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Free-cut elimination in linear logic and an
application to a feasible arithmetic∗

Patrick Baillot and Anupam Das

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Abstract
We prove a general form of ‘free-cut elimination’ for first-order theories in linear logic, yielding normal
forms of proofs where cuts are anchored to nonlogical steps. To demonstrate the usefulness of this result,
we consider a version of arithmetic in linear logic, based on a previous axiomatisation by Bellantoni and
Hofmann. We prove a witnessing theorem for a fragment of this arithmetic via the ‘witness function
method’, showing that the provably convergent functions are precisely the polynomial-time functions.
The programs extracted are implemented in the framework of ‘safe’ recursive functions, due to Bellantoni
and Cook, where the ! modality of linear logic corresponds to normal inputs of a safe recursive program.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Free-cut elimination1 is a normalisation procedure on formal proofs in systems including nonlogical
rules, e.g. the axioms and induction rules in arithmetic, introduced in [24]. It yields proofs in a form
where essentially each cut step has at least one of its cut formulas principal for a nonlogical step. It is
an important tool for proving witnessing theorems in first-order theories, and in particular it has been
extensively used in bounded arithmetic for proving complexity bounds on representable functions, by
the witness function method [9].

Linear logic [13] can be seen as a decomposition of both intuitionistic and classical logic, based
on a thorough analysis of duplication and erasure of formulas in proofs (i.e. the structural rules),
and has been particularly useful in proofs-as-programs correspondences, proof search [1] and logic
programming [22]. By controlling structural rules with designated modalities, the exponentials, linear
logic has allowed for a fine study of complexity bounds in the Curry-Howard interpretation, leading
to variants with polynomial-time complexity [15] [14] [16].

In this work we explore how the finer granularity of linear logic can be used to control complexity
in first-order theories, restricting the provably convergent functions rather than the typable terms as
in the propositional setting. We believe this to be of general interest, and in particular to understand
the effect of substructural restrictions on nonlogical rules, e.g. induction, in mathematical theories.
Some related works exist, in particular the naïve set theories of Girard and Terui [20] [25], but overall
it seems that the first-order proof theory of linear logic is still rather undeveloped; in particular, to
our knowledge, there seems to be no general form of free-cut elimination available in the literature
(although special cases occur in [21] and [3]). Thus our first contribution, in Sect. 3, will be to provide
general sufficient conditions on nonlogical axioms and rules for a first-order linear logic system to
admit free-cut elimination.

We illustrate the usefulness of such a result by proving a witnessing theorem for a fragment
of arithmetic in linear logic, showing that the provably convergent functions are precisely the

∗ This work was supported by by the ANR Project ELICA ANR-14-CE25-0005 and by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX-
0007) operated by the French National Research Agency (ANR).

1 Also known as anchored or directed completeness, partial cut-elimination or weak cut-elimination in other works.
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polynomial-time computable functions (Sects. 6 and 7), henceforth denoted FP. Our starting point
is an axiomatisation based on a modal logic due to Bellantoni and Hofmann [7], called A1

2, already
known to characterise FP. This approach, and that of [18] before, differs from the bounded arithmetic
approach in that it does not employ bounds on quantifiers, but rather restricts nonlogical rules by
substructural features of the modality [7] or by a ramification of formulas [19]. The proof technique
employed in both cases is a realisability argument, for which [18] operates directly in intuitionistic
logic, whereas [7] obtains a result for a classical logic via a double-negation translation, relying on a
higher-type generalisation of safe recursion [6].

We show that Buss’ witness function method can be employed to extract functions directly for
classical systems similar to A1

2 based in linear logic, by taking advantage of free-cut elimination.
The De Morgan normal form available in classical (linear) logic means that the functions we extract
remain at ground type, based on the usual safe recursive programs of [7]. A similar proof method was
used by Cantini in [11], who uses combinatory terms as the model of computation as opposed to the
equational specifications in this work.2

Our result holds for an apparently weaker theory than A1
2, with induction restricted to positive

existential formulas in a way similar to Leivant’s RT0 system in [19], but the precise relationship
between the two logical settings is unclear. We conclude in Sect. 8 with a survey of related work and
some avenues for further applications of the free-cut elimination result.

This is a version of the article [4] with appendices containing further proof details in the appen-
dices, Sects. A-E. Everything else remains the same, with the exception of this paragraph.

2 Preliminaries

We formulate linear logic without units with usual notation for the multiplicatives, additives and
exponentials from [13]. We restrict negation to the atoms, thus formulae are always in De Morgan
normal form, and this is reflected in the sequent system below. We have included rules for arbitrary
weakening for working in affine settings.

I Definition 1. The sequent calculus for (affine) linear logic is as follows:

⊥-l
p, p⊥ `

id
p ` p

⊥-r
` p, p⊥

Γ ` ∆, A Σ, A ` Π
cut

Γ, Σ ` ∆, Π

Γ, A ` ∆ Σ, B ` Π
O-l

Γ, Σ, A O B ` ∆, Π
Γ, A, B ` ∆

⊗-l
Γ, A⊗B ` ∆

Γ ` ∆, A, B
O-r

Γ ` ∆, A O B

Γ ` ∆, A Σ ` Π, B
⊗-r

Γ, Σ ` ∆, Π, A⊗B

Γ, A ` ∆ Γ, B ` ∆
⊕-l

Γ, A⊕B ` ∆
Γ, Ai ` ∆

&-l
Γ, A1&A2 ` ∆

Γ ` ∆, Ai
⊕-r

Γ ` ∆, A1 ⊕A2

Γ ` ∆, A Γ ` ∆, B
&-r

Γ ` ∆, A&B

!Γ, A `?∆
?-l

!Γ, ?A `?∆
Γ, A ` ∆

!-l
Γ, !A ` ∆

Γ ` ∆, A
?-r

Γ ` ∆, ?A

!Γ `?∆, A
!-r

!Γ `?∆, !A

Γ ` ∆
wk-l

Γ, A ` ∆
Γ, !A, !A ` ∆

cntr-l
Γ, !A ` ∆

Γ ` ∆
wk-r

Γ ` ∆, A

Γ ` ∆, ?A, ?A
cntr-r

Γ ` ∆, ?A

Γ, A(a) ` ∆
∃-l

Γ,∃x.A(x) ` ∆
Γ, A(t) ` ∆

∀-l
Γ, ∀x.A(x) ` ∆

Γ ` ∆, A(t)
∃-r

Γ ` ∆,∃x.A(x)
Γ ` ∆, A(a)

∀-r
Γ ` ∆, ∀x.A(x)

2 This turns out to be important due to the handling of right-contraction steps in the witnessing argument.
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where p is atomic, i ∈ {1, 2}, t is a term and the eigenvariable a does not occur free in Γ or ∆.

We do not formally include a symbol for implication but we sometimes writeA( B as shorthand
for A⊥ O B, where A⊥ is the De Morgan dual of A. We often omit brackets under associativity, and
when writing long implications we assume the right-most bracketing.

We will use standard terminology to track formulae in proofs, as presented in e.g. [10]. In
particular, each rule has a distinguished principal formula, e.g. A OB in rule O-l (and similarly for
all rules for connectives) and ?A in rule cntr-r , and active formulae, e.g. A and B in O-l and so on.
These induce the notions of (direct) descendants and ancestors in proofs, as in [10].

2.1 Theories and systems

A language is a set of nonlogical symbols (i.e. constants, functions, predicates) and a theory a set of
closed formulae over some language. We assume that all theories contain the axioms of equality:

∀x.x = x , ∀x, y.(x = y ( y = x) , ∀x, y, z.(x = y ( y = z ( x = z)
∀~x, ~y.(~x = ~y ( f(~x) = f(~y)) , ∀~x, ~y.(~x = ~y ( P (~x) ( P (~y)) (1)

where ~x = ~y is shorthand for x1 = y1 ⊗ · · · ⊗ xn = yn.
We consider systems of ‘nonlogical’ rules extending Dfn. 1, which we write as follows,

init
` A

{!Γ,Σi ` ∆i, ?Π}i∈I
(R)

!Γ,Σ′ ` ∆′, ?Π

where, in each rule (R), I is a finite possibly empty set (indicating the number of premises) and we
assume the following conditions and terminology:
1. In (R) the formulas of Σ′,∆′ are called principal, those of Σi,∆i are called active, and those of

!Γ, ?Π are called context formulas. In init A is called a principal formula.
2. Each rule (R) comes with a list a1, . . . , ak of eigenvariables such that each aj appears in exactly

one Σi,∆i (so in some active formulas of exactly one premise) and does not appear in Σ′,∆′ or
!Γ, ?Π.

