
HAL Id: hal-01316648
https://hal.science/hal-01316648

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling hyperelasticity in non equilibrium multiphase
flows

Sarah Hank, Nicolas Favrie, Jacques Massoni

To cite this version:
Sarah Hank, Nicolas Favrie, Jacques Massoni. Modeling hyperelasticity in non equilibrium multiphase
flows. Journal of Computational Physics, 2017. �hal-01316648�

https://hal.science/hal-01316648
https://hal.archives-ouvertes.fr


Modeling hyperelasticity in non equilibrium multiphase flows

Sarah Hank, Nicolas Favrie and Jacques Massoni

May 17, 2016

Abstract

The aim of this article is the construction of a multiphase hyperelastic model. The Eulerian
formulation of the hyperelasticity represents a system of 14 conservative partial differential equations
submitted to stationary differential constraints. This model is constructed with an elegant approach
where the stored energy is given in separable form. The system admits 14 eigenvalues with 7
characteristic eigenfields. The associated Riemann problem is not easy to solve because of the
presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this
paper, we use a splitting approach to solve the whole system using 3 sub-systems. This method
reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann
solver. The multiphase model is obtained by adapting the discrete equations method. This approach
involves an additional equation governing the evolution of a phase function relative to the presence
of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase
admits its own equations system composed of three sub-systems. One and three dimensional test
cases are presented.

Keywords: Hyperelasticity, Discrete Equation Method, Godunov type method

1 Introduction

Solid-fluid interaction in cases of extreme deformation occurs in many fundamental and industrial
applications: hypervelocity impact on satellites, blast effects on structure... In such problems, high
pressure and high density ratio are present at the level of interfaces. Works by [20], [1] and others,
showed the attractivity of the diffuse interface approach to model interface between ideal compressible
fluids having different thermodynamic features. This kind of model is reminiscent of the multiphase
flow model developped initialy by [3] for the multi-velocity models or [18] and [19] for the one velocity
models. Diffuse interfaces method presents several advantages compared to a direct coupling of models
of homogeneous fluids through a sharp interface. Using this kind of multiphase flow models, the same
equations are solved everywhere by using the same numerical scheme. This is achieved by considering
a negligible quantity of other phases even in pure phase. With such an approach, there is no need
of interface tracking or mesh distortion. This kind of model can describe the dynamic generation of
new interfaces without having to re-mesh the domain, destroy or create cells. The main drawback of
the Eulerian diffuse interface approach, compared to the Lagrangian formulation, is that the interface
are not stiff. Indeed, the ’mixture cells’ are always present at the vicinity of moving interfaces. The
thickness of the ’mixture region’ increases in time thus, depending on the treated problem, the method
can only be used for short physical times.

This approach has been extended in [33] for the phase transition and in [9], [8], [27] for the interaction
between elastoplastic solids and fluids dimension for a one-velocity model. Such one-velocity approach is
limited to applications where no gas permeation is present, even if it can model various situations. This
restricts the application domains. Moreover, the treatment of sliding interfaces is not straightforward.
Another default of such approach is that the model is also one-pressure. Thus, it is unable to deal with
different pressures in the mixture phase and then, limits the application for fracture treatment. The
influence of the inertial effects and the different pressure between the gas in the inclusion and the solid
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on the results of spaliation experiments is highlighted in [6]. In this paper, we propose an extension to
multi-pressures and multi-velocities model in the case of hyperelastic solids.

Hyperelasticity model have been intensively studied in the past few years [16], [25] [21] and others.
In this paper, we consider a modified conservative formulation in the case of isotropic solids ([15]).
The specific stored energy is taken in separable form [13]. The internal energy is the addition of an
hydrodynamic part, depending on the density and on the specific entropy, and an elastic part depending
on the reduced Finger tensor.

e(G, η) = eh(|G|, η) + ee(G) (1)

with G = B−1 is the Finger tensor, and B is the Cauchy-Green deformation tensor, g = G|G|−1/3 is
the reduced Finger tensor. Such a formulation of the internal energy implies that the shear part of the
energy is unaffected by volume change, then adapted to pure fluids computations also. This model is
hyperbolic for a suitable choice of the Equation of State (EOS) (See [28] and [14] for details). In such
a case, the Riemann problem involves 7 characteristics waves which make its resolution complex. This
resolution has been studied in details in [22], where a volume energy corresponding to a polynomial
form of the deformation tensor is used. An exact solution of the hyperelastic Riemann problem has
been provided for the simplified case of the piston problem in [28]. Although the Riemann problem
can be solve numerically, this resolution is far too complex to be used in a practical numerical code.
Approximate solvers have been built to capture the seven waves ([4, 15, 34]) but shear waves present a
significant numerical diffusion. To circumvent this difficulty, a splitting procedure has been developed
in [8]. Exact solvers are accessible, nevertheless a simple approximate Riemann solver may capture
shear waves accurately.
In this paper, the hyperelastic model is splitted in 3 sub-systems. The first sub-system deals with the
longitudinal waves while the two others deal with transverse (or shear) waves. Moreover, this splitting
procedure is able to preserve the stationary constraint.
In order to get the multiphase formulation, we follow the Discrete Equation Methods developed and
detailed in [2] or [32]. The multiphase model is obtained by adding a phase function equation and
integrating each sub-systems equation weigthed by this fonction over a multiphase control volume. The
integration leads to a discrete model: the evolution of each phase is taken into account by its own set
of equations. The closure is realized by using a specific EOS per phase. In section 2, the hyperelastic
equations are presented in the case of pure solid. The decomposition in sub-system is also presented.
In section 3, the ’Discrete equation method’ is applied to build the multiphase flow model. Then in
section 4 the numerical treatment of the model is addressed. Numerical results in one-dimension of
space are presented in section 5. Multi-dimensional examples are presented in section 6. Conclusion is
addressed in section 7.

2 Governing equations: hyperelastic model

2.1 Equations for pure solids

Regarding the Eulerian formulation of hyperelasticity for isotropic solids ([16],[25] and others), we follow
[15] for a modified presentation of these equations:

∂ρ

∂t
+∇.(ρu) = 0

∂ρu

∂t
+∇.(ρu⊗ u− σ) = 0

∂ρE

∂t
+∇.(ρEu− σu) = 0

∂eβ

∂t
+∇.(eβu) = 0, curl(eβ), with β = 1, 2, 3

(2)

Where ρ is the density of the material, u = (u, v, w)T is the material velocity and E is the total energy
of the system which corresponds to the sum of kinetic and internal energies. The closure of the system
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is obtained with an internal energy expressed in separated form [9]:

E =
‖u‖2

2
+ eh(ρ, η) + ee(g), g =

G

|G|1/3
,

eh is the hydrodynamic part of the internal specific energy while ee is the elastic part. G designates the
Finger tensor, g represents the reduced Finger tensor. η is the specific entropy. The Finger tensor is a
function of the deformation gradient F which is expressed as a function of the cobasis eβ = (e1, e2, e3),

F−T = (e1, e2, e3), G = F−TF−1 =⇒ G =

3∑
β=1

eβ ⊗ eβ .

