)R y,R,” 9 + (1/180)R, R, P9 + g [—(1/8)m* + (1/24)m>R + (1/80)CIR
—(1/288)R? + (1/720)R ,,R?—(1/720)R .., RP9"*] }. (147b)

Of course, it is easy to check that the sum of ©4,(1) and ©, (1) is equal to ©,,(4).
It is possible to obtain a more compact form for the stress-energy tensors (146), (147a) and (147b) by using the conserved
tensors (132a)—(132d). It should be noted that the terms in R,,R,”, R,,,,R,?4" and R, R"?" which are not present in

upqr pars
WH L and @H v can be eliminated by introducing

1 6
LRy P
_gég;w M P
— OR# — 40OR™ + 4RM RYP — 4R, RAPY — 2R¥  RYPT" + g[(1/2)R ,,, RP""] (148)

and by noting that, due to Eq. (131),

WH, -4@H, + OH, =0. (149)
We then have
0, 1) = WA ((3/8)m g, ~(1 /MR, — (1/2)Ro,,]~(1/240) VH,, + (13/120) O} (150)
0L () = "B (14, (130 R, ~ (1/2)R,]=(1/30) VH,, + (1/10) 0K, (151
and
0%(1) = "5 (18t (1 /12 (R,, — (1/2)Ra, ) +(1/240) VH,, + (1/120) 9K} (151b)

As expected, we can note that the ambiguities associated with the scale length (or with the renormalization mass) are of the
form (133).

V. CASIMIR EFFECT

A. General considerations

In this section, we shall consider the Casimir effect for Stueckelberg massive electromagnetism in the Minkowski
spacetime (R“,n}w) with 7, = diag(—1,41,+1,+1). We denote by (7,X,Y,Z) the coordinates of an event in this
spacetime. We shall provide the renormalized vacuum expectation value of the stress-energy-tensor operator outside of a
perfectly conducting medium with a plane boundary wall at Z = 0 separating it from free space (see Fig. 1). It is worth
pointing out that this problem has been studied a long time ago by Davies and Toms in the framework of de Broglie-Proca
electromagnetism [49]. We shall revisit this problem in order to compare, at the quantum level and in the case of a simple
example, de Broglie-Proca and Stueckelberg theories and to discuss their limit for m? — 0. It should be noted that the
Casimir effect in connection with a massive photon has been considered for various geometries (see, e.g., Refs. [50-54]).

From symmetries and physical considerations, we can observe that, outside of the perfectly conducting medium, the
renormalized stress-energy tensor takes the form (see Chap. 4 of Ref. [24])

<O|?uv|0>ren = <0|Tpﬂ|0>ren<’7yv - szu)v (152)

[OSAIE
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Geometry of the Casimir effect.

where Z* is the spacelike unit vector orthogonal to the wall.
As a consequence, it is sufficient to determine the trace of
the renormalized stress-energy tensor. From Eq. (124), we
have

(3/2)m*}

1
Q{—mzsﬂ” + S/,T/n +

+0,.

(O 210} en =
(153)

The term ©,” encodes the usual ambiguities discussed in
Sec. IV E. In the Minkowski spacetime it reduces to

1
0, = &7 {am*}, (154)

where a is a constant. From Eq. (153) it is clear that in order
to evaluate <O|7" 10}y, it is sufficient to take the coinci-
dence limit x' — x of Wy, (x.x') and Wy, (x.x') [see
Eqgs. (78a) and (78c) and note that, in the Minkowski
spacetime, the bivector of parallel transport gﬂ”/ (x,x) is
equal to the unit matrix g,” (x, x’)] where W4, (x, x’) is the
regular part of the Feynman propagator Gﬁy(x,x’ ) corre-
sponding to the geometry of the Casimir effect.

B. Stress-energy tensor in the Minkowski spacetime

Let us first consider the vacuum expectation value of the
stress-energy-tensor operator in the ordinary Minkowski
spacetime (i.e., without the boundary wall). This will
permit us to establish some notations and, moreover, to
fix the constant @ appearing in Eq. (154). Due to symmetry
considerations, we have

o 1 A
<0|T/w|0>ren = Z <O|T/Jp|0>ren’7ﬂw (155)

where (0|7,7|0),,, is still given by Eqgs. (153) and (154). Of
course, we must have (0|7,,|0),, =0, and we have
therefore

ren
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<O|Tp/}|0>ren =0 (156)

which plays the role of a constraint for a.