3. A system S of rules must be closed under substitutions of free variables by terms (where these
substitutions do not contain the eigenvariables aj in their domain or codomain).

4. In (R) the sequence Σ′ (resp. ∆′) does not contain any formula of the shape ?B (resp. !B), and
in init the formula A is not of the form !B.

Conditions 2 and 3 are actually standard for nonlogical rules, independently of the logical setting,
c.f. [5]. Condition 2 reflects the intuitive idea that often we need in our nonlogical rules a notion of
bound variables in the active formulas (typically for induction rules), and the eigenvariables play this
role. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
Condition 4 and the conventions of 1 is peculiar to our linear logic setting in order to carry out certain
proof-theoretic manipulations, mainly free-cut elimination in Sect. 3.

Observe that init rules can actually be seen as particular cases of (R) rules, with no premise, so
in the following we will only consider (R) rules.

To each theory T we formally associate the system of init rules ` A for each A ∈ T .3 A proof
in such a system will be called a T -proof, or just proof when there is no risk of confusion.

I Remark (Semantics). The models we consider are usual Henkin models, with linear connectives
interpreted by their classical counterparts. Consequently, we do not have any completeness theorem
for our theories, but we do have soundness.

3 Notice that this naively satisfies condition 3 since theories consist of only closed formulae.
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2.2 Some basic proof-theoretic results

We briefly survey some well-known results for theories of linear logic.
A rule is invertible if each of its upper sequents is derivable from its lower sequent.

I Proposition 2 (Invertible rules, folklore). The rules ⊗-l,O-r ,O-l,⊗-r ,∃-l,∀-r are invertible.

We will typically write c-inv to denote the inverse derivation for a logical symbol c.
We also rely on the following result, which is also folklore but appeared before in [2].

I Theorem 3 (Deduction, folklore). For any theory T and closed formula A, T ∪ {A} proves B
if and only if T proves !A( B.

For example, we can work in the following quantifier-free system for the theory of equality:

I Proposition 4 (Equality rules). (1) is equivalent to the following system of rules,

` t = t s = t ` t = s r = s, s = t ` r = t ~s = ~t ` f(~s) = f(~t) ~s = ~t, P (~s) ` P (~t)

where r, s, t range over terms.

3 Free-cut elimination in linear logic

We need first to define which cuts will remain in proofs after reduction. Since our nonlogical rules
may have many principal formulae on which we permit cuts to be anchored, we need a slightly more
general notion than ‘principal formula’.

I Definition 5. We define in a mutual inductive way the notion of hereditarily principal formula
and anchored cut in a S-proof for a system S:

A formula A in a sequent Γ ` ∆ is hereditarily principal for a rule (S), if either (i) the sequent is
in the conclusion (S) and A is principal in it, or (ii) the sequent is in the conclusion of an anchored
cut, the direct ancestor of A in the corresponding premise is hereditarily principal for the rule (S),
and the rule (S) is nonlogical.
A cut-step is an anchored cut if either of its cut-formulas A in the two premises are both
hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step
and the other one is principal for a logical step.

As a consequence of this definition, an anchored cut on a formula A has the following properties:
At least one of the two premises of the cut has above it a sub-branch of the proof which starts
(top-down) with a nonlogical rule (R) with A as one of its principal formulas, and then a sequence
of anchored cuts in which A is part of the context.
The other premise is either of the same form, or a logical step with principal formula A.

A cut which is not anchored will also be called a free-cut.
Due to condition 4 in Sect. 2, we have the following:

I Lemma 6. A formula occurrenceA on the LHS (resp. RHS) of a sequent and hereditarily principal
for a nonlogical rule (R) cannot be of the form A =?A′ (resp. A =!A′).

Now we can state the main result of this section:

I Theorem 7 (Free-cut elimination). Given a system S , any S-proof π can be transformed into a
S-proof π′ with same conclusion sequent and without any free-cuts.
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The proof proceeds in a way similar to the classical proof of cut elimination for linear logic, but
eliminating only free-cuts and verifying compatibility with our notion of nonlogical rule, in particular
for the commutation cases.

First, observe that the only rules in which there is a condition on the context are the following
ones: (∀-r), (∃-l), (!-r), (?-l), (R). These are thus the rules for which the commutation with cut
steps are not straightforward. Commutations with logical rules other than (!-r), (?-l) are done in the
standard way, as in pure linear logic:4

I Lemma 8 (Standard commutations). Any logical rule distinct from (!-r), (?-l) can be commuted
top-down with any cut c. If the logical rule is binary this will produce two cuts.

For rules (!-r), (?-l), (R) we establish our second key lemma:

I Lemma 9 (Key commutations). A cut of the following form, where ?A is non principal for (R),
can be commuted with the (R) rule:

{!Γ,Σi ` ∆i, ?A, ?Π}i∈I
(R)

!Γ,Σ′ ` ∆′, ?A, ?Π
?A, !Γ′ `?Π′

cut

!Γ′,Γ,Σ′ ` ∆′, ?A, ?Π, ?Π′

Similarly if (R) is replaced with (!-r), with ?A in its RHS context, and also for the symmetric
situations: cut on the LHS of the conclusion of an (R) or a (?-l) step on a (non-principal) formula
!A, with a sequent !Γ′ `?Π′, !A.

Proof. The left subderivation can be replaced by:

!Γ,Σi ` ∆i, ?A, ?Π ?A, !Γ′ `?Π′
cut

{!Γ′, !Γ,Σi ` ∆i, ?Π, ?Π′}i∈I
(R)

!Γ′, !Γ,Σ′ ` ∆′, ?Π, ?Π′

Here if an eigenvariable in Σi,∆i happens to be free in !Γ′, ?Π′ we rename it to avoid the collision,
which is possible because by condition 2 on non-logical rules these eigenvariables do not appear in
Σ′,∆′ or !Γ, ?Π. So the occurrence of (R) in this new subderivation is valid.

Similarly for the symmetric derivation with a cut on the LHS of the conclusion of an (R) on a
formula !A. The analogous situations with rules (!-r) and (?-l) are handled in the same way, as usual
in linear logic. J

Now we can prove the main free-cut elimination result:

Proof sketch of Thm. 7. Given a cut step c in a proof π, we call degree deg(c) the number of
connectives and quantifiers of its cut-formula. Now the degree of the proof deg(π) is the multiset of
the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering.
The demonstration proceeds by induction on the degree deg(π). For a given degree we proceed with
a sub-induction on the height h(π) of the proof.

Consider a proof π of non-null degree. We want to show how to reduce it to a proof of strictly
lower degree. Consider a top-most non-anchored cut c in π, that is to say such that there is no

4 Note that, for the (∀-r), (∃-l) rules, there might also be a global renaming of eigenvariables if necessary.
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non-anchored cut above c. Let us call A the cut-formula, and (S1) (resp. (S2)) the rule above the left
(resp. right) premise of c.

S1
Γ ` ∆, A

S2
Σ, A ` Π

c cut
Γ,Σ ` ∆,Π

Intuitively we proceed as follows: if A is not hereditarily principal in one of its premises we try to
commute c with the rule along its left premise (S1), and if not possible then commute it with the rule
along its right premise (S2), by Lemmas 6 and 8. If A is hereditarily principal in both premises we
proceed with a cut-elimination step, as in standard linear logic. For this second step, the delicate part
is the elimination of exponential cuts, for which we use a big-step reduction. This works because the
contexts in the nonlogical rules (R) are marked with ! (resp. ?) on the LHS (resp. RHS). J

4 A variant of arithmetic in linear logic

For the remainder of this article we will consider an implementation of arithmetic in the sequent
calculus based on the theory A1

2 of Bellantoni and Hofmann in [7]. The axioms that we present are
obtained from A1

2 by using linear logic connectives in place of their analogues, calibrating the use of
additives or multiplicatives in order to be compatible with the completeness and witnessing arguments
that we present in Sects. 6 and 7. We also make use of free variables and the structural delimiters of
the sequent calculus to control the logical complexity of nonlogical rules.