At initial time, the cobasis corresponds to the Cartesian basis (i, j,k). σ is the Cauchy stress tensor
and can be expressed as the variation of the internal specific energy e = eh + ee:

σ = −2ρ
∂e

∂G
G. (3)

The separable form of the internal energy allows the following expression for the Cauchy stress tensor:

σ = S− pI, with S = −2ρ
∂ee

∂G
G, and p = −ρ2 ∂eh(ρ, η)

∂ρ
. (4)

S is the deviatoric part of the Cauchy stress tensor. Let us remark that the pressure p is a function of
the hydrodynamic part of the internal energy only. In this paper, we use the following expression for
the elastic energy which depends on the two first invariants of the reduced Finger tensor:

ee(g) =
µ

4ρ0

(
(1− 2a)

3
j21 + aj2 + 3(a− 1)

)
, j1 = tr(g), j2 = tr(g2), (5)

ρ0 designates the reference density of the material, µ its shear modulus. Features of the elastic energy
(5) has been studied in [14] where authors proved the rank-one convexity and have shown that this
one-parameter family of equations of state contains the neo-Hookean solids (if a=-1). The deviatoric
part of the Cauchy stress tensor can be expressed using expression (5):

S = −µ ρ
ρ0

(
1− 2a

3
j1

(
g − j1

3
I
)

+ a

(
g2 − j2

3
I
))

. (6)

For the hydrodynamic part of the internal energy, any convex equation of state (as function of τ = 1/ρ
and η) can be considered. In this paper, the Stiffened gas equation of state [29] is used, that fulfill all
conditions without loss of generality:

eh(ρ, p) =
P + γP∞
ρ(γ − 1)

, (7)

where γ (dimensionless) and P∞ (equivalent to a pressure) form a couple of parameters, characterizing
the considered material. Let us introduce, aβ = (a1, a2, a3), bβ = (b1, b2, b3) and cβ = (c1, c2, b3) such
that eβ = (aβ , bβ , cβ). These definitions allow to express the Finger tensor G:

G =

 ‖a‖2 a.b a.c
a.b ‖b‖2 b.c
a.c b.c ‖c‖2

 .

The last equation of system (2), describing the cobasis deformation, is written under conservative form.
Nevertheless, to guaranty the hyperbolicity of the model the cobasis equation should be rewritten and
used under the non-conservative form:

∂eβ

∂t
+

(
∂eβ

∂x

)
u +

(
∂u

∂x

)T
eβ = 0, β = 1, 2, 3. (8)
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System (2) is hyperbolic with 14 eigenvalues associated to seven characteristic directions: 2 longitudinal
waves, 4 shear waves and a contact discontinuity. The hyperbolicity depends on the value of the
parameter of the elastic energy (noted a). [26] and [14] proved that the system is hyperbolic for
any value of a in the whole domain such that −1 < a < 0.5. In order to simplify the resolution of
the Riemann problem -involving seven waves-, a splitting procedure has been proposed in [8]. This
decomposition is described hereafter.

2.2 Model decomposition

System (2) can be splitted in 3 sub-systems. Each of them verifies the following properties (see [8] for
details):

• The sub-systems are hyperbolic.

• The sub-systems are conservative.

• The sub-systems admit the energy equation compatible with the entropy equation.

• The sum of each sub-system solves the full system (2).

2.2.1 Sub-system 1

This first sub-system describes the longitudinal waves and the transport of the variables. These equa-
tions deal with the traction and the compression in the solid. They are similar to the Euler equations
for compressible fluids with geometrical variables:

∂ρ

∂t
+
∂(ρu)

∂x
= 0

∂ρu

∂t
+
∂(ρu2 − σ11)

∂x
= 0

∂ρv

∂t
+
∂(ρuv − σ21)

∂x
= 0

∂ρw

∂t
+
∂(ρuw − σ31)

∂x
= 0

∂ρE

∂t
+
∂(ρEu− σ11u)

∂x
= 0

∂aβ

∂t
+
∂(aβu)

∂x
= 0

∂bβ

∂t
+ u

∂bβ

∂x
= 0

∂cβ

∂t
+ u

∂cβ

∂x
= 0

(9)

This last system admits 14 eigenvalues associated to 14 eigenvectors and is hyperbolic if the full system
is hyperbolic. This sub-system admits the following eigenvalues :

λ1 = u,

λ2,3 = u±
√
∂p

∂ρ
− ∂S11

∂ρ
− 1

ρ

∂S11

∂a
.a

,

λ1 is of multiplicity 12. The jump relations are similar to those of Euler equations whose the normal
stress tensor replaces the pressure. Jump relations for the cobasis are trivial. The Riemann problem
can be solved in a simple way, by using a classical HLLC solver for example [35].
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2.2.2 Sub-systems 2 and 3

Sub-systems 2 and 3 are similar and uncoupled, they can be processed simultaneously:

∂ρ

∂t
= 0

∂ρu

∂t
= 0

∂ρv

∂t
− ∂(σ12)

∂x
= 0

∂ρw

∂t
= 0

∂ρE

∂t
− ∂(σ12v)

∂x
= 0

∂aβ

∂t
+ bβ

∂v

∂x
= 0

∂bβk
∂t

= 0

∂cβk
∂t

= 0

,



∂ρ

∂t
= 0

∂ρu

∂t
= 0

∂ρv

∂t
= 0

∂ρw

∂t
− ∂(σ13)

∂x
= 0

∂ρE

∂t
− ∂(σ13w)

∂x
= 0

∂aβ

∂t
+ cβ

∂w

∂x
= 0

∂bβk
∂t

= 0

∂cβk
∂t

= 0

. (10)

These two sub-models describe the propagation of shear waves. Each of them admits 14 eigenvalues
and 3 characteristic velocities:

• Sub-system 2:

λ1,2 = ±

√
−1

ρ

∂S12

∂a
.b , λ3 = 0.

• Sub-system 3:

λ1,2 = ±

√
−1

ρ

∂S13

∂a
.c , λ3 = 0.

The Rankine-Hugoniot relations are very simple and it is possible, as previously, to consider an HLLC
type solver with a motionless contact discontinuity.

3 Multiphase governing equations

The aim of this paper is to build a multiphase flow model including hyperelasticity. In [9] is proposed a
one-velocity model. In this paper, we propose a fully out-of-equilibrium model whose each phase admits
its own velocity and its own pressure. We follow here the discrete equations method, first developed in
[2] and detailed in [23], [30], [32]. The discrete equations method (DEM) consists in the circulation of
information between several equations systems, each of them governing the evolution of pure phases. In
particular, the ability of the DEM allows to treat simultaneously out of equilibrium zones in multiphase
flows and interfaces, that impose locally equilibrium of pressures and normal velocities of each phase
(interface conditions).

In order to provide a better understanding of the following steps, a brief summary of the DEM
construction process is presented in the next section in the case of pure fluids.

3.1 Summary of DEM construction in the case of fluid-fluid interactions

To build the flow model, the DEM considers a system of conservation laws (mass impulse and total
energy) for each phase. Each system is written under the conservative form:

∂U

∂t
+
∂F

∂x
= 0 (11)
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where

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu⊗ u− σ
ρuE − σu

 .

the system is closed by a suitable equation of state for each phase. Using the DEM approach, each pure
phase equation is weighted by the phase function and then integrated over a control volume containing
all the phases (see [23], [2] for details). An example of multiphase control volume is presented in Figure
1 (involving morely two phases for the sake of simplicity).

Figure 1: Control volume (V) in the case of multiphase flow (with 2 components).

As explained in [2], the use of an indicator variable χk becomes necessary to distinguish the phases
and build the multiphase flow model. This indicator admits two possible values for each point inside
the volume (V): 1 if the point is inside a given phase k and 0 elsewhere. This indicator follows the
transport equation:

∂χk
∂t

+ νx
∂χk
∂x

= 0.

where νx represents the local interface velocity. This equation reflects the correspondence between the
Eulerian coordinates and the Lagrangian coordinates.
A multiplication of system (11) by χk for each phase k leads to:

χk
∂U

∂t
+ χk

∂F

∂x
= 0,

and one can finally get:
∂χkU

∂t
+
∂χkF

∂x
= (F− νxU)

∂χk
∂x

. (12)

Denoting FLag = F − νxU and taking into account the indicator equation, the final sytem is in the
form:

∂χkUk

∂t
+
∂χkFk

∂x
= Fk

Lag ∂χk
∂x

(13)

where:

Uk =


1
ρ
ρu
ρE


k

, Fk =


0
ρu

ρu⊗ u + pI
ρuE + pu


k

, Fk
Lag = Fk − νxUk.