In the Minkowski spacetime, the Feynman propagator
Gy, (x, x') associated with the vector field A, satisfies the
wave equation (23), i.e.,

[0, = m?|Gl, (x, X) = =1, 8*(x, X'), (157)
and its explicit expression is given in terms of a Hankel
function of the second kind by (see, e.g., Chap. 27 of
Ref. [55])

m2 1 (2)
— H{[Z(x,x
87 Z(x,x') ! [2(x.x

Here, Z(x,x') = \/—2m?| ) + ie] with 20(x,x") =
—(T-T")+ (X -X')? +(Y Y’) +(Zz-27"%
We have (see Chap. 9 of Ref. [56])

Gﬁb(x“x/) = )]nuv' (158)

2 .
HY (2) = J1(2) = i1 (2).
where J;(z) and Y(z) are the Bessel functions of the first
and second kinds. By using the series expansions for z — 0
(see Egs. (9.1.10) and (9.1.11) of Ref. [56])

(159)

I 2/4
) (160a)
and
N ==+ 2n(5)0 -5 2wk
Y
Fy(k+2)] k(‘(lf f?), (160b)

[we note that Eq. (160b) is valid for |arg(z)| <=,
and we recall that the digamma function y is defined
by the recursion relation w(z+ 1) =w(z)+ 1/z with
w(1) = —y], we can provide the Hadamard representation
of G4, (x,x’) given by Eq. (158). We can write

_m_ 1 o
87 Z(x,x') !
0 [AV2(xX)
872 |o(x,X) +ie

[2(x, x)]

+V(x,x")Info(x,x') +ie] + W(x,X)|,  (161)

where

A2 (x, %) =1, (162a)
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V(x,x') = Z Viok(x, x') (162b)
k=0
with
(m2/2)k+1
=— 162
Ve =tk 0 (162c)
and
W(x,x') = Wio(x.x') (162d)
k=0
with
(m?/2)k+! m2
Wiy=—-———""—|wk+1 k+2)—In{—)|.
(162e)
By noting that
Wf},,(x, x') = W(x, x’)r]m,, (163)

where W(x, x') is given by Eqgs. (162d) and (162¢), we are
now able to express (0| T/,” |0),,,- From Egs. (78a) and (78c¢)
we have, respectively,

Sw = m?[=1/2+y + (1/2)In(m*/2),, ~ (164)

and

S/wab = m4[_5/16 + (1/4)]/ + (1/8) ln(mz/z)]”m/r]ub'
(165)

Then, from Eq. (153), we obtain
. m*
(O 10) 0 =g 5 {a+9/4=37 = (3/2) n(m?/2)}.(166)

and, necessarily, by using Eq. (156), we have the constraint

a=-9/4+3y+(3/2)In(m?/2). (167)

C. Stress-energy tensor for the Casimir effect

Let us now come back to our initial problem. The
Feynman propagator previously considered is modified
by the presence of the plane boundary wall. The new
Feynman propagator Gﬁy(x, x') can be constructed by the
method of images if we assume, in order to simplify our
problem, a perfectly reflecting wall. It should be noted that
this particular boundary condition is questionable from the
physical point of view. It is logical for the transverse
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components of the electromagnetic field but much less
natural for its longitudinal component. Indeed, for this
component, we could also consider perfect transmission
instead of complete reflection (see Refs. [49,50,57]). We
shall now consider that the Feynman propagator is given by
A x) = G () - g,GL(xF).  (168)
Here, x* = (T'.X',Y',Z') and X* = (T.X,Y, -Z),
while ¢, = (1 —283,). It is important to note that, in
Eq. (168), the index v is not summed. Furthermore, we
remark that the term G4, (x,%’) which is obtained by
replacing x’ by X’ in Eq. (158) as well as its derivatives
are regular in the limit x' — x.
By following the steps of Sec. V B and using the relation
K,(z) = —(1/2)ize=™2H? (ze=7/2)  (169)
which is valid for —z/2 <arg(z) <z as well as the
properties of the modified Bessel functions of the second
kind K, K, and K3 (see Chap. 9 of Ref. [56]), it is easy to
show that the Taylor coefficients s,, and s,,,, involved in