We will work in the affine variant of linear logic, which validates weakening: (A ⊗ B) ( A.
There are many reasons for this; essentially it does not have much effect on complexity while also
creating a more robust proof theory. For example it induces the equivalence: !(A⊗B) ≡ (!A⊗!B).5

4.1 Axiomatisation and an equivalent rule system

We consider the language L consisting of the constant symbol ε, unary function symbols s0, s1 and the
predicate symbol W , together with function symbols f, g, h etc. L-structures are typically extensions
of W = {0, 1}∗, in which ε, s0, s1 are intended to have their usual interpretations. The W predicate
is intended to indicate those elements of the model that are binary words (in the same way as Peano’s
N predicate indicates those elements that are natural numbers).

As an abbreviation, we write W (~t) for
⊗|~t|

i=1W (ti).

I Remark (Interpretation of natural numbers). Notice that the set N+ of positive integers is
L-isomorphic to W under the interpretation {ε 7→ 1, s0(x) 7→ 2x, s1(x) 7→ 2x + 1}, so we could
equally consider what follows as theories over N+.

The ‘basic’ axioms are essentially the axioms of Robinson arithmetic (or Peano Arithmetic without
induction) without axioms for addition and multiplication. Let us write ∀xW .A for ∀x.(W (x) ( A)
and ∃xW .A for ∃x.(W (x)⊗A). We use the abbreviations ∀x!W and ∃x!W similarly.

I Definition 10 (Basic axioms). The theory BASIC consists of the following axioms:

W (ε)
∀xW .W (s0x)
∀xW .W (s1x)

∀xW .(ε 6= s0x⊗ ε 6= s1x)
∀xW , yW .(s0x = s0y ( x = y)
∀xW , yW .(s1x = s1y ( x = y)

∀xW .s0x 6= s1x

∀xW .(x = ε⊕ ∃yW .x = s0y ⊕ ∃yW .x = s1y)
∀xW .(W (x)⊗W (x))

5 Notice that the right-left direction is already valid in usual linear logic, but the left-right direction requires weakening.
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These axioms insist that, in any model, the set induced by W (x) has the free algebra W as an
initial segment. Importantly, there is also a form of contraction for the W predicate. We will consider
theories over BASIC extended by induction schemata:

I Definition 11 (Induction). The IND schema consists of the following axioms,

A(ε) (!(∀x!W .(A(x) ( A(s0x))) (!(∀x!W .(A(x) ( A(s1x))) ( ∀x!W .A(x)

for each formula A(x).
For a class of formulae Ξ, we write Ξ-IND to denote the set of induction axioms when A(x) ∈ Ξ.
We write IΞ to denote the theory consisting of BASIC and Ξ-IND.

I Proposition 12 (Equivalent rules). BASIC is equivalent to the following set of rules,

Wε
`W (ε)

W0
W (t) `W (s0t)

ε0
W (t) ` ε 6= s0t

s0
W (s), W (t), s0s = s0t ` s = t

inj
W (t) ` s0t 6= s1t

W1
W (t) `W (s1t)

ε1
W (t) ` ε 6= s1t

s1
W (s), W (t), s1s = s1t ` s = t

surj
W (t) ` t = ε⊕ ∃yW .t = s0y ⊕ ∃yW .t = s1y

Wcntr
W (t) `W (t)⊗W (t)

and IND is equivalent to,

!W (a), !Γ, A(a) ` A(s0a), ?∆ !W (a), !Γ, A(a) ` A(s1a), ?∆
IND

!W (t), !Γ, A(ε) ` A(t), ?∆

where, in all cases, t varies over arbitrary terms and the eigenvariable a does not occur in the lower
sequent of the IND rule.

Note, in particular, that since this system of rules is closed under substitution of terms for free
variables, free-cut elimination, Thm. 7, applies.

When converting from an IND axiom instance to a rule instance (or vice-versa) the induction
formula remains the same. For this reason when we consider theories that impose logical restrictions
on induction we can use either interchangeably.

I Remark. Usually the induction axiom is also equivalent to a formulation with a designated premise
for the base case, but this is not true in the linear logic setting since the proof that (4) simulates the
one we gave relies on contraction on the formula A(ε), which is not in general available, and so (4)
is somewhat weaker. This distinction turns out to be crucial in Sect. 6, namely when proving the
convergence of functions defined by predicative recursion on notation.

4.2 Provably convergent functions

As in the work of Bellantoni and Hofmann [7] and Leivant before [18], our model of computation
is that of Herbrand-Gödel style equational specifications. These are expressive enough to define
every partial recursive function, which is the reason why we also need the W predicate to have a
meaningful notion of ‘provably convergent function’.

I Definition 13 (Equational specifications and convergence). An equational specification
(ES) is a set of equations between terms. We say that an ES is coherent if the equality between any
two distinct ground terms cannot be proved by equational logic.

The convergence statement Conv(f, E) for an equational specification E and a function symbol f
(that occurs in E) is the following formula:⊗

A∈E
!∀~x.A ( ∀~x!W .W (f(~x))
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The notion of coherence appeared in [18] and it is important to prevent a convergence statement
from being a vacuous implication. In this work we will typically consider only coherent ESs, relying
on the following result which is also essentially in [18]:

I Proposition 14. The universal closure of any coherent ES E has a model satisfying BASIC +IND.

One issue is that a convergence statement contains universal quantifiers, which is problematic
for the extraction of functions by the witness function method later on. We avoid this problem by
appealing to the deduction theorem and further invertibility arguments:

Let us write E for the closure of a specification E under substitution of terms for free variables.

I Lemma 15. A system S proves Conv(f, E) if and only if S ∪ E proves !W (~a) `W (f(~a)).

Proof sketch. By deduction, Thm. 3, and invertibility arguments. J

Notice that the initial rules from E are also closed under term substitution, and so compatible with
free-cut elimination, and that E and W (~a) `W (f(~a)) are free of negation and universal quantifiers.

4.3 W -guarded quantifiers, rules and cut-reduction cases

We consider a quantifier hierarchy here analogous to the arithmetical hierarchy, where each class is
closed under positive multiplicative operations. In the scope of this work we are only concerned with
the first level:

I Definition 16. We define ΣW+

0 as the class of multiplicative formulae that are free of quantifiers
where W occurs positively.6 The class ΣW+

1 is the closure of ΣW+

0 by ∃, O and ⊗.

For the remainder of this article we mainly work with the theory IΣW+

1 , i.e. BASIC +ΣW+

1 -IND.
It will be useful for us to work with proofs using the ‘guarded’ quantifiers ∀xW and ∃xW in place

of there unguarded counterparts, in particular to carry out the argument in Sect. 7. Therefore we
define the following rules, which are already derivable:

Γ,W (a) ` ∆, A(a)
Γ ` ∆,∀xW .A(x)

Γ, A(t) ` ∆
Γ,W (t),∀xWA(x) ` ∆

Γ,W (a), A(a) ` ∆
Γ,∃xWA(x) ` ∆

Γ ` ∆, A(t)
Γ,W (t) ` ∆,∃xW .A(x)

We now show that these rules are compatible with free-cut elimination.

I Proposition 17. Any cut between the principal formula of a quantifier rule above and the principal
formula of a logical step is reducible.

Proof. For a cut on ∀xW .A(x), the reduction is obtained by performing successively the two
reduction steps for the ∀ and ( connectives. The case of ∃xWA(x) is similar. J

I Corollary 18 (Free-cut elimination for guarded quantifiers). Given a system S, any S-proof
π using ∃xW and ∀xW rules can be transformed into free-cut free form.

As a consequence of this Corollary observe that any IΣWi -proof (ot IΠW
i -proof) can be trans-

formed into a proof which is free-cut free and whose formulas contain only W -guarded quantifiers.