To summarize, the DEM process involves three steps for the direct integration over the control volume
of the solutions of interfaces problems :

• Phase selection by the indicator function

• Riemann problem solution at the interfaces between each pair of phases

• Direct average over space and time of Riemann problem solutions (Godunov’s type scheme in each
sub-volume) ∫

t

∫
V

(
∂χkUk

∂t
+
∂χkFk

∂x

)
dV dt =

∫
t

∫
V

(
Fk

Lag ∂χk
∂x

)
dV dt. (14)

6



The integration on the control volume is detailed in [23], the resulting discrete equations are then
obtained:

αkUk
n+1
i = αkUk

n+1
i +

∆t

∆x


−

∑
l,m

{Sχ∗kF∗}lm,i+1/2 −
∑
l,m

{Sχ∗kF∗}lm,i−1/2


+

∑
l,m

{S[χk]∗FLag,∗}lm,i+1/2 +
∑
l,m

{S[χk]∗FLag,∗}lm,i−1/2




(15)

where αk denotes the volume fraction of the phase k. Variables with superscript ’∗’ correspond to
solutions of the Riemann problem. Slm represents the contact surface for each pair of fluids (or solids)
in contact. Their expressions are obtained following simple arguments provided in [31]. Table 1 contains
the values of these surfaces in the particular case of two-phase flow (for the cell boundary i+ 1/2). In
such a case, l ∈ {1, 2} and m ∈ {1, 2}. χ∗k,lm represents the phase function of phase k for the same pair
of fluid, their values are reported in Table 1.

Table 1: The different configurations for Eulerian fluxes at cell boundary i+ 1/2 for k = 1.

Contact Surface Eulerian flux Phase function χ∗1
1-1 S11 = Min(α1,i, α1,i+1) F ∗11 χ∗1,11 = 1

1-2 S12 = Max(0, α1,i − α1,i+1) F ∗12 χ∗1,12 =

{
1 if u∗12 > 0
0 otherwise

2-1 S21 = Max(0, α1,i+1 − α1,i) F ∗21 χ∗1,21 =

{
1 if u∗12 < 0
0 otherwise

2-2 S22 = Min(α2,i, α2,i+1) F ∗22 χ∗1,22 = 0

[χk] represents the jump of χk through an interface. The values of these jumps are resumed in Table 2
in the particular case of two-phase flows.

Table 2: The different configurations for Lagrangian fluxes at cell boundary i+ 1/2 for k = 1.

Contact Surface Eulerian flux Phase function χ∗1
1-1 S11 FLag,∗11 [χ1]∗11 = −1

1-2 S12 FLag,∗12 [χ1]∗12 =

{
−1 if u∗12 > 0
0 otherwise

2-1 S21 FLag,∗21 [χ1]∗21 =

{
1 if u∗21 < 0
0 otherwise

2-2 S22 FLag,∗22 [χ1]∗22 = 0

For an arbitrary number of fluids (or solids) the obtaining of surfaces Sk,lm are detailed in [5], as well
as the continuous model underlying which the general form is (k-th phase):

∂αk
∂t

+ uI∇αk = 0

∂(αρ)k
∂t

+∇(αρu)k = 0

∂(αρu)k
∂t

+∇(α(ρu⊗ u + pI))k = −pI∇αk
∂(αρE)k

∂t
+∇(α(ρE + p)u)k = pIuI∇αk

(16)

Under the saturation condition: ∀k ∈ {1, Nphases}, αk ∈ [0, 1] and
∑
k

αk = 1.

The interface variables pI and uI are fully determined by the Riemann problem solution. We take the
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example of a pure hydrodynamic two-phase flow with gas (g) and liquid (l) (in 1D case):

∂αg
∂t

+ uI
∂αg
∂x

= 0

∂αgρg
∂t

+
∂(αgρgug)

∂x
= 0

∂αgρgug
∂t

+
∂(α1ρgu

2
g + αgpg)

∂x
= pI

∂αg
∂x

∂αgρgEg
∂t

+
∂(αg (ρgEg + pg)ug)

∂x
= pIuI

∂αg
∂x

∂αlρl
∂t

+
∂(αlρlul)

∂x
= 0

∂αlρlul
∂t

+
∂(αlρlu

2
l + αlpl)

∂x
= −pI

∂αg
∂x

∂αlρlEl
∂t

+
∂(αl (ρlEl + pl)ul)

∂x
= −pIuI

∂αg
∂x

(17)

This system is hyperbolic (under minimal form) and totally out of equilibrium. It is obtained only by
considering the fluxes travelling between adjacent cells of the mesh (i.e. at the level of mesh interfaces).
Other phenomena such as relaxation may be regarded, involving terms that are internal for a cell.
We now interest in the addition of the elastic systems to the DEM formulation. The process is only
detailed in the first space direction (x), knowing that it is extensible exactly the same way in other
dimensions.

3.2 Sub-systems in Multiphase Formulation

Each sub-system (9) and (10) consists in eight equations (scalar or vectorial). The first five equations
of the sub-models express the conservation laws of mass, impulsion and total energy of the flow. The
building process of the DEM, as described in the previous section, can be directly applied to those
equations set. Then appears a supplementary relation concerning the volume fraction of the phase. In
the following, we will call the associated variables of these equations the conservative variables (even if
the governing equation of the volume fraction is not conservative). The last three equations constitute
the cobasis governing equations and should be considered as geometric equations since they are derived
from the Lagrangian coordinates and permit to compute the elasticity of the material.

3.2.1 Sub-system 1

The DEM can be applied directly to the conservative variables. The flow model is multiplied by the
phase function χk then equations are integrated over the multiphase control volume:

∂χkU

∂t
+
∂χkF

∂x
= (F− νxU)

∂χk
∂x

. (18)

with

U =


1
ρ
ρu
ρv
ρw
ρE

 , F =


0
ρu

ρu2 − σ11
ρuv
ρuw

ρEu− σ11u

 .
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Remember that the variation
∂χk
∂x

is non zero at the interface only. In the absence of reactive front,

the interface velocity is equal to the fluid velocity (νx = u):

FLag = F− νxU =


−u
0
−σ11

0
0

−σ11u

 .

Geometrical variables

The cobasis governing equations must be treated with a special care. Indeed, these geometrical equations
and the evolution of this variables may depend on the topology of the flow. The link between the
density and the geometrical variables ρ = ρ0|G|1/2 should be preserved. To ensure this, in [9], the
cobasis equations are weighted by αnβ with the following constraint:

nβ ≥ 0,

3∑
β=1

nβ = 1.

All the parameters were set to nβ = 1/3 in order to preserve the isotropy of the configuration. In
the present work, the configuration is not anymore isotropic since we consider for example a stratified
configuration in the x-direction. In such a configuration, there is no reason that the vector bβ and cβ

change in the cell due to the transport of the material, because they are the derivative of the Lagrangian
coordinates in the y and z direction. On the contrary, the component of aβ which corresponds to the
gradient of the Lagrangian coordinates in the x-direction will depend on the material flow especially on
the compression applied on the cells edges. In fact, it expresses another form of the mass conservation.
It implies that this last vector should be weighted by the volume fraction. With such a process, the
density is preserved and the full first sub-system can be written as follow for the ”k-th” phase:

∂αk
∂t

+ uI
∂αk
∂x

= 0

∂(αρ)k
∂t

+
∂(αρu)k
∂x

= 0

∂(αρu)k
∂t

+
∂(αρu2 − ασ11)k

∂x
= −σ11I

∂αk
∂x

∂(αρv)k
∂t

+
∂(αρuv)k

∂x
= 0

∂(αρw)k
∂t

+
∂(αρuw)k

∂x
= 0

∂(αρE)k
∂t

+
∂(αρEu− ασ11u)k

∂x
= −σ11IuI

∂αk
∂x

∂(αaβ)k
∂t

+
∂(αaβu)k

∂x
= 0

∂bβk
∂t

+ uk
∂bβk
∂x

= 0

∂cβk
∂t

+ uk
∂cβk
∂x

= 0

(19)

Thanks to the splitting procedure, there is no need to couple the two last equations of the previous
system with the mass equation for the resolution. The resulting discrete model is similar to the model
(15).