<0|7A"p”|0>rerl are now given by

S = m*[=1/2+y + (1/2) In(m?/2)]n,,

- (m/Z)Kl(sz)qbn/w (170)

and

S;u/ab = m4[_5/16 + (1/4)7 + (1/8) ln(m2/2)]’7uu’7ab
- [(mZ/Z2)K2 (2mz)%’7,w(2’l3a’73b - (1/2)771117)
+(m3/Z)Kl (2mz)qv’7/4u’73a’73b] (171)

By inserting Eqgs. (170) and (171) in the expression (153)
and using the value of « fixed by Eq. (167), we obtain

5 ) 3 (m? m3
(O[T ,710) ren = 32 ?K2(2mz) + 71(1(2’"2) - (172)
and from Eq. (152) we have

1 (m? m3

X (77;41/ - Zﬂzl/>‘

<0|7A1;w|0>ren =
(173)

It is very important to note that this result coincides exactly

with the result obtained by Davies and Toms in the

framework of de Broglie-Proca electromagnetism [49].
In the limit m?> — 0 and for Z # 0, we obtain

I 1

S 174
16722 Z* (174)

<O|Tﬂb|0>ren = (”ﬂv - 2}421/)‘
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In the massless limit, the vacuum expectation value of the
renormalized stress-energy tensor associated with the
Stueckelberg theory diverges like Z™* as the boundary
surface is approached. This result contrasts with that
obtained from Maxwell’s theory (see also Ref. [49]).
Indeed, for this theory, the renormalized stress-energy-
tensor operator vanishes identically. In order to extract that
result from the Stuckelberg theory, we will now repeat the
previous calculations from the expressions (125) and (126)
[as well as (127) and (128)] given in Sec. IV C 4, where we
have proposed an artificial separation of the contributions
associated with the vector field A, and the auxiliary scalar
field @.

D. Separation of the contributions associated with the
vector field A, and the auxiliary scalar field ©

In the Minkowski spacetime, Egs. (127) and (128)
reduce to

(175)

<0|?/)p|0>ren = TA/)/} + T(Dpp + @/}p

with

1 . . .
TA/JP ~ 822 {=s,c"" = m2spp_~_2amp, + 25,77 + 2m*}

(176)

and

. (177)

7O — é{—(l/Z)Dw —mw + (1/4)m).

The term ©,” encodes the usual ambiguities discussed in
Sec. IV E. We can split it in the form

0, =04 oy (178a)
with

0y = 8—71[2{aAm4} (178b)
and

00 = siﬂz {a®m), (178¢)

where a4 and o are two constants associated, respectively,
with the contributions of the vector field A, and the
auxiliary scalar field @. We can then replace Eq. (175) by

(017, 10)sen = (OIT*,210)ren + (017,710}~ (179)

with
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O[T f|0)yen = TA P + 040 (180)

ren

and

O[T /(0)y = T®, + 0%, (181)
where the contributions associated with the vector field A,
and the auxiliary scalar field @ are separated. At first sight,
Th ,/ seems complicated because it involves Taylor coef-
ficients of orders ¢'/2 and o' of W4, (x,x’). In fact, its
expression can be simplified by replacing the sum a,,”" +

s,.”" from the relation (86b), and we obtain

1
T4 = —{-m?s,/ +2m*w + (1/2)m*}

- (182)

which only involves the first Taylor coefficients s,, and w
of order ¢°. So, in order to evaluate (0|7,”|0),., given by
Eq. (175), it is sufficient to take the coincidence limit
X' = x of the state-dependent Hadamard coefficients
W4, (x.x') and W(x,x') associated with the Feynman
propagators G4, (x,x’) and G®(x,x’) corresponding to
the geometry of the Casimir effect.