6 Since our proof system is in De Morgan normal form, this is equivalent to saying that there is no occurrence of W⊥.
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5 Bellantoni-Cook characterisation of polynomial-time functions

We recall the Bellantoni-Cook algebra BC of programs defined by safe (or predicative) recursion on
notation [6]. These will be employed for proving both the completeness (all polynomial time functions
are provably convergent) and the soundness result (all provably total functions are polynomial time)
of IΣW+

1 . We consider function symbols f over the domain W with sorted arguments (~u; ~x), where
the inputs ~u are called normal and ~x are called safe.

I Definition 19 (BC programs). BC is the set of programs generated as follows:
1. The constant functions εk which takes k arguments and outputs ε ∈W.
2. The projection functions πm,nk (x1, . . . , xm;xm+1, . . . , xm+n) := xk for n,m ∈ W and 1 ≤

k ≤ m+ n.
3. The successor functions si(;x) := xi for i = 0, 1.

4. The predecessor function p(;x) :=
{
ε if x = ε

x′ if x = x′i
.

5. The conditional function

C(; ε, yε, y0, y1) := yε C(;x0, yε, y0, y1) := y0 C(;x1, yε, y0, y1) := y1

6. Predicative recursion on notation (PRN). If g, h0, h1 are in BC then so is f defined by,

f(0, ~v; ~x) := g(~v; ~x)
f(siu,~v; ~x) := hi(u,~v; ~x, f(u,~v; ~x))

for i = 0, 1, so long as the expressions are well-formed.
7. Safe composition. If g,~h,~h′ are in BC then so is f defined by,

f(~u; ~x) := g(~h(~u; );~h′(~u; ~x))

so long as the expression is well-formed.

We will implicitly identify a BC program with the equational specification it induces. The main
property of BC programs is:

I Theorem 20 ([6]). The class of functions representable by BC programs is FP.

Actually this property remains true if one replaces the PRN scheme by the following more general
simultaneous PRN scheme [8]:

(f j)1≤j≤n are defined by simultaneous PRN scheme from (gj)1≤j≤n, (hj0, h
j
1)1≤j≤n if for

1 ≤ j ≤ n we have:

f j(0, ~v; ~x) := gj(~v; ~x)
f j(siu,~v; ~x) := hji (u,~v; ~x, ~f(u,~v; ~x))

for i = 0, 1, so long as the expressions are well-formed.
Consider a well-formed expression t built from function symbols and variables. We say that a

variable y occurs hereditarily safe in t if, for every subexpression f(~r;~s) of t, the terms in ~r do not
contain y. For instance y occurs hereditarily safe in f(u; y, g(v; y)), but not in f(g(v; y);x).

I Proposition 21 (Properties of BC programs). We have the following properties:
1. The identity function is in BC.
2. Let t be a well-formed expression built from BC programs and variables, denote its free variables

as {u1, . . . , un, x1, . . . , xk}, and assume for for each 1 ≤ i ≤ k, xi is hereditarily safe in t. Then
the function f defined by f(u1, . . . , un, x1, . . . , xk) := t is a BC program.

3. If f is a BC program, then the program g(~u, v; ~x) defined as f(~u; v, ~x) is also a BC program.
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6 Convergence of Bellantoni-Cook programs in IΣW +
1

In this section we show that IΣW+

0 , and so also IΣW+

1 , proves the convergence of any equational
specification induced by a BC program, hence any function in FP. The underlying construction of
the proof here is similar in spirit to those occurring in [11] and [18]. In fact, like in those works, only
quantifier-free positive induction is required, but here we moreover must take care to respect additive
and multiplicative behaviour of linear connectives.

We will assume the formulation of BC programs with regular PRN, not simultaneous PRN.

I Theorem 22. If E is a BC program defining a function f , then IΣW+

0 proves Conv(f, E).

Proof sketch. We appeal to Lemma 15 and show that E ∪ IΣW+

0 proves ∀~u!W .∀~xW .W (f(~u; ~x)).
We proceed by induction on the structure of a BC program for f , and sketch only the key cases here.

Suppose f(u,~v; ~x) is defined by PRN from functions g(~v; ~x), hi(u,~v; ~x, y). From the inductive
hypothesis for g, we construct the following proof,

` ∀~v!W .∀~xW .W (g(~v; ~x))
α

!W (~v), W (~x) `W (g(~v; ~x))
β

!W (~v), W (~x) `W (f(ε,~v; ~x))
(2)

where α is purely logical and β is obtained from E and equality. We also construct the proofs,

id
W (~x) `W (~x)

` ∀u!W , ~v!W .∀~xW , yW .W (hi(u,~v; ~x, y))
α

!W (u), !W (~v), W (~x), W (f(u,~v; ~x)) `W (hi(u,~v; ~x, f(u,~v; ~x)))
β

!W (u), !W (~v), W (~x), W (f(u,~v; ~x)) `W (f(siu,~v; ~x))
⊗-r

!W (a), !W (~v), W (~x), W (~x), W (f(a,~v; ~x)) `W (~x)⊗W (f(sia,~v; ~x))
cntr-l

!W (a), !W (~v), W (~x), W (f(a,~v; ~x)) `W (~x)⊗W (f(sia,~v; ~x))
⊗-l

!W (a), !W (~v), W (~x)⊗W (f(a,~v; ~x)) `W (~x)⊗W (f(sia,~v; ~x))

(3)

from the inductive hypotheses for hi, where α and β are similar to before.
Finally we compose these proofs as follows:

!W (~v), W (~x) `W (f(ε,~v; ~x))

{!W (a), !W (~v), W (~x)W (f(a,~v; ~x)) `W (~x)⊗W (f(siu,~v; ~x))}iIND
!W (u), !W (~v), W (~x)⊗W (f(ε,~v; ~x)) `W (~x)⊗W (f(u,~v; ~x))

⊗-inv
!W (u), !W (~v), W (~x), W (f(ε,~v; ~x)) `W (~x)⊗W (f(u,~v; ~x))

wk
!W (u), !W (~v), W (~x), W (f(ε,~v; ~x)) `W (f(u,~v; ~x))

cut
!W (u), !W (~v), !W (~v), W (~x), W (~x) `W (f(u,~v; ~x))

cntr-l
!W (u), !W (~v), W (~x) `W (f(u,~v; ~x))

∀-r
` ∀u!W , ~v!W .∀~xW .W (f(u,~v; ~x))

for i = 0, 1, where the steps ⊗-inv are obtained from invertibility of ⊗-l .
Safe compositions are essentially handled by many cut steps, using α and β like derivations again

and, crucially, left-contractions on both !W and W formulae.7 The initial functions are routine.
J

7 In the latter case, strictly speaking, we mean cuts against Wcntr .
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7 Witness function method

We now prove the converse to the last section: any provably convergent function in IΣW+

1 is
polynomial-time computable using the witness function method (WFM) [9].

The WFM differs from realisability and Dialectica style witnessing arguments mainly since it
does not require functionals at higher type. Instead a translation is conducted directly from a proof in
De Morgan normal form, i.e. with negation pushed to the atoms, relying on classical logic.

The combination of De Morgan normalisation and free-cut elimination plays a similar role to the
double-negation translation, and this is even more evident in our setting where the transformation of a
classical proof to free-cut free form can be seen to be a partial ‘constructivisation’ of the proof. As
well as eliminating the (nonconstructive) occurrences of the ∀-right rule, as usual for the WFM, the
linear logic refinement of the logical connectives means that right-contraction steps is also eliminated.
This is important due to the fact that we are in a setting where programs are equational specifications,
not formulae (as in bounded arithmetic [9]) or combinatory terms (as in applicative theories [11]), so
we cannot in general decide atomic formulae.

7.1 The translation

We will associate to each (free-cut free) proof of a convergence statement in IΣW+

1 a function on W
defined by a BC program. In the next section we will show that this function satisfies the equational
specification of the convergence statement.

I Definition 23 (Typing). To each (∀, ?)-free W+-formula A we associate a sorted tuple of
variables t(A), intended to range over W, as follows:

t(W (t)) := (;xW (t))
t(s = t) := (;xs=t)

t(s 6= t) := (;xs 6=t)
t(!A) := (~u, ~x; )

t(A ? B) := (~u,~v; ~x, ~y)
t(∃xW .A) := (~u; ~x, y)

where t(A) = (~u; ~x) and ? ∈ {O,⊗,⊕,&}.