3.2.2 Sub-systems 2 and 3

When dealing with sub-system 2 and 3 (10), the interface velocity νx vanishes since there is no transport:
νx = 0, since transport has already been calculated in the previous system. Then, the phase function
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follows:
∂χk
∂t

= 0.

This implies that the expressions of the lagrangian fluxes for sub-systems 2 and 3 are the same as the
eulerian flux. As for the previous sub-model 1 (system (22)), each equation of system (2) is weighted
by the indicator function except the last two. Sub-systems 2 and 3 can be solved simultaneously and
the same procedure is applied. Then one can write:

∂χkU

∂t
+
∂χkF

∂x
= (F− νxU)

∂χk
∂x

with U, the conservative variables vector and F the flux vector:

F =



0
0
0
0
−σ12

0
−σ12v


, for sub− system 2 and, F =



0
0
0
0
0
−σ13
−σ13w


, for sub− system 3.

Thus this relation becomes:

∂χkU

∂t
+
∂χkF

sub2

∂x
+
∂χkF

sub3

∂x
= Fsub2

∂χk
∂x

+ Fsub3
∂χk
∂x

The sub-systems have to be integrated on the multiphase controle volume. The resulting discrete model
for the conservative variables is:

αkUk
n+1
i = αkUk

n+1
i +

∆t

∆x



−

∑
l,m

{Sχ∗kFsub2,∗}lm,i+1/2 −
∑
l,m

{Sχ∗kFsub2,∗}lm,i−1/2


+

∑
l,m

{S[χk]∗Fsub2,∗}lm,i+1/2 +
∑
l,m

{S[χk]∗Fsub2,∗}lm,i−1/2


−

∑
l,m

{Sχ∗kFsub3,∗}lm,i+1/2 −
∑
l,m

{Sχ∗kFsub3,∗}lm,i−1/2


+

∑
l,m

{S[χk]∗Fsub3,∗}lm,i+1/2 +
∑
l,m

{S[χk]∗Fsub3,∗}lm,i−1/2





(20)
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The continuous model for the cobasis variables is obtained in a similar way as for the sub-system 1.
The continuous model described by this last system is:

∂αk
∂t

= 0

∂(αρ)k
∂t

= 0

∂(αρu)k
∂t

= 0

∂(αρv)k
∂t

− ∂(ασ12)k
∂x

= −σ12I
∂αk
∂x

∂(αρw)k
∂t

− ∂(ασ13)k
∂x

= −σ13I
∂αk
∂x

∂(αρE)k
∂t

+
∂(−ασ12v)k − ασ13w)k

∂x
= −σ12IvI

∂αk
∂x
− σ13IwI

∂αk
∂x

∂(αaβ)k
∂t

+ (αbβ)k
∂vk
∂x

+ (αcβ)k
∂wk
∂x

= 0

∂bβk
∂t

= 0

∂cβk
∂t

= 0

(21)

One can note that the volume fraction in the cobasis equation can be removed.

3.2.3 Hyperbolicity

Each system is hyperbolic (since each phase model is hyperbolic). As there is an additional equation (for
the volume fraction), the Jacobian matrix of each sub-model admits 15 eigenvalues and 15 eigenvectors
(presented in Appendix). The characteristic speeds remain unchanged.

3.3 General model

The overall system solve the following multiphase flow model :

∂αk
∂t

+ uI
∂αk
∂x

= 0

∂(αρ)k
∂t

+
∂(αρu)k
∂x

= 0

∂(αρu)k
∂t

+
∂(αρu2 − ασ11)k

∂x
= −σ11I

∂αk
∂x

∂(αρv)k
∂t

+
∂(αρuv)k

∂x
+
∂(−ασ12)k

∂x
= −σ12I

∂αk
∂x

∂(αρw)k
∂t

+
∂(αρuw)k

∂x
+
∂(−ασ13)k

∂x
= −σ13I

∂αk
∂x

∂(αρE)k
∂t

+
∂(αρEu− ασ11u− ασ12v − ασ13w)k

∂x
= −(σ11IuI + σ12IvI + σ13IwI)

∂αk
∂x

∂(αaβ)k
∂t

+
∂(αaβu)k

∂x
+ (αbβ)k

∂vk
∂x

+ (αcβ)k
∂wk
∂x

= 0

∂bβk
∂t

+ uk
∂bβk
∂x

= 0

∂cβk
∂t

+ uk
∂cβk
∂x

= 0

(22)

This system can be solved directly by using the procedure presented in the next section. Since the exact
Riemann solver is too complex to be used in numerical code, an approximate Riemann solver must be
used. An adaptation of the HLLC solver [35] based on the Hugoniot relations was proposed in [15].
This solver is able to capture the 7 waves present in the Riemann problem even if it considers only
three waves. Unfortunately, huge diffusion is present with such a solver. Another difficulty appears
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when fluids are in contact with solids. The Riemann solver degenerates and the shear waves disapears
on the fluid side of the interface. The treatment of such cases is not straightforward with the global
system and will be discussed in detail for the sub-system 2. In the following, we will only discuss the
numerical treatment of the splitting approach.

4 Numerical treatment

The principle of the Discrete Equation Method is to solve several Riemann problems between pure
phases as presented in Figure 2. The resulting fluxes are then weighted by the contact surface between
these fluids. The variables evolution is realized using a Godunov type scheme.

Phase 1 

Phase 2

Phase 1 

Phase 2

i i+1

i+1/2

Figure 2: Riemann problem to solve between each phase.

4.1 Riemann problem for sub-system 1

The jump relations are those of pure fluids. The first sub-system is similar to the Euler equations in
the case of multiphase flows with multiple transport equations along the particles trajectories. Exact
Riemann solver could be used but we prefer to use a HLLC type solver [35]. Indeed, especially in the
context of solids, complex equations of state may be necessary in order to describe accurately some
problems, as Mie-Gruneisen type EOS for example. Then, it is not possible to find the exact solution
of the Riemann problem.
The approximate HLLC Riemann solver considers two shock waves and a contact discontinuity as
presented in Figure 3. This kind of Riemann solver has already shown its efficiency in [8] in the case
of pure solids. We just recall here the jump relations. In the following we use the Davis approximation
[7] concerning the extreme waves speeds DL and DR.

U
L

U
L

* U
R

*

U
R

D    M

D L

D
R

t

x

Figure 3: HLLC representation of the Riemann Problem.

Jump relations for the conservative variables.
The Rankine-Hugoniot relations across each wave (DR,DL,DM ) are :

F∗L −DLU
∗
L = FL −DLUL

F∗R −DRU
∗
R = FR −DRUR

F∗L −DMU∗L = F∗R −DMU∗R
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with
F =

(
(ρu)k, (ρu

2 − σ11)k, (ρuv)k, (ρuw)k, (ρuE − σ11u)k
)T

U = (ρk, (ρu)k, (ρv)k, (ρw)k, (ρE)k)
T
.