At first, we must fix the constants o and a® appearing in
Eq. (178). This can be achieved by imposing, in the
Minkowski spacetime without boundary, the vanishing of
(0|74 ,7|0) ., given by Eq. (180) and (0|7% *|0),., given by
Eq. (181). In this spacetime, everything related to the
Feynman propagator G4, (x, x') has been already given in
Sec. VB, while the Feynman propagator G®(x,x’)
associated with the scalar field @ satisfies the wave
equation (25) and is explicitly given by
m2 1 (2)

G(p(x7x/) = _QZ(X x/) Hl

[Z(x,x)]. (183)

By using Egs. (161) and (162), it is easy to see that this
propagator can be represented in the Hadamard form and to
obtain

w=m?[-1/2+y+ (1/2)In(m?/2)].  (184)
We are now able to express (0|7,”|0) .,
(181), (182), (177) and (178), we obtain

From Egs. (180),

(O, 0)n = 1 +3/2 =2 ~In(m2/2)}  (185)

and

(O, 0)y = 25 (a® 4+ 3/4 = 7 = (1/2) (o 2).
(186)
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and, necessarily, the vanishing of these traces provides the
two constraints

ot = =3/2 + 2y + In(m?/2) (187a)

and

a® = =3/4 +y+ (1/2) In(m?/2). (187b)
We now come back to the Casimir effect. The two
Feynman propagators previously considered are modified
by the presence of the plane boundary wall. The new
Feynman propagators can be constructed by the method of
images. Of course, the propagator of the vector field A, is
still given by Eq. (168), while we have
G?(x,x) = G®(x.x) — G®(x,%) (188)
for the propagator of the scalar field ®. In the context of the
Casimir effect, Eq. (184) must be replaced by

w=m?[-1/2+y+ (1/2) In(m?/2)]

- (m/Z)K,(2mZ), (189)

and s, is given by Eq. (170). By inserting Egs. (170) and

(189) in Egs. (182) and (177) and taking into account the
constraints (187a) and (187b), we obtain from Eq. (180)
(0[7*,7]0) ey = 0 (190)

and from Eq. (181)

. 3 (m? m?
(O 0 = o { e Ka2m2) + 2 K 2n2)
(191)

From Eq. (152) we can then see that the vacuum expect-

ation value of the stress-energy-tensor operator associated

with the vector field A, is such that
%A

(07310} ren = 0. (192)

while the vacuum expectation value of the stress-energy-

tensor operator associated with the auxiliary scalar field @
is given by

1 (m? m?
ren — Q {Zsz(sz) +ZK1(2mZ)}

X (77/» - Zyzu)'

(0|7}, |0)
(193)

Of course, the sum of these two contributions permits us to
recover the result (173) of Sec. V C which is also the result
obtained by Davies and Toms in the framework of de
Broglie-Proca electromagnetism [49]. It is moreover
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interesting to note that the contribution (192) associated
with the vector field A, and which has been artificially
separated from the scalar field contribution (see Sec. IV C 4)
vanishes identically for any value of the mass parameter m.
This result coincides exactly with that obtained from
Maxwell’s theory (see also Ref. [49]).

VI. CONCLUSION

In the context of quantum field theory in curved spacetime
and with possible applications to cosmology and to black
hole physics in mind, the massive vector field is frequently
studied. It should be, however, noted that, in this particular
domain, it is its description via the de Broglie-Proca theory
which is mostly considered and that there are very few works
dealing with the Stueckelberg point of view (see, e.g.,
Refs. [58-63], but remark that these papers are restricted
to de Sitter and anti-de Sitter spacetimes or to Roberstson-
Walker backgrounds with spatially flat sections). In this
article, in order to fill a void, we have developed the general
formalism of the Stueckelberg theory on an arbitrary four-
dimensional spacetime (quantum action, Feynman propa-
gators, Ward identities, Hadamard representation of the
Green functions), and we have particularly focussed on
the aspects linked with the construction, for a Hadamard
quantum state, of the expectation value of the renormalized
stress-energy-tensor operator. It is important to note that we
have given two alternative but equivalent expressions for this
result. The first one has been obtained by eliminating from a
Ward identity the contribution of the auxiliary scalar field @
(the so-called Stueckelberg ghost [46]) and only involves
state-dependent and geometrical quantities associated with
the massive vector field A, [see Eq. (123)]. The other one
involves contributions coming from both the massive vector
field and the auxiliary Stueckelberg scalar field [see
Egs. (125)-(126)], and it has been constructed artificially
in such a way that these two contributions are independently
conserved and that, in the zero-mass limit, the massive vector
field contribution reduces smoothly to the result obtained
from Maxwell’s electromagnetism. It is also important to
note that, in Sec. IV E, we have discussed the geometrical
ambiguities of the expectation value of the renormalized
stress-energy-tensor operator. They are of fundamental
importance (see, e.g., in Sec. V, their role in the context
of the Casimir effect).