For a sorted tuple (u1, . . . um;x1, . . . , xn) we write |(~u; ~x)| to denote its length, i.e. m+ n. This
sorted tuple corresponds to input variables, normal and safe respectively.

Let us fix a particular (coherent) equational specification E(f). Rather than directly considering
IΣW+

1 -proofs of Conv(f, E), we will consider a E ∪ IΣW+

1 sequent proof of !W (~x) ` W (f(~x)),
under Lemma 15. Free-cut elimination crucially yields strong regularity properties:

I Proposition 24 (Freedom). A free-cut free E ∪ IΣW+

1 sequent proof of !W (~x) `W (f(~x)) is:
1. Free of any negative occurrences of W .
2. Free of any ∀ symbols.
3. Free of any ? symbols.
4. Free of any ⊕ or & steps.8

For this reason we can assume that t is well-defined for all formulae occurring in a free-cut free
proof of convergence, and so we can proceed with the translation from proofs to BC programs.

I Definition 25 (Translation). We give a translation from a free-cut free E ∪ IΣW+

1 proof π,
satisfying properties 1, 2, 3, 4 of Prop. 24 above, of a sequent Γ ` ∆ to BC programs for a tuple of
functions ~fπ with arguments t (

⊗
Γ) such that |~fπ| = |t (

˙
∆) |.

8 Because of the surj rule, the proof may still contain ⊕ symbols, but these must be direct ancestors of some cut-step
by free-cut freeness.
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The translation is by induction on the size of π, so we proceed by inspection of its final step.
If π is an instance of the initial rules Wε, ε

0, ε1, s0, s1 or inj then ~fπ is simply the constant
function ε (possibly with dummy inputs as required by t).9 If π is an E or = initial step it is also
translated simply to ε.

The initial steps W0,W1, surj and Wcntr are translated to s0(;x), s1(;x), (ε, p(;x), p(;x)) and
(id(; x), id(; x)) respectively.

Finally, suppose π is a logical initial step. If π is an instance of id , i.e. p ` p, then we translate
it to id . Notice that, if π is an instance of ⊥-l (i.e. p, p⊥ ` ) or ⊥-r (i.e. ` p, p⊥) then p must be an
equality s = t for some terms s, t, since p must be atomic and, by assumption, W does not occur
negatively. Therefore π is translated to tuples of ε as appropriate.

Now we consider the inductive cases. If π ends with a ⊗-r or O-l step then we just rearrange the
tuple of functions obtained from the inductive hypothesis. If π consists of a subproof π′ ending with
a ⊗-l or O-r-step, then ~fπ is exactly ~fπ

′
. By assumption, there are no ⊕, &, ? or ∀ steps occurring in

π, and if π consists of a subproof π′ followed by a ∃-l step then ~fπ is exactly the same as ~fπ
′
, under

possible reordering of the tuple.
Suppose π consists of a subproof π′ followed by a ∃-r step,

Γ ` ∆, A(t)
∃-r

Γ,W (t) ` ∆,∃xW .A(x)

so by the inductive hypothesis we have functions ~f∆, ~fA(t) with arguments (~u; ~x) = t(
⊗

Γ). We
define ~fπ(~u; ~x, y) as

(
~f∆(~u; ~x), id(; y), ~fA(t)(~u; ~x)

)
.

If π consists of a subproof π′ followed by a !-r step then ~fπ is exactly the same as ~fπ
′
. If π ends

with a !-l step then we just appeal to Prop. 21 to turn a safe input into a normal input.
Since there are no ? symbols in π, we can assume also that there are no cntr-r steps in π.10

If π ends with a cntr-l step then we duplicate some normal inputs of the functions obtained by
the inductive hypothesis.

If π ends with a cut step whose cut-formula is free of modalities, then it can be directly translated
to a safe composition of functions obtained by the inductive hypothesis, by relying on Prop. 21.
Otherwise, the cut-formula must be of the form !W (t) since it must directly descend from the left-
hand side of an induction step, by free-cut freeness. Since the cut is anchored, we can also assume
that the cut formula is principal on the other side, i.e. π is of the form:

!Γ `W (t)
!-r

!Γ `!W (t) !W (t),Σ ` ∆
cut

!Γ,Σ ` ∆

where we assume there are no side-formulae on the right of the end-sequent of the left subproof for the
same reason as cntr-r : π does not contain any occurrences of ?. By the inductive hypothesis we have
functions g(~u; ) and ~h(v, ~w; ~x) where ~u, v and (~w; ~x) correspond to !Γ, !W (t) and Σ respectively.
We construct the functions ~fπ as follows:

~fπ(~u, ~w; ~x) := ~h(g(~u; ), ~w; ~x)

Notice, again, that all safe inputs on the left occur hereditarily safe on the right, and so these
expressions are definable in BC by Prop. 21.

9 This is because proofs of (in)equalities can be seen to carry no computational content.
10 Again, this is crucially important, since we cannot test the equality between arbitrary terms in the presence of

nonlogical function symbols.
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If π ends with a wk-r step then we just add a tuple of constant functions ~ε of appropriate length
as dummy functions. If π ends with a wk-l step then we just add dummy inputs of appropriate length.

Finally, suppose π ends with an IND step. Since there are no occurrences of ? in π we can again
assume that there are no side formulae on the right of any induction step. Thus π is of the form:

!W (a), !Γ, A(a) ` A(s0a) !W (a), !Γ, A(a) ` A(s1a)
IND

!W (t), !Γ, A(ε) ` A(t)

By the inductive hypothesis we have functions ~g0(u,~v; ~x) and ~g1(u,~v; ~x) with u, ~v and ~x

corresponding to !W (a), !Γ and A(a) respectively. We define ~fπ by simultaneous predicative
recursion on notation as follows:

~fπ(ε,~v; ~x) := ~x ~fπ(siu,~v; ~x) := ~gi(u,~v; ~fπ(u,~v; ~x))

The induction step above is the reason why we enrich the usual BC framework with a simultaneous
version of PRN.

7.2 Witness predicate and extensional equivalence of functions

Now that we have seen how to extract BC functions from proofs, we show that these functions satisfy
the appropriate semantic properties, namely the equational program E we started with. For this we
turn to a quantifier-free classical theory, in a similar fashion to PV for S1

2 in [9] or system T in
Gödel’s Dialectica interpretation. This is adequate since we only care about extensional properties of
extracted functions at this stage.11

Let IQF be the classical theory over the language {ε, s0, s1, (fki )} obtained from the axioms
ε, s0, s1, inj, surj and IND by dropping all relativisations to W (or !W ), replacing all linear connect-
ives by their classical counterparts, and restricting induction to only quantifier-free formulae.

I Definition 26 (Witness predicate). For formulae A,B of IΣW+

1 satisfying properties 1, 2, 3 of
Prop. 24, we define the following ‘witness’ predicate as a quantifier-free formula of IQF :

WitW (t)(a) := a = t

Wits=t(a) := s = t

Wits 6=t(a) := s 6= t

Wit !A(~aA) := WitA(~aA)

WitA•B(~aA,~aB) := WitA(~aA) ∨WitB(~aB)
WitA◦B(~aA,~aB) := WitA(~aA) ∧WitB(~aB)
Wit∃xWA(a,~aA) := WitA(~aA, a)

where • ∈ {O,⊕}, ◦ ∈ {⊗,&}, |~aA| = |t(A)| and |~aB | = |t(B)|.

Notice that, unlike in the bounded arithmetic setting where the W predicate is redundant (since
variables are tacitly assumed to range over W ), we do not parametrise the witness predicate by an
assignment to the free variables of a formula. Instead these dependencies are taken care of by the
explicit occurrences of the W predicate in IΣW+

1 .

I Lemma 27. Let π be a free-cut free proof in E ∪IΣW+

1 , satisfying properties 1, 2, 3, 4 of Prop. 24,
of a sequent Γ ` ∆. Let Eπ denote the equational specification for ~fπ .12 Then IQF proves:(

∀E ∧ ∀Eπ ∧Wit⊗Γ(~a)
)
→Wit˙∆(~fπ(~a))

where ∀E and ∀Eπ denote the universal closures of E and Eπ respectively.