,

F and U represent respectively the flux vector and the vector of conservative variables. We can notice
that jump relations for the physical variables are not affected by the hyperelasticity.

Jump relations for geometrical variables
The Rankine Hugoniot relations across the shock waves (DR and DL) lead to :[

aβ(u−D)
]

= 0,[
bβ
]

= 0,[
cβ
]

= 0.

Jump relation across the contact discontinuity:
The contact discontinuity can be localized in a pure phase or at the interface between two phases. Across
this discontinuity, the jump of geometrical variables is arbitrary, the same way as for the density. For
the flow variables, the interface relations will be:

σ∗11L = σ∗11R = σ∗11,
u∗l = u∗r = u∗.

All these fluxes must be weighted with the contact surface between the left and the right material. The
HLLC solver gives the flux across cells edges. In order to solve system (22), additional fluxes have to be
considered when solving a Riemann problem between two different materials. The concerned variables
are the volume fraction, the momentum (in the x direction) and the total energy.

4.2 Riemann problem for Sub-system 2

In sub-system 2, there is no transport equation. If two solids are considered, the Riemann problem
involves 3 waves with a zero velocity central wave. When interface between solids and fluids or pure
fluids are present, some waves disappear. Indeed, the complete model is not anymore strictly hyperbolic
and the cobasis equations are useless. Such configurations are represented in Figure (4).

SL
S

R

v*
L

σ*
12

v*
R

σ*
12

x

t

Solid 2Solid 1 

SL

v*
R

σ*
12

v*
L

σ*
12

S
R

x

t

FluidSolid 

SL

v*
L

σ*
12

v*
R

σ*
12

S
R

Fluid 2Fluid 1 
x

t

Figure 4: Three different possible configurations. At the contact discontinuity between two solids a
transverse velocity jump may be present. When fluids are present, the velocity jump is arbitrary and
the tangential stress σ∗12 is set to zero.

We will first detail the Riemann solver between two solids. In that case, two shock waves and a zero
velocity central wave are considered. An HLLC type solver can again be used to solve the Riemann
problem. One can express the Rankine Hugoniot relations associated to the sub-system 2.

Jump across the shock waves
The wave speeds DR and DL are evaluated using the Davis approximation [7]. The Rankine Hugoniot
relations across the shock waves lead to:

[ρk] = 0, [ρkuk] = 0, [ρkwk] = 0,
[−σ12k −Dρkvk] = 0,

[−σ12kvk −DρkEk] = 0,
(23)
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for the flow variables, and to [
bβvk −Daβ

]
= 0,[

bβ
]

= 0,
[
cβ
]

= 0,

for the geometrical variables.

Jump across the contact discontinuity:
Physically, two patterns can occur at the contact discontinuity. Indeed, the velocity field can be contin-
uous, the two sides stick together, or the two sides of the interface can slide together with an arbitrary
velocity. All the patterns between these two cases can also occur. In the following, we will consider
that when the same phase is present at the interface the materials is continuous. The jump relations
for the physical variables are:

[v] = 0, [σ12] = 0.

When two different phases are present, two possibilities can be chosen:

• There is no friction between the materials σ∗12 = 0 and the velocity jump is determined by the
shock relations (23). In that case, two different velocities have to be defined v∗R and v∗L on the
right and the left of the interface.

• There is adherence between the two phases and the jump relations are [v] = 0 and [σ12] = 0.

For the other variables, the jump is always arbitrary in agreement with the shock jump relations. When
a fluid is present (on one side or both sides of the interface), the shock jump are not anymore valid
since the wave is absent. Indeed, when the shear modulus tends to zero, the wave speed also tends to
zero and collapse to the interface. In the case, for example, where the fluid is on the right, we have at
the contact dicontinuity v∗R = vR and σ∗11 = 0. The velocity jump is arbitrary and if a solid is present
on the left, the right star state is determined by the solid jump relations.

4.3 Numerical scheme

Once the solutions of the Riemann problems have been computed, fluxes can be expressed. A Godunov
type scheme is used.

4.3.1 Sub-system 1

As the discret equation method corresponds to both a discret model and a numerical scheme, this last
is the result of the integration on the controle volume, given by the expression (15). The numerical
scheme for the geometrical variables is the following :

 αka
β
k

bβk
cβk

n+1

=

 αaβk
bβk
cβk

n− ∆t

∆x


∑
l,m{Sχ∗k(aβkuk)∗}lm,i+1/2 −

∑
l,m{Sχ∗k(aβkuk)∗}lm,i−1/2

(bβkuk)∗i+1/2 − (bβkuk)∗i−1/2 − bβk(u∗k,i+1/2 − u
∗
k,i−1/2)

(cβkuk)∗i+1/2 − (cβkuk)∗i−1/2 − cβk(u∗k,i+1/2 − u
∗
k,i−1/2)

 (24)

Fluxes at the cells edges are computed with an approximate Riemann solver. The same procedure is
used to solve sub-systems 2 and 3 describing shear effects.

4.3.2 Sub-systems 2 and 3

The numerical scheme associated to sub-systems 2 and 3 is the result of the integration performed in a
previous section. The scheme associated to the hydrodynamic variables is given by the expression (20).
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The numerical scheme for the geometrical variables is given for both sub-models 2 and 3. bβ and cβ

do not change during this step ((bβk)n+1=(bβk)n, (cβk)n+1=(cβk)n).

(αka
β
k)n+1 = (αaβk)n − ∆t

∆x

 bβk

∑
l,m

(
{Sχ∗k(vk)∗L}l,m,i+1/2 − {Sχ∗k(vk)∗R}l,m,i−1/2

)
+cβk

∑
l,m

(
{Sχ∗k(wk)∗L}i+1/2 − {Sχ∗k(wk)∗L}i−1/2

)
 (25)

If an interface is present, shear stresses at the interface must be expressed (σ12I , σ13I). Indeed, it is
possible to consider sliding or adherence condition at the interface. In this work, only sliding condition
is considered at the interface. So there is no shear interaction between two solids at an interface and we
assume that the interface shear stresses vanishe. One can notice that the equation for the geometrical
variable is not conservative due to the discontinuity of the velocity at the interface between two phases.
When the sliding is possible, the Lagrangian coordinates of each phase are not linked anymore. Thus
another phase should not create deformation in the phase at that time.

4.4 Summary

The numerical resolution can be summarized as follow :

1. Compute each contact surface between each phase.

2. Compute each Riemann problem between each phase for the sub-system 1

3. Evolve the conservative variables using the Godunov type scheme for sub-system 1

4. Compute each contact surface between each phase.

5. Compute each Riemann problem between each phase for the sub-system 2

6. Evolve the conservative variables using the Godunov type scheme for sub-system 2

7. Compute each Riemann problem between each phase for the sub-system 3

8. Evolve the conservative variables using the Godunov type scheme for sub-system 3

9. Return to step 1

5 One dimensional tests and validations

In the following test cases, we consider aluminium, copper, carbopol as perfectly elastic solid and air
as a perfect gas. The parameters of the considered materials are resumed in Table 3.

Material γ P∞ (Pa) µ (Pa) ρ0 (kg/m3) a (eos parameter)
Aluminium 3.4 21.5 109 26 109 2700 0.5

Copper 4.2 34.2 109 92 109 8900 0.5
Carbopol 2.2 106 85 1020 0 and -1

Air 1.4 - - 1.19 -

Table 3: Features of materials
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5.1 Advection of a solid-gas interface

We consider a tube filled with solid aluminium at a density ρ = 2700kg/m3 on the left and air with the
density ρ = 1kg/m3 on the right. The pressure p = 0.1MPa is uniform in the whole domain as well as
the velocity u = 400m/s. The domain length is 1m long. The interface is initially located at x = 0.5m.
The initial configuration is presented in Figure 5. A 2000 cells mesh is used for the computation. The
numerical results are represented in Figure 6 at time t = 0.5ms. This test shows that the numerical
method is able to preserve mechanical equilibrium states in the presence of interface with a very large
density ratio.