We intend to use our results in the near future in
cosmology of the very early universe, but we hope they
will be useful for other authors. This is why we shall now
provide a step-by-step guide for the reader who is not
especially interested by the technical details of our work but
who wishes to calculate the expectation value of the
renormalized stress-energy tensor from the expression
(123), i.e., from the expression where any reference to
the Stueckelberg auxiliary scalar field @ has disappeared.
We shall describe the calculation from the Feynman
propagator as well as from the anticommutator function:
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(i) We assume that the Feynman propagator G , (x, x’)
which is given by Eq. (22) and satisfies tﬁe wave
equation (30) [or that the anticommutator

GLIJA (x,x") which is given by Eq. (59) and satisfies
the wave equation (60)] has been determined in a
particular gravitational background and for a Hada-
mard quantum state. In other words, we consider that
the Feynman propagator G;‘U, (x,x") can be repre-
sented in the Hadamard form (35) [or that the

anticommutator GS)A (x,x’) can be represented in
the Hadamard form (55)].

(ii) We need the regular part of the Feynman propagator
Gﬁy, (x,x") [or that of the anticommutator

GA
u/
from the Feynman propagator Gﬁb, (x,x") its singular

part (48a) in order to obtain its regular part (48b) [or

(x,x")] at order o. To extract it, we subtract

we subtract from the anticommutator GI(BA (x,x') its

singular part (68a) in order to obtain its regular part
(68b)]. We have then at our disposal the state-
dependent Hadamard bivector W;‘y, (x,x"). Here, it

is important to note that we do not need the full
expression of the singular part of the Green function
considered, but we can truncate it by neglecting the
terms vanishing faster than o(x, x’) for X’ — x. As a
consequence, we can construct the singular part
(48a) [or the singular part (68a)] by using the
covariant Taylor series expansion (A9) of A/2 up
to order o2, the covariant Taylor series expansion
(71a) of V4 . Up to order o' [see Egs. (72a)—(72¢)]
and the covariant Taylor series expansion (71b) of
Vi, up to order o” [see Eq. (72d)].

(iii) Finally, by using Egs. (78a)—(78c), we can construct
the expectation value of the renormalized stress-
energy tensor given by Eq. (123).

It is interesting to note that, in the literature concerning
Stueckelberg electromagnetism, some authors only focus
on the part of the action associated with the massive vector
field A, and which is given by Eq. (13a) (see, e.g.,
Refs. [58,61,64]). Of course, this is sufficient because they
are mainly interested, in the context of canonical quantiza-
tion, by the determination of the Feynman propagator
associated with this field. However, in order to calculate
physical quantities, it is necessary to take into account the
contribution of the auxiliary scalar field @. It cannot be
discarded. This is very clear in the context of the con-
struction of the renormalized stress-energy-tensor operator
as we have shown in our article and remains true for any
other physical quantity.

To conclude this article, we shall briefly compare the de
Broglie-Proca and Stueckelberg formulations of massive
electomagnetism and discuss the advantages of the
Stueckelberg formulation over the de Broglie-Proca one.
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It is interesting to note the existence of a nice paper by Pitts
[65] where de Broglie-Proca and Stueckelberg approaches
of massive electromagnetism are discussed from a philo-
sophical point of view based on the machinery of the
Hamiltonian formalism (primary and secondary con-
straints, Poisson brackets, ...). Here, we adopt a more
pragmatic point of view. We discuss the two formulations
in light of the results obtained in our article. In our opinion:

(i) De Broglie-Proca and Stueckelberg approaches of
massive electromagnetism are two faces of the same
theory. Indeed, the transition from de Broglie-Proca
to Stueckelberg theory is achieved via the Stueck-
elberg trick (5) which permits us, by introducing
an auxiliary scalar field @, to artificially restore
Maxwell’s gauge symmetry in massive electromag-
netism, but, reciprocally, the transition from Stueck-
elberg to de Broglie-Proca theory is achieved by
imposing the gauge choice @ = 0 [see Eq. (8)]. Asa
consequence, it is not really surprising to obtain the
same result for the renormalized stress-energy-
tensor operator associated with the Casimir effect
(see Sec. V) when we consider this problem in the
framework of the de Broglie-Proca and Stueckelberg
formulations of massive electromagnetism. Indeed,
we can expect that this remains true for any other
quantum quantity.