11 We could equally use a realisability approach, as done in e.g. [11] and other works in applicative theories, since
the formulae we deal with are essentially positive and so there is not much difference between the two approaches.
Indeed here the witness predicate plays the same role as the realisability predicate in other works.

12 We assume that the function symbols occurring in Eπ are distinct from those occurring in E .
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Proof sketch. By structural induction on π, again, following the definition of ~fπ .13 J

Finally, we arrive at our main result, providing a converse to Thm. 22.

I Theorem 28. For any coherent equational specification E , if IΣW+

1 proves Conv(f, E) then
there is a polynomial-time function g on W (of same arity as f ) such that E [g/f ].

Proof sketch. Follows from Lemmas 15 and 27, Dfn. 26 and coherence of E , cf. 14. J

8 Conclusions

As mentioned in the introduction, our motivation for this work is to commence a proof-theoretic study
of first-order theories in linear logic, in particular from the point of view of complexity. To this end
we proved a general form of ‘free-cut elimination’ that generalises forms occurring in prior works,
e.g. [21]. We adapted an arithmetic of Bellantoni and Hofmann in [7] to the linear logic setting, and
used the free-cut elimination result, via the witness function method [9], to prove that a fragment of
this arithmetic characterises FP.

From the point of view of constructing theories for complexity classes, the choice of linear logic
and witness function method satisfies two particular desiderata:

1. Complexity controlled by ‘implicit’ means, not explicit bounds.
2. Extraction of programs relies on functions of only ground type.

From this point of view, a relevant related work is that of Cantini [11], based on an applicative
theory, which we recently became aware of. The main difference here is the choice of model of
computation: Cantini uses terms of combinatory logic, whereas we use equational specifications (ESs).
As we have mentioned, this choice necessitates a different proof-theoretic treatment, in particular
since equality between terms is not decidable in the ES framework, hindering any constructive
interpretation of the right-contraction rule. This is why Bellantoni and Hofmann require a double-
negation translation into intuitionistic logic and the use functionals at higher types, and why Leivant
disregards classical logic altogether in [18]. Notice that this is precisely why our use of linear logic is
important: the control of ? occurrences in a proof allows us to sidestep this problem. At the same time
we are able to remain in a classical linear setting. We do not think that either model of computation
is better, but rather that it is interesting to observe how such a choice affects the proof-theoretic
considerations at hand.

Most works on the relationships between linear logic and complexity fit in the approach of
the proofs-as-programs correspondence and study variants of linear logic with weak exponential
modalities [15] [20] [16]. However, Terui considers a naïve set theory [25] that also characterises FP
and is based on light linear logic14. His approach relies on functionals at higher type, using light linear
logic to type the extracted functionals. Another work using linear logic to characterize complexity
classes by using convergence proofs is [17] but it is tailored for second-order logic. The status of
first-order theories is more developed for other substructural logics, for instance relevant logic [12],
although we do not know of any works connecting such logics to computational complexity.

13 Notice that, since we are in a classical theory, the proof of the above lemma can be carried out in an arbitrary model,
by the completeness theorem, greatly easing the exposition.

14 He also presents a cut-elimination result but, interestingly, it is entirely complementary to that which we present here:
he obtains full cut-elimination since he works in a system without full exponentials and with Comprehension as the
only nonlogical axiom. Since the latter admits a cut-reduction step, the former ensures that cut-elimination eventually
terminates by a height-based argument, contrary to our argument that analyses the degrees of cut-formulae.
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Concerning the relationship between linear logic and safe recursion, note that an embedding of
a variant of safe recursion into light linear logic has been carried studied in [23], but this is in the
setting of functional computation and is quite different from the present approach. Observe however
that a difficulty in this setting was the non-linear treatment of safe arguments which here we manage
by including in our theory a duplication axiom for W .

We have already mentioned the work of Bellantoni and Hofmann [7], which was somewhat the
inspiration behind this work. Our logical setting is very similar to theirs, under a certain identification
of symbols, but there is a curious disconnect in our use of the additive disjunction for the surj axiom.
They rely on just one variant of disjunction. As we said, they rely on a double-negation translation
and thus functionals at higher-type.

In further work we would like to apply the free-cut elimination theorem to theories based on other
models of computation, namely the formula model employed in bounded arithmetic [9]. We believe
that the WFM could be used at a much finer level in this setting,15 and extensions of the theory for
other complexity classes, for instance the polynomial hierarchy, might be easier to obtain.

The problem of right-contraction seems to also present in work by Leivant [18], which uses
equational specifications, where the restriction to positive comprehension to characterise polynomial-
time only goes through in an intuitionistic setting. It would be interesting to see if a linear logic
refinement could reproduce that result in the classical setting, as we did here.
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APPENDIX

A Proof of Thm. 3, Sect. 2

Suppose T ∪ {A} proves B and let π be a T -derivation with end-sequent ` B and leaves ` A, i.e.:

` A · · · ` A

π

` B

Then construct the following T -proof of !A( B,

id
A ` A

!-l
!A ` A · · ·

id
A ` A

!-l
!A ` A

!A,π

!A ` B
(-r
`!A( B

where !A, π is obtained by appending !A to the antecedent of each sequent in π, inserting left-
contraction steps when necessary. Free variable conditions are satisfied since A is closed (and so also
!A) and side-conditions are satisfied since !A is a !-formula.

For the other direction simply extend any T -proof of !A( B as follows:

` A
!-r
`!A

`!A( B
(-inv

!A ` B
cut

` B

B Proofs and further remarks for Sect. 3

Discussion on Dfn. 5

Our first idea would be to consider as anchored a cut whose cut-formulas A in the two premises are
both principal for their rule, and at least one of these rules is non-logical. Now, the problem with this
tentative definition is that a rule (R) of T can contain several principal formulas (in Σ′, ∆′) and so
we would like to allow an anchored cut on each of these principal formulas. Consider the following
derivation, where principal formulas are underlined:

` A,B
O-r
` A O B

Σ ` ∆
(R)

A O B ` C ⊗D
cut1

` C ⊗D
C,D ` Π

⊗-l
C ⊗D ` Π

cut2
` Π

Here cut1 is anchored in this sense, but not cut2. This is why we need the more general definition
of hereditarily principal formula.
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Proof of Lemma 6. Assume that A is an occurrence of formula on the LHS of the sequent and
hereditarily principal for a non-logical rule (R), then a direct ancestor of this formula is principal for
(R) and thus by condition 4. A cannot be of the form ?A′. The other case is identical. J

Define the degree of a formula as the number of logical connectives or quantifiers in it. Let us
first state an easy building-block of the proof, which comes from standard linear logic:

I Lemma 29 (Logical non-exponential cut-elimination steps). Any cut c whose cut-formulas A
are both principal formulas of logical rules distinct from ?, !, wk, cntr rules can be replaced in one
step by cuts on formulas of strictly lower degree (0, 1 or 2 cuts).

Proof. This is exactly as in plain linear logic. Just note that the case of a quantifier formula involves
a substitution by a term t throughout the proof, and this is where we need condition 3 on non-logical
rules requiring that they are closed by substitution. J

Now we have all the necessary lemmas to proceed with the proof of the main theorem.

Proof of Thm 7. Given a cut rule c in a proof π, we call degree deg(c) the number of connectives
and quantifiers of its cut-formula. Now the degree of the proof deg(π) is the multiset of the degrees
of its non-anchored formulas. The degrees will be compared with the multiset ordering. The
demonstration proceeds by induction on the degree deg(π). For a given degree we proceed with a
sub-induction on the height h(π) of the proof.

Consider a proof π of non-null degree. We want to show how to reduce it to a proof of strictly
lower degree. Consider a top-most non-anchored cut c in π, that is to say such that there is no
non-anchored cut above c. Let us call A the cut-formula, and (S1) (resp. (S2)) the rule above the left
(resp. right) premise of c.