ALUMINIUM

400 m/s

AIR

400 m/s

Figure 5: Initial configuration: a solid/gas interface is moving with a constant velocity.
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Figure 6: Advection test case: Visualisation of the normal stress of the Aluminum (Top left), the
air pressure (Top right), velocities of both materials (bottom left) and the volume fraction of the
components. All the variables are represented at time t = 0.5ms.
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5.2 Impact between two elastic solids

In the following test case we consider the collision between two elastic solids. We consider copper moving
at 400m/s with density ρ = 8900kg/m3 on the left. On the right, we consider aluminium moving at
−200m/s with density ρ = 2700kg/m3. At initial time, the two materials are at atmospheric pressure.
The interface is located at abscissa x = 0.5m. The initial configuration is summarized in Figure 7. In
each phase, a negligible amount of the other phase (αmin = 10−5) is present. Results are presented in
Figures 8 and 9 at time t = 50µs on a 2000 cells mesh.

COPPER ALUMINIUM

400 m/s −200 m/s

Figure 7: Initial configuration for the impact of two solids.

The mixture variables are defined as follow:

σmix =
∑
k

αkσk, umix =
∑
k

Ykuk,

where Yk is the mass fraction of phase k.
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Figure 8: The mixture variables σmix =
∑
k αkσk and umix =

∑
k

Ykuk are represented. The interface

relations are satisfied: the normal stress and the normal velocity are continuous at the interface.

In this test, two shock waves propagate in each phase with different velocities. One can notice that no
oscillation is present on the mixture variables at the interface. The continuity of the normal stress and
the mixture velocity is preserved at the interface. One can notice that a pressure jump is present at
the interface unlike when only pure fluids are present.

5.3 Shear Test

Initially, the normal velocity is set to zero as well as the shear stress. The whole domain is at atmospheric
pressure. Only aluminium is considered in this test. At initial time, a tangential velocity discontinuity
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Figure 9: Impact between two solids. Results are presented at time t = 50µs on a 2000 cells mesh. The
phase characteristics are represented. On these figures, aluminium is represented with lines, copper is
represented with dashed line.

(δv = 1000m/s) is present at abscissa x = 0.5m. The initial configuration is presented in Figure 10.
Aluminium has been used for this example. The domain is one meter long. Results are presented in
Figure 11 at time t = 50µs on a 2000 cells mesh. The exact solution ([8]) is represented with lines, the
numerical results are represented with symbols. The solution corresponds to the propagation of two
compression waves and two shear waves. Rarefaction is present in the shear waves. This test shows the
ability of the numerical scheme to capture waves propagation in pure phase.

500 m/s −500 m/s

ALUMINIUM ALUMINIUM

Figure 10: Initial configuration for the shear test. A tangential velocity jump δv = 1000m/s is present
at the interface.

5.4 Sliding between 2 solids

We consider here the sliding between 2 solids (copper and aluminium) at an interface. At initial time,
all the materials are at atmospheric pressure. The normal velocity is set to 200m/s and a transverse
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Figure 11: Shear test problem. Initially, a discontinuity of tangential velocity exists. Here are presented
the profiles of density, pressure, normal stress, shear stress, normal velocity and tangential velocity at
the instant t=50 µs.The exact solution proposed in [8] is represented in lines, the numerical solution
obtained with a 2000 cells mesh is represented with symbols.
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velocity discontinuity is present at the interface δv = 100m/s. The sliding is supposed to be perfect
i.e. the tangential stress between the two phases is set to 0 in the Riemann problem. The domain is
1m long and the interface is located at abscissa x = 0.5m. Results are presented at time t = 0.1ms in
Figure 12. No oscillations are present at the interface. The transverse velocity jump between the two
phases is preserved.
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Figure 12: Sliding between two solids: the volume fraction of each solid is presented as well as the
mixture variables at time t = 0.1ms. The tangential velocity jump is transported and preserved. There
is no oscillation at the interface.

The numerical treatment of such a test is always a difficult issue. In Lagrangian codes, such problem
needs complex algorithms (see for example [17]). For Eulerian codes, the issue was described in [9] and
a special treatment was proposed. This treatment is not straightforward and the preservation of the
momentum and the energy is difficult to guaranty. This test case show the ability of this new approach
to deal with such problems without complex algorithm. The conservation properties are guaranteed by
the scheme.
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6 Multi-dimensional examples

Multi-dimensional extension of the method is direct. An analogous finite volume splitting procedure is
used in each directions. The first step is the resolution of the system describing the traction-compression
of the elastic body in the three directions (sub system 1). Then sub-systems 2 and 3 are solved
simultaneously in each direction.

6.1 Impact of a projectile on a plate with high velocity

In this test, we consider the impact of a copper projectile (0.1m×0.1m) on a copper plate (0.1m×0.1m).
The system is surrounded by air at atmospheric conditions. The initial velocity of the projectile is
u = 600 m.s−1. The computation domain, described in Figure 13 is 0.5m× 0.6m on a 1000× 1200 cells
mesh. The contact between the projectile and the plate is done initially, so there is no interface between
both solids. Results are presented in Figure 14 at respective instants t = 40µs, t = 70µs, t = 110µs,
t = 200µs, t = 300µs, t = 490µs and t = 700µs. The copper volume fraction is represented on the
bottom of each picture of the figure while the schlieren of the density is represented on the top of them.
The plate oscillates during the time evolution and shock are transmitted from the solid to the air. This
test shows the ability of the model to compute strong shock in 2D configuration.

0.5 m

0.5m

0.1 m 

0.1 m 

0.1 m 

Copper 

0.6m

Figure 13: A copper projectile strikes a copper plate with a velocity u = 600m/s.

6.2 Comparison with experiment : impact of a jelly droplet

In the previous example, we consider a non-physical test case. Indeed, when such impact happens, lots
of physics is present. Plasticity, fracture and many other phenomena can occur. Unlike metals, jelly
like materials can remain elastic even for extreme deformation (100%-200%). This aspect has been
studied by [24]. In this example, a cylindrical gel sample (Carbobol) of diameter L0 impacting a rigid
hydrophobic surface spreads over the surface until some limit size LM and then a full elastic recoil is
observed which may be followed by a complete rebound. We reproduce this quasi-reversible behaviour
numerically. The initial configuration is depicted in Figure 15. The initial diameter is L0 = 0.012m,
the jelly cylinder high is H = 0.008m, and the initial velocity of the droplet is v = −3m/s. We use a
3D version of the numerical code with a 100× 100× 100 cells mesh to compute the entire domain.

Materials features are given in Table 3. Two different values of the parameter a associated to the
elastic equation of state are considered (a = −1 and a = 0). The results for the two parameters are
compared in Figure 16. The droplet contours are plotted at different times. during the first instants
(t < 1.5ms), the behaviour of the droplet is similar for the two values of the parameter a. Then, one
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Figure 14: Impact of an elastic copper projectile on an elastic copper plate. The evolution of the
projectile and the plate are shown through the volume fraction of copper and a schlieren of mixture
density plotted at different instants: t = 40µs, t = 70µs, t = 110µs, t = 200µs, t = 300µs, t = 490µs
and t = 700µs.
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Figure 15: Impact of a carbopol droplet on a rigid wall : initial configuration.

can notice that the droplet computed with a = −1 continues to spread while the one computed with
a = 0 begins to retract. Thus the final spreading of the droplets strongly depends on the parameter a.