(ii) However, we can note that with regularization and
renormalization in mind, it is much more interesting
to work in the framework of the Stueckelberg
formulation of massive electromagnetism. Indeed,
this permits us to have at our disposal the machinery
of the Hadamard formalism which is not the case in
the framework of the de Broglie-Proca formulation.
Indeed, due to the constraint (4a), the Feynman
propagator Gﬁb, (x,x") associated with the vector

field A, cannot be represented in the Hadamard
form (35).
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APPENDIX: BISCALARS, BIVECTORS
AND THEIR COVARIANT TAYLOR
SERIES EXPANSIONS

Regularization and renormalization of quantum field
theories in the Minkowski spacetime are most times based
on the representation of Green functions in momentum
space, and, in general, this greatly simplifies reasoning and
calculations. The use of such a representation is not
possible in an arbitrary gravitational background where
the lack of symmetries as well as spacetime curvature
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prevent us from working within the framework of the
Fourier transform. As a consequence, regularization and
renormalization in curved spacetime are necessarily based
on representations of Green functions in coordinate space,
and, moreover, they require extensively the concepts of
biscalars, bivectors and, more generally, bitensors. Thanks
to the work of some mathematicians [66—69] and of DeWitt
[23,44,55,70] and coworkers [28,29], we have at our
disposal all the tools necessary to deal with this subject.

In this short Appendix, in order to make a self-consistent
paper (i.e., to avoid the reader needing to consult the
references mentioned above), we have gathered some
important results which are directly related with the
representations of Green functions in coordinate space
and, more particularly, with the Hadamard representations
of the Green functions appearing in Stueckelberg electro-
magnetism [see Egs. (35), (37), (55) and (58)] which is the
main subject of Sec. III and which plays a crucial role in
Sec. IV. In particular, we define the geodetic interval
o(x,x"), the Van Vleck-Morette determinant A(x,x’) and
the bivector of parallel transport from x to x’ denoted by
G (x,x') (see, e.g., Ref. [44]), and we moreover discuss
the concept of covariant Taylor series expansions for
biscalars and bivectors.

We first recall that 2¢(x, x') is the square of the geodesic
distance between x and x’ which satisfies

206 = o¥o,,. (A1)

We have o(x,x’) <0 if x and x" are timelike related,
o(x,x") = 01if x and x’ are null related and &(x, x') > 0 if x
and x' are spacelike related. We furthermore recall that
A(x,x') is given by

A(x,x') = —[=g(x)] ™'/ det(—0,, (x.x)) [-g(x')] '/
(A2)

and satisfies the partial differential equation

O.0 =4 —2A712A12 gt (A3a)
as well as the boundary condition
IimA(x,x") = 1. (A3b)

X' —x

The bivector of parallel transport from x to x’ is defined by
the partial differential equation

g,ul/;/)a;p =0 (A4a)
and the boundary condition
limg,,/ (x,x") = g, (x). (Adb)

X =X
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The Hadamard coefficients V), (x.x") and Wy, (x, x')
introduced in Eq. (36) and which are bivectors involved in
the Hadamard representation of the Green functions (35)
and (55) or the Hadamard coefficients V,(x,x") and
W, (x,x") introduced in Eq. (38) and which are biscalars
involved in the Hadamard representation of the Green
functions (37) and (58) cannot in general be determined
exactly. They are solutions of the recursion relations (39a),
(39b) and (40) or (43a), (43b) and (44), and, following
DeWitt [44,70], we can look for the solutions of these
equations in the form of covariant Taylor series expansions
for x’ in the neighborhood of x. This is the method we use
in Sec. III. The series defining the biscalars V ,(x, x’) and
W, (x,x’) can be written in the form

T(x,x') = t(x) = t,, (x)o1 (x, X')

1
(900 (5,0 (5,0)
1
3!
1
41
Xa;a4(.x, x/) _|_ e,

Fayasar ()07 (5, 2)0 (. X) (x. )

+ 71 larasasa, ()0 (0, )02 (x, X)o7 (x, X)

(AS)