S1
Γ ` ∆, A

S2
Σ, A ` Π

c cut
Γ,Σ ` ∆,Π

Intuitively we proceed as follows: if A is not hereditarily principal in one of its premises we will
try to commute c with the rule along its left premise (S1), and if it is not possible commute it with
the rule along its right premise (S2), by using Lemmas 6 and 8; if A is hereditarily principal in both
premises we proceed with a cut-elimination step, as in standard linear logic. For this second step, the
delicate part is the elimination of exponential cuts, for which we use a big-step reduction; it works
well because the contexts in the non-logical rules (R) are marked with ! (resp. ?) on the LHS (resp.
RHS).

So, let us distinguish the various cases:

First case: the cut-formula A on the LHS of c is not hereditarily principal.

Consider first the situation where (S1) is not one of the rules (!-r), (?-l), (R).
In this case the commutation of c with (S1) can be done in the usual way, by using Lemma 8.
Let us handle as an example the case where (S1) = (&-r).
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Γ ` B1,∆, A Γ ` B2,∆, A
S1=N-r

Γ ` B1 N B2,∆, A Σ, A ` Π
c

Γ,Σ ` B1 N B2,∆,Π

→
Γ ` B1,∆, A Σ, A ` Π

c1
Γ,Σ ` B1,∆,Π

Γ ` B2,∆, A Σ, A ` Π
c2

Γ,Σ ` B2,∆,Π
N-r

Γ,Σ ` B1 N B2,∆,Π

Observe that here c is replaced by two cuts c1 and c2. Call πi the sub-derivation of last rule
ci, for i = 1, 2. As for i = 1, 2 we have deg πi ≤ deg π and h(πi) < h(π) we can apply the
induction hypothesis, and reduce πi to a proof π′i of same conclusion and with deg π′i < deg πi.
Therefore by replacing πi by π′i for i = 1, 2 we obtain a proof π′ such that deg π′ < deg π.
The case (S)=(⊕-l) is identical, and the other cases are simpler.
Consider now the case where (S1) is equal to (!-r), (?-l) or (R). Let us also assume that the
cut-formula is hereditarily principal in its RHS premise, because if this does not hold we can
move to the second case below.
First consider (S1) = (!-r). As A is not principal in the conclusion of (!-r) it is of the form
A =?A′. By assumption we know that A =?A′ in the conclusion of (S2) is hereditarily
principal on the LHS, so by Lemma 6 it cannot be hereditarily principal for a non-logical rule,
so by definition of hereditarily principal we deduce that (S2) is not an (R) rule. It cannot
be an (!-r) rule either because then ?A′ could not be a principal formula in its conclusion.
Therefore the only possibility is that (S2) is an (?-l) rule. So the RHS premise is of the shape
?A′, !Γ′ `?Π′ and by Lemma 9 the commutation on the LHS is possible. We can conclude as
previously. The case where (S1) = (?-l) is the same.
Now consider the case where (S1) = (R). As A is not hereditarily principal in the conclusion
of (R), it is a context formula and it is on the RHS, so by definition of (R) rules it is the form
A =?A′. So as before by Lemma 6 we deduce that (S2) = (?-l), and so the RHS premise is of
the shape ?A′, !Γ′ `?Π′. By Lemma 9 the commutation on the LHS is possible, and so again
we conclude as previously.

Second case: the cut-formulas on the LHS and RHS of c are both not hereditarily principal.
After the first case we are here left with the situation where (S1) is equal to (!-r), (?-l) or (R).

Consider the case where (S1)=(!-r), (?-l), so A is of the form A =?A′. All cases of commuta-
tion of c with (S2) are as in standard linear logic, except if (S2) = (R). In this case though
we cannot have A =?A′ because of the shape of rule (R). So we are done.
Consider (S1) = (R). Again as A is not principal in the conclusion of (S1) and on the RHS of
the sequent it is a context formula, and thus of the form A =?A′. As ?A′ is not principal in the
conclusion of (S2), it is thus a context formula on the LHS of sequent, and therefore (S2) is
not a rule (R). So (S2) is a logical rule. If it is not an (!-r) or an (?-l) it admits commutation
with the cut, and we are done. If it is equal to (!-r) or (?-l) it cannot have ?A′ as a context
formula in the LHS of its conclusion, so these subcases do not occur.

Third case: the cut-formulas on the LHS and RHS of c are both hereditarily principal.
By assumption c is non anchored, so none of the two cut-formulas is hereditarily principal for a
non-logical rule (R). We can deduce from that that the LHS cut-formula is principal for (S1) and
the RHS cut-formula is principal for (S2). Call π1 (resp. π2) the subderivation of last rule (S1)
(resp. (S2)).
Then we consider the following sub-cases, in order:
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weakening sub-case: this is the case when one of the premises of c is a wk rule. Without loss
of generality assume that it is the left premise of c which is conclusion of wk-r , with principal
formula A. We eliminate the cut by keeping only the LHS proof π1, removing the last cut
c and last wk-r rule on A, and by adding enough wk-r , wk-l rules to introduce all the new
formulas in the final sequent. The degree has decreased.

exponential sub-case: this is when one of the premises of c is conclusion of a cntr, ?-r or !-l
rule on a formula ?A or !A, and the other one is not a conclusion of wk.

Assume without loss of generality that it is the right premise which is conclusion of cntr-l
or !-l on !A, and thus the only possibility for the left premise is to be conclusion of !-r . This
is rule (S1) on the picture, last rule of the subderivation π1, and we denote its conclusion as
!Γ′ `?∆′, !A. We will use here a global rewriting step. For that consider in π2 all the top-most
direct ancestors of the cut-formula !A, that is to say direct ancestors which do not have any
more direct ancestors above. Let us denote them as !Aj for 1 ≤ j ≤ k. Observe that each !Aj
is principal formula of a rule !-l or wk-l . Denote by ρ the subderivation of π2 which has as
leaves the sequents premises of these !-l or wk-l rules with conclusion containing !Aj . Let ρ′

be a derivation obtained from ρ by renaming if necessary eigenvariables occurring in premises
of rules ∃-l , ∀-r , (R) so that none of them belongs to FV (!Γ′, ?∆′), where we recall that
!Γ′ `?∆′, !A is the LHS premise of the cut c. Now, let π′1 be the immediate subderivation
of π1, of conclusion !Γ′ `?∆′, A. We then define the derivation ρ′′ obtained from ρ′ in the
following way:

* add a cut cj with (a copy) of π′1 on Aj at each leaf which is premise of a rule !-l;

* add to each sequent coming from ρ′ an additional context !Γ′ on the LHS and an additional
context ?∆′ on the RHS, and additional wk rules to introduce these formulas below the
wk-l rules on formulas !Aj ;

* introduce suitable cntr-l and cntr-r rules after multiplicative binary rules ⊗-r , O-l in such
a way to replace !Γ′, !Γ′ (resp. ?∆′, ?∆′) by !Γ′ (resp. ?∆′).

It can be checked that ρ′′ is a valid derivation, because all the conditions for context-sensitive
rules (∀-r), (∃-l), (!-r), (?-l), (R) are satisfied. In particular the rules (!-r), (?-l), (R) are
satisfied because the contexts have been enlarged with ! formulas on the LHS of the sequents
(!Γ′) and ? formulas on the RHS. of the sequents (?Γ′).
Now, let π′ be the derivation obtained from π by removing the cut c and replacing the
subderivation ρ by ρ′′. The derivation π′ is a valid one, it has the same conclusion !Γ′,Σ `
?∆′,Π and with respect to π we have replaced one non-anchored cut c with at most k ones cj ,
but which are of strictly lower degree. So deg(π′) < deg(π) and we are done.

logical sub-case: we are now left with the case where both premises of c are conclusions of
rules others than ?, !, wk, cntr. We can thus apply Lemma 29. If one of the premises is an
axiom ⊥-l , id or ⊥-r , then π can be rewritten to a suitable proof π′ by removing c and the
axiom rule. Otherwise both premises introduce the same connective, either ⊗, O, ⊕, &, ∀ or ∃.
In each case a specific rewriting rule replaces the cut c with one cut of strictly lower degree.