Figure 16: Numerical results for the impact of a carbopol droplet on a rigid wall. The results are
represented at time t = 0.5ms, t = 1.5ms, t = 3.0ms, t = 4.5ms, t = 6.0ms, t = 8.0ms, and
t = 16.0ms. Both computations are represented on the same Figure. The results using value a = −1
are plotted in blue (right side) and results associated to the value a = 0 are plotted in white (left side).
The behaviours of droplets are different since t > 1.5ms

In order to compare our results with those obtained in [24]. Other computations have been performed
with different impact velocities. Each of them has been made twice with two values of the parameter
a. Results are summarized in the Figure 17. It is clear that the value of the parameter a of the elastic
equation of state have a huge influence on the material behaviour. The value a = −1 corresponds to
the case of neo-Hookean material (see the proof in[14]) The results are in good agreement.
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Figure 17: Impact of a carbopol droplet. Experimental results obtained by Luu and Fortere [24] are
shown in circle and the numerical results are represented with squares and triangles.

6.3 Conservation of the vorticity constraint curl(eβ) = 0

In this test case, we study the preservation of the constraint curl(eβ) = 0. This test is performed in
two dimensions of space. We consider here the test case proposed by [8] and described hereafter. The
initial configuration is presented in Figure 18.

C

R

2 L

L

Figure 18: Initial configuration: A square containing pure solid is studied. Solid within the circle is
in motion with a constant angular velocity while outside the circle, the solid is at rest. L = 1m and
R = 0.5m.

At initial time, a disc of elastic material is in rotation in the same elastic material at the angular
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velocity ω = 4000rad.s−1, the velocity field is :

(
u
v

)∣∣∣∣
t=0

=


(
−ωy
ωx

)
, if x2 + y2 < R2(

0
0

)
, if x2 + y2 > R2

With such a choice, strong shear is present at the limit x2 + y2 = R2, with a tangential jump of
2000 m.s−1. The pressure and the density are represented in Figure 19 at time t = 5µs and t = 10µs
on a 800× 800 cells mesh. The circulation Γ, of the vector e1 along the contour C is computed at time

Figure 19: Density and pressure of the material at time t = 5µs (on the left) and t = 10µs (on the
right).

t = 10µs. This contour C is a square of dimension L = 1m.

Γ =

∮
C

a1dx+ b1dy =

∫ ∫
D

(
∂b1

∂x
− ∂a1

∂y

)
dxdy.

The follwowing dimensionless variables are introduced:

Γ̃ =
Γ

L
, d̃x =

dx

L
, d̃y =

dy

L
,
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it comes

ln
(
d̃x
)

= ln
(
d̃y
)

= ln

(
2

N

)
,

where N is the number of cells in each direction (Nx = Ny = N). In Figure 20, ln(|Γ̃|) is represented

as a function of ln
(
d̃x
)

for different mesh sizes. The first order convergence is represented with a line.

The developped numerical scheme preserved the vorticity constraint at first order.
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Figure 20: The circulation of the stationary constraint curl(e1) at time t = 10µs : ln(|Γ̃|) is represented
as a function of the grid size. 100 × 100, 200 × 200, 300 × 300, 400 × 400, 600 × 600 and 800 × 800
cells mesh are considered. The first order convergence slope is represented with continuous line. The
developed numerical scheme is able to preserve the vorticity constraint at first order.

7 Conclusions

An hyperbolic multiphase model with two pressures and two velocities for elastic solid-fluid coupling in
Eulerian formulation has been developed. A splitting methods has been used to simplify the solving of
the Riemann problem and decrease the numerical diffusion of the shear waves. The model is illustrated
by two dimensional hypervelocity impact of solids and compared with a good agreament on experiment
of droplet of jelly on a rigid surface. For high velocity impact on real metals and porous material,
some more physics should be added for comparison on real experiments. Introduction of plasticity and
compaction effects will be added on the basis of [11, 10] and [12] in a forthcoming paper.

Acknowledgments

The author thanks R.Abgrall and S. Gavrilyuk for fruitful discussion. This work was partially supported
by ANR and A*MIDEX, France, the grants ANR-14-ASTR-0016-01, ANR-11-LABEX-0092 and ANR-
11-IDEX-0001-02.

26



References

[1] R. Abgrall. How to prevent pressure oscillations in multicomponent flow calculations: a quasi
conservative approach. Journal of Computational Physics, 125(1):150–160, 1996.

[2] R. Abgrall and R. Saurel. Discrete equations for physical and numerical compressible multiphase
mixtures. Journal of Computational Physics, 186(2):361–396, 2003.

[3] M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation tran-
sition (ddt) in reactive granular materials. International Journal of Multiphase Flows, 12(6):861–
889, 1986.

[4] P.T. Barton, D. Drikakis, E. Romenski, and Titarev V.A. Exact and approximate solutions of
riemann problems in non-linear elasticity. Journal of Computational Physics, 228(18):7046–7068,
2009.

[5] A. Chinnayya, E. Daniel, and R. Saurel. Modelling detonation waves in heterogeneous energetic
materials. Journal of Computational Physics, 196(2):490–538, 2004.

[6] C. Czarnota, N. Jacques, S. Mercier, and A. Molinari. Modelling of dynamic ductile fracture and
application to the simulation of plate impact tests on tantalum. Journal of the Mechanics and
Physics of Solids, 56(4):1624–1650, 2008.

[7] S.F. Davis. Simplified second-order godunov-type methods. SIAM Journal on Scientific and
Statistical Computing, 9(3):445–473, 1988.

[8] N. Favrie, S.L. Gavrilyuk, and S. Ndanou. A thermodynamically compatible splitting procedure
in hyperelasticity. Journal of Computational Physics, 270:300–324, 2014.

[9] N. Favrie, S.L. Gavrilyuk, and R. Saurel. Solid-fluid diffuse interface model in cases of extreme
deformations. Journal of Computational Physics, 228(16):6037–6077, 2009.

[10] N. Favrie and Gavrilyuk S.L. Dynamics of shock waves in elastic-plastic solids. ESAIM:
Proceedings, 33(1947):50–67, 2011.

[11] N. Favrie and Gavrilyuk S.L. Mathematical and numerical model for nonlinear viscoplastic-
ity. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 369(1947):2864–2880, 2011.

[12] N. Favrie and Gavrilyuk S.L. Dynamic compaction of granular materials. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 469(2160):20130214, 2013.

[13] P.J. Flory. Thermodynamic relations for high elastic materials. Trans. Faraday Soc., 57:829–838,
1961.

[14] S. Gavrilyuk, S. Ndanou, and Hank S. One-parameter family of equations of state for isotropic
compressible solids. Accepted in Journal of Elasticity, 2015.

[15] S.L. Gavrilyuk, N. Favrie, and R. Saurel. Modelling wave dynamics of compressible elastic mate-
rials. Journal of Computational Physics, 227(5):2941–2969, 2008.

[16] S.K. Godunov and E.I. Romenskii. Elements of continuum mechanics and conservation laws.
Springer Science & Business Media, 2003.

[17] J.O. Hallquist, G.L. Goudreau, and D. J. Benson. Sliding interfaces with contact-impact in
large-scale lagrangian computations. Computer methods in applied mechanics and engineering,
51(1):107–137, 1985.

27



[18] AK. Kapila, SF. Son, JB. Bdzil, R. Menikoff, and DS Stewart. Two-phase modeling of ddt:
Structure of the velocity-relaxation zone. Physics of Fluids (1994-present), 9(12):3885–3897, 1997.

[19] AK. Kapila, SF. Son, JB. Bdzil, R. Menikoff, and DS Stewart. Two-phase modeling of
deflagration-to-detonation transition in granular materials: Reduced equations. Physics of Fluids
(1994-present), 13(10):3002–3024, 2001.