By construction, the coefficients 7, ., (x) are symmetric in
the exchange of the indices a...a,, ie. f4. .4 (%)=
I 1”_ap>(x), and, moreover, by requiring the symmetry of
T(x,x') in the exchange of x and X, ie,
T(x,x") = T(x', x), the coefficients #(x) and 7, ., (x) with
p=1,2,... are constrained. The symmetry of T(x,x’)
permits us to express the odd coefficients of the covariant
Taylor series expansion of 7T'(x,x’) in terms of the even
ones. We have for the odd coefficients of lowest orders (see,
e.g., Ref. [71])

ta, = (1/2)t4,,

layayay = (3/2)t(a1a2;a3) - (1/4)t;(a1a2a3)'

(Ab6a)
(A6b)

Similarly, the series defining the bivectors V;‘ w (x,x") and
W4 (x,x) can be written in the form
)17%
Tﬂy('x’ xl) = gl/l/ (xv x/)Tllz/ (X, xl)
= tﬂl/('x) - t/wal (x)o.;a] <x’ X/>
+ 5 t;wal a, (x)g;u] (X, x/)a;llz ()C, X/)

1

- y Lwaazas

T (A7)

()6 (x, X' )62 (x, X' )63 (x, X)

By construction, the coefficients

t/u/al...a,, (X) are

symmetric in the exchange of indices ai...ap, 1.€.,
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tway...a,(X) = tu(a,...a))(X), and by requiring the symmetry of 7,,(x,x') in the exchange of x and ¥, ie,
T (x,x") =T,,(x',x), the coefficients #,,(x) and #,,q,.. 4, (x) with p=1,2,... are constrained. The symmetry of
T, (x,x") permits us to express the coefficients of the covariant Taylor series expansion of T, (x,x) in terms of their

symmetric and antisymmetric parts in x and v. We have for the coefficients of lowest orders (see, e.g., Refs. [35,39])

Y = L) (A8a)

twa, = (1/2)tgwyia, + Hway» (A8b)

hwayay = Hw)aras T Hpw)(ay:an)s (A8c)

twayaray = 3/ 2wy aarias) = (/M) ayaras) T Hulayaras (A8d)

In order to solve the recursion relations (39a), (39b), (40), (43a), (43b) and (44) but also to do most of the calculations in
Secs. I1I and IV and, in particular, to obtain the explicit expression of the renormalized stress-energy-tensor operator, it is
necessary to have at our disposal the covariant Taylor series expansions of the biscalars A/2, A=1/2A1/2_ 5 and JAY/? and
of the bivectors o.,, and Ug,,, but also of some bitensors such as 6.,,, g,,/., and g,,/.,. Here, we provide these expansions
up to the orders necessary in this article (for higher orders, see Refs. [71,72]). We have

1 . 1 1 1
Al/z 1 + 12Ra1a2 o' _ﬁRalazlwaalgazg% + |:80 ajaz;azay +%RpalqazRqﬂ3pa4 +@

A1 5382 5383 554
RalazRaW]a oc“o%o

1 1 1 e
- [%Ralaz;amws +%RpmqazRqa3Pa4;a5 +ﬁRa1azRa3a4;a5] o100 Moo + 0(0'3), (A9)
A2 :1R+ PDR —LR +iRR aRpa, + = ! RPYR +LRP4’ R }0;“10;“2
6 40 aa 120 ajay 72 aja; 30 pa; 60 paqa; 60 aytrpqray
1 1 1 » 1 » p
- _%R;aluza_; +%(DRala2);a3 +mRRaluz;a3 _ER u,Rpaz;a3 +@R q;alR a,pas
1 1 L
150 KR apasas G R w Ryrasan | 071020 + O(c) (A10)
1
ATI2AL2, g — gRalaz o6 4 0(63/?), (All)
1 1Ay ~aa 3/2
O = 9w _ER/mlbazo-’ 1o + 0(6 )’ (AIZ)
/ 1 . . ’%/2
guv O/ = —Guw — ER;mlvazG’a]G’az + O(OR )’ (A13)
v 1 1 1Ay 3/2
9 Gu'p = _ERpwpalG + 6R;w/)a| a0’ Lo + 0(0 )v (A14)
VvV, p 1 a 1 1) i 3/2
9y g/) g;u/;/)/ = _ER,UV/)(J]O" : +§R;w/)u];a20’ lo ™ + 0(0 ) (AIS)
and
v 2 a 1 1 p 1 Pq 14y ~a 3/2

9y Dg;u/ = gRaIUl;u]U '+ al[y vla, R;wpalR a _ZRMpqalRu a, |0 lo + 0(6 ) (A16)
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