J

C Proofs and further remarks for Sect. 4

Proof of Prop. 12. We give only the case for induction, the others being routine.
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First, let us assume the induction axiom and derive the rule:
!W (a), !Γ, A(a) ` A(sia), ?∆

2·(-r
!Γ `!W (a) ( A(a) ( A(sia), ?∆

∀-r
!Γ ` ∀x!W .(A(x) ( A(six)), ?∆

!-r
!Γ `!∀x!W .(A(x) ( A(six)), ?∆


i=0,1

` IND
(-inv

A(ε), {!∀x!W .(A(x) ( A(s0x))}i=0,1 ` ∀x!W .A(x)
∀-inv

!W (t), A(ε), {!∀x!W .(A(x) ( A(s0x))}i=0,1 ` A(t)

2·cut
!W (t), !Γ, !Γ, A(ε) ` A(t), ?∆, ?∆

cntr
!W (t), !Γ, A(ε) ` A(t), ?∆

Now we assume the induction rule and derive the axiom, πi

!W (a), {!∀x!W .(A(x) ( A(six))}i=0,1, A(a) ` A(sia)


i=0,1

IND
!W (t), {!∀x!W .(A(x) ( A(six))}i=0,1 ` A(b)

(-r,∀-r
{!∀x!W .(A(x) ( A(six))}i=0,1, A(ε) ` ∀x!W .A(x)

3·(-r
` IND

where the proofs πi are obtainable from just logical rules. J

Formulation of induction with designated premise for base case

Here is the induction rule when there is a designated premise for the base case.

!Γ ` A(ε) !W (a), !Γ, A(a) ` A(s0a), ?∆ !W (a), !Γ, A(a) ` A(s1a), ?∆
!W (t), !Γ ` A(t), ?∆

(4)

As mentioned, this is not equivalent to the formulation given, due to the linear logic setting. From an
axiomatic point of view, it is equivalent to the IND axiom with !A(ε) in place of A(ε).

Proof of Cor. 18. First translate the proof π into the proof π0 where all guarded quantifiers rules
have been replaced by their derivation, and say that two rule instances in π0 are siblings if they come
from the same derivation of a guarded quantifier rule. So in π0 any two sibling rules are consecutive.
Now observe that in the free-cut elimination procedure:

when we do a commutation step of a cut with a ∀ (resp. ∃ rule) that has a sibling, we can follow it
by another commutation of cut with its sibling,
when we do a logical cut-elimination step on a ∀ (resp. ∃ rule) that has a sibling, we can follow it
by a logical cut-elimination step on its sibling, as illustrated by Prop. 17.

In this way sibling rules remain consecutive in the proof-tree throughout the reduction, and the
procedure transforms the proof into one with only anchored cuts. J

D Further proof details for Thm. 22, Sect. 6

For derivation (2) α is,

` ∀~v!W .∀~xW .W (g(~v; ~x))

id
W (g(~v; ~x)) `W (g(~v; ~x))

∀-l
!W (~v),W (~x),∀~v!W .∀~xWW (g(~v; ~x)) `W (g(~v; ~x))

cut
!W (~v),W (~x) `W (g(~v; ~x))
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and β is:

!W (~v), W (~x) `W (g(~v; ~x))

E
` f(ε,~v; ~x) = g(~v; ~x)

=
W (g(~v; ~x)), f(ε,~v; ~x) = g(~v; ~x) `W (f(ε,~v; ~x))

cut
W (g(~v; ~x)) `W (f(ε,~v; ~x))

cut
!W (~v), W (~x) `W (f(ε,~v; ~x))

Suppose f is defined by safe composition as follows:

f(~u; ~x) = h(~g(~u; );~g′(~u; ~x))

By the inductive hypothesis we already have (??) for h and each gi and g′j in place of f . We
construct the required proof as follows:


IH

∀~u!W .W (gi(~u; ))
α

!W (~u) ` W (gi(~u; )
!-r

!W (~u) `!W (gi(~u; ))


i≤|~g|

 IH

` ∀~u!W .∀~xW .W (g′
j

(~u; ~x))
α

!W (~u),W (~x) ` W (g′
j

(~u; ~x))


j≤|~g′|

IH

` ∀~v!W .∀~yW .W (h(~v; ~y))
α

!W (~g(~u; )),W (~g′(~u; ~x)) ` W (h(~g(~u; );~g′(~u; ~x))))

cut
!W (~u), . . . , !W (~u),W (~x), . . . ,W (~x) ` W (h(~g(~u; );~g′(~u; ~x)))

cntr
!W (~u),W (~x) ` W (h(~g(~u; );~g′(~u; ~x)))

β
!W (~u),W (~x) ` W (f(~u; ~x))

∀-r
` ∀~u!W .∀~xW .W (f(~u; ~x))

where α and β are similar to before.
We also give the case of the conditional initial function C(;x, yε, y0, y1), to exemplify the use of

additives. Let ~y = (yε, y0, y1) and construct the required proof as follows:

id
W (yε) `W (yε)

wk
W (~y) `W (yε)

W (~y) `W (C(; ε, ~y))
x = ε, W (~y) `W (C(; x, ~y))



id
W (yi) `W (yi)

wk
W (~y) `W (yi)

W (~y) `W (C(; sia, ~y))
x = sia, W (~y) `W (C(; x, ~y))

∃-l
∃zW .x = siz, W (~y) `W (C(; x, ~y))


i=0,1

2·⊕
x = ε⊕ ∃zW .x = s0z ⊕ ∃zWx = s1z, W (~y) `W (C(; x~y))

W (x), W (~y) `W (C(; x, ~y))

whence the result follows by ∀-introduction.

E Further details on Dfn. 25, Sect. 7

The initial steps of IΣW+

1 are translated as follows,

W0
W (t) `W (s0t)

: s0(;x)

W1
W (t) `W (s1t)

: s1(;x)

surj
W (t) ` t = ε⊕ ∃yW .t = s0y ⊕ ∃yW .t = s1y

: (ε, p(;x), p(;x))

Wcntr
W (t) `W (t)⊗W (t)

: (id(; x), id(; x))



P. Baillot and A. Das XX:23

and the remaining initial steps are translated to ε.
Suppose π ends with a ⊗-r step:

π1

Γ ` ∆, A

π2

Σ ` Π, B
⊗

Γ,Σ ` ∆,Π, A⊗B

By the inductive hypothesis let us suppose we have functions ~g(~u; ~x) and ~h(~v; ~y) from π1 and
π2 respectively, where t (

⊗
Γ) = (~u; ~x) and t (

⊗
Σ) = (~v; ~y). Let us write ~g = (~g∆, ~gA) and

~h = (~hΠ,~hB), to denote the ∆ and A parts of ~g and the Π and B parts of ~h.
We construct ~fπ by simply rearranging these tuples of functions:

~fπ(~u,~v; ~x, ~y) :=
(
~g∆(~u; ~x),~hΠ(~v; ~y), ~gA(~u; ~x),~hB(~v; ~y)

)
If π ends with a ∃-l step,

π′

Γ, A(a),W (a) ` ∆
∃-l

Γ,∃xW .A(x) ` ∆

then ~fπ is exactly the same as ~fπ
′
.

Suppose π ends with a cut step:

π1

Γ ` ∆, A

π2

Σ, A ` Π
cut

Γ,Σ ` ∆,Π

We have two cases. First, if A is free of modalities, then t(A) consists of only safe inputs.
Therefore we have functions ~g(~u; ~x) and ~h(~v; ~y, ~z) from π1 and π2 respectively, such that t(Γ) =
(~u; ~x), t(Σ) = (~v; ~y) and t(A) = (;~z). Let us write ~g = (~g∆, ~gA) as before, and we define ~fπ as
follows:

~fπ(~u,~v; ~x, ~y) :=
(
~g∆(~u; ~x),~h(~v; ~y,~gA(~u; ~x))

)
Notice that all safe inputs on the left occur hereditarily safe on the right, and so these expressions are
definable in BC by Prop. 21.

Suppose π ends with a cntr-l step,

π′

!A, !A,Γ ` ∆
cntr-l

!A,Γ ` ∆

so we have functions ~f ′(~u1, ~u2, ~v; ~x), with ~u1 and ~u2 corresponding to the two copies of !A in the
conclusion of π′ and t(Γ) = (~v; ~x). We define ~fπ by duplicating the arguments for !A:

~fπ(~u,~v; ~x) := ~f ′(~u, ~u,~v; ~x)
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