[20] S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. Journal of
Computational Physics, 112(1):31–43, 1994.

[21] G. Kluth and B. Després. Perfect plasticity and hyperelastic models for isotropic materials.
Continuum Mechanics and Thermodynamics, 20(3):173–192, 2008.

[22] A.G. Kulikovskii and E.I. Sveshnikova. Nonlinear waves in elastic media. CRC Press, 1995.

[23] O. Le Métayer, J. Massoni, and R. Saurel. Modelling evaporation fronts with reactive riemann
solvers. Journal of Computational Physics, 205(2):567–610, 2005.

[24] L.H. Luu and Y. Forterre. Drop impact of yield-stress fluids. Journal of Fluid Mechanics, 632:301–
327, 2009.

[25] G.H. Miller and P. Colella. A high-order eulerian godunov method for elastic–plastic flow in solids.
Journal of Computational Physics, 167(1):131–176, 2001.

[26] S Ndanou, N Favrie, and S. Gavrilyuk. Criterion of hyperbolicity in hyperelasticity in the case of
the stored energy in separable form. Journal of Elasticity, 115(1):1–25, 2014.

[27] S. Ndanou, N. Favrie, and S. Gavrilyuk. Multi-solid and multi-fluid diffuse interface model: Appli-
cations to dynamic fracture and fragmentation. Journal of Computational Physics, 295:523–555,
2015.

[28] S. Ndanou, N. Favrie, and Gavrilyuk S.L. The piston problem in hyperelasticity with the stored
energy in separable form. Mathematics and Mechanics of Solids.

[29] Menikoff R. and Plohr B. J. The riemann problem for fluid flow of real materials. Rev. Modern
Phys., 88:75–130, 1989.

[30] R. Saurel and R. Abgrall. A multiphase godunov method for compressible multifluid and multiphase
flows. Journal of Computational Physics, 150(2):425–467, 1999.

[31] R. Saurel, S.L. Gavrilyuk, and F. Renaud. A multiphase model with internal degrees of freedom:
application to shock–bubble interaction. Journal of Fluid Mechanics, 495:283–321, 2003.

[32] R. Saurel and O. Lemetayer. A multiphase model for compressible flows with interfaces, shocks,
detonation waves and cavitation. Journal of Fluid Mechanics, 431:239–271, 2001.

[33] R. Saurel, F. Petitpas, and R. A. Berry. Simple and efficient relaxation methods for interfaces
separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of
Computational Physics, 228(5):1678–1712, 2009.

[34] VA Titarev, E Romenski, and EF Toro. Musta-type upwind fluxes for non-linear elasticity.
International journal for numerical methods in engineering, 73(7):897–926, 2008.

[35] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction.
Springer Science & Business Media, 2009.

28



A Hyperbolicity of sub model 1

Sub-model 1 can be rewritten in a quasi-linear formulation,

Wt +A(W)Wx = 0.

Source terms are omitted. W is the vector of primitives variables:

W = (αk, ρk, uk, vk, wk, a
1
k, a

2
k, a

3
k, b

1
k, b

2
k, b

3
k, c

1
k, c

2
k, c

3
k, η)T ,

A(W) is the jacobian matrix of the system. The eigenvalues of this matrix are the characteristic
velocities of the system.

A(W) =

(
A11 A12

A21 A22

)
With,

A11 =


uI 0 0

ρk
αk

(uk − uI) uk ρk

σ11k − σ11I
αkρk

(
∂Pk
∂ρk

− ∂S11k

∂ρk

)
ρk

uk



A12 =
1

ρk

 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −∂S11k

∂a1
−∂S11k

∂a2
−∂S11k

∂a3
−∂S11k

∂b1
−∂S11k

∂b2
−∂S11k

∂b3
−∂S11k

∂c1
−∂S11k

∂c2
−∂S11k

∂c3
∂P

∂η



A21 =



0 0 0
0 0 0

a1k
αk

(uk − uI) 0 a1k

a2k
αk

(uk − uI) 0 a2k

a3k
αk

(uk − uI) 0 a3k

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



, A22 = ukI12×12

The Jacobian matrix admits 15 real eigenvalues:

λ1 = uk, λ1 is of multiplicity 12,
λ2 = uI ,

λ3 = uk +

√
∂Pk
∂ρk

− ∂S11k

∂ρk
− 1

ρk

∂S11k

∂a
.a

λ4 = uk −
√
∂Pk
∂ρk

− ∂S11k

∂ρk
− 1

ρk

∂S11k

∂a
.a

The matrix admits 15 right eigenvectors linearly independant, and 15 eigenvalues, the system is
hyperbolic. λ3 and λ4 are the characteristic of the two longitudinal waves.
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B Hyperbolicity of sub model 2 and 3

Sub-system 2 can be rewritten in the quasi-linear form:

Wt +B(W)Wx = 0.

Source terms are omitted. W is the vector of primitives variables:

W = (αk, ρk, uk, vk, wk, a
1
k, a

2
k, a

3
k, b

1
k, b

2
k, b

3
k, c

1
k, c

2
k, c

3
k, η)T .

B(W) =

(
B11 B12

B21 B22

)
With,

B11 =


0 0 0 0
0 0 0 0
0 0 0 0

σ12k
αkρk

− 1

ρk

∂S12k

∂ρk
0 0



B12 =
1

ρk


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 −∂S12k

∂a1
−∂S12k

∂a2
−∂S12k

∂a3
−∂S12k

∂b1
−∂S12k

∂b2
−∂S12k

∂b3
−∂S12k

∂c1
−∂S12k

∂c2
−∂S12k

∂c3
0



A21 =



0 0 0 0
0 0 0 b1k
0 0 0 b2k
0 0 0 b3k
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, B22 = O11×11

With O11×11, the zero square matrix. The eigenvalues of the matrix B are the following:

λ1 =

√
− 1

ρk

∂S12k

∂a
.b , λ2 = −

√
− 1

ρk

∂S12k

∂a
.b , λ3 = 0.

λ3 is of multiplicity 13, the system admits 15 eigenvalues and 15 eigenvectors. It can be concluded
that the sub system 2 is hyperbolic. The same computation can be made with sub system 3, and the
conclusions are similar: Sub system 3 is hyperbolic and its characteristic velocities are:

λ1 =

√
− 1

ρk

∂S13k

∂a
.c , λ2 = −

√
− 1

ρk

∂S13k

∂a
.c , λ3 = 0.
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C Jump relations for sub-systems 2 and 3 Riemann problems

Jump relations associated to sub-system 2 are presented hereafter

σ∗12 =
Srρrσ12l − Slρlσ12r + SrρrSlρl(vl − vr)

Srρr − Slρl
v∗r = vr +

σ12r − σ12∗
Srρr

v∗l = vl +
σ12l − σ12∗

Slρl

aβ∗r = aβr + bβr
v∗r − vr
Sr

aβ∗l = aβl + bβl
v∗l − vl
Sl

E∗r = Er +
σ12rvr − σ12∗v∗r

Srρr

E∗l = El +
σ12lvl − σ12∗v∗l

Slρl

Jump relations associated to the sub system 3 are quite similar,

σ∗13 =
Srρrσ13l − Slρlσ13r + SrρrSlρl(wl − wr)

Srρr − Slρl
w∗r = wr +

σ13r − σ13∗
Srρr

w∗l = wl +
σ13l − σ13∗

Slρl

aβ∗r = aβr + cβr
w∗r − wr
Sr

aβ∗l = aβl + cβl
w∗l − wl
Sl

E∗r = Er +
σ12rwr − σ13∗w∗r

Srρr

E∗l = El +
σ13lwl − σ13∗w∗l

Slρl
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