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THE EVENTUAL STABILITY OF DEPTH, ASSOCIATED
PRIMES AND COHOMOLOGY OF A GRADED MODULE

MARC CHARDIN, JEAN-PIERRE JOUANOLOU, AND AHAD RAHIMI

INTRODUCTION

The asymptotic stability of several homological invariants of the graded pieces
of a graded module has attracted quite a lot of attention over the last decades. An
early important result was the proof by Brodmann of the eventual stabilization of
the associated primes of the powers of an ideal in a Noetherian ring ([I]).

We provide in this text several stability results together with estimates of the
degree from which it stabilizes. One of our initial goals was to obtain a simple proof
of the tameness result of Brodmann in [2] for graded components of cohomology
over rings of dimension at most two. This is achieved in the last section, and gives
a slight generalization of what is known, as our result (Theorem [T4]) applies to
Noetherian rings of dimension at most two that are either local or the epimorphic
image of a Gorenstein ring. Recall that Cutkosky and Herzog provided examples
in [3] showing that tameness does not hold over rings of dimension three (even over
nice local such rings).

Besides this result, we establish, for a graded module M over a polynomial ring
S (in finitely many variables, with its standard grading) over a commutative ring
R, stability results for the depth and cohomological dimension of graded pieces
with respect to a finitely generated R-ideal I. It follows from our results that the
cohomological dimension of M, with respect to I is constant for p > reg(M), and
the depth with respect to I is at least equal to its eventual value for p > reg(M)
and stabilizes when it reaches this value for some M, with p > reg(M). See B
and for more precise results.

Recall that reg(M) € Z when M # 0 is finitely generated and R is Noetherian.

When R is Noetherian, p € Spec(R) is associated to M,, for some p if and only
if p =P N R for °P associated to M in S and the set associated primes of M, is
non decreasing for p > reg(M). It implies that this set eventually stabilizes when
M is finitely generated.

Before we establish these regularity results in sections 4 and 5, we prove several
facts about depth and cohomological dimension with respect to a finitely generated
ideal and about Castelnuovo-Mumford regularity of a graded module. Our defini-
tion of depth agrees with the one introduced by Northcott. These results are stated
in a quite general setting and self contained proofs are given. Our arguments are

often at least as simple as the ones proposed under stronger hypotheses in classical
1
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references. We are in particular careful about separating statements where a finite-
ness hypothesis is needed (notably in terms of finite generation, finite presentation,
or Noetherianity) from others that do not require it. We show that several basic
results on regularity hold without any finiteness hypothesis, and that many results
on the asymptotic behaviour hold for modules of finite regularity.

In Section 6, we give pretty general duality statements that encapsulate the
Herzog-Rahimi spectral sequence we use in the last section to derive tameness from

our previous stability results.

1. LOCAL COHOMOLOGY AND DEPTH

Let A be a commutative ring (with unit) and M a A-module. If a = (ay,...,a,)
is a r-tuple of elements of A, K*(a; M) is the Koszul complex and H®(a; M) its i-th
cohomology module. Also, C3(M) is the Cech complex. This complex is isomorphic
to 1ignK'(a7f, ...,a’; M). If a and b generates two ideals with same radical, then
HY(C2(M)) ~ H'(Cg(M)) for all i. Moreover this isomorphism is graded (of degree
0) if A, M and the ideals generated by a and b are graded. This for instance
follows from [7, 1.2.3 and 1.4.1]. Tt can also be proved in an elementary way as
follows : first notice that it is sufficient to prove that if y € m then
Hi(C('zh___It)(M)) o~ Hi(C('Ilwzhy)(M)), second show that C¢, . (My) is acyclic
ify € m, and conclude using that C(.fbly»»»fbtyy)(M) is the mapping cone of
the natural map C(.ml,...zt)(M)_>C(.zl,...xt)(My)'

We will denote by Hj(M) the i-th homology module of H*(C2(M)), if a generates
the ideal I.

The i-th right derived functor of the left exact functor H? coincides with the
functor T%(—) := lim | Ext’y(A/I",—). Tt coincides with H? if and only if Hi(N) =
0 whenever ¢ > 0 and N is injective, and this holds if A is Noetherian or [ is
generated by a regular sequence.

If X :=Spec(A) and Y := V(I) C X, one has an isomorphism
Hi(M) ~ Hy, (X, M).

Indeed Serre affineness theorem and Cartan-Leray theorem (see e.g. [9] or [14], and

[6, 5.9.1]) provide isomorphisms

(1) Hy (X, M) =~ H'(C] (M) = H'(M @5 Cl,, o) (A)),

(a1,...ar)

as C(ahmw)

functor M +— Hi(M) commutes with direct sums and filtered inductive limits and

(A) is a complex of flat modules. These isomorphisms show that the

provide a spectral sequence
(2) ED? = Tor? (M,H{(A)) = HY (M).

Also notice that the isomorphism Hj(M) =~ lim H'(af,...,a;'; M) shows that
any element of H(M) is annihilated by a power of the ideal I.



Definition 1.1. If I is a finitely generated A-ideal and M an A-module, we set
depth; (M) := max{p € NU {+oo} | Hi(M) = 0,¥i < p},

and
cdr(M) := max{p € NU{—oc} | HY (M) # 0}.

In case there might be an ambiguity on the ring over which I and M are con-
sidered, we will use the notations depthf (M) and cd? (M).

Notice that, for any A-module M, c¢d;(M) is bounded above by the minimal
number of generators of any ideal J such that v/J = /T (this number is called the

arithmetic rank of I in A, ara,(7)).
Lemma 1.2. If I is generated by a = (a1, ...,a,),
depth; (M) = max{p € NU oo | H*(a; M) = 0,Vi < p}.

Proof. Let d := max{p | H'(a; M) = 0,Vi < p}. Recall that for positive

integers I;, H'(a}!,... ,alr; M) = 0 if and only if H'(a; M) = 0. It follows that

Hi(M) = lignHi(a?, co,as M) =0 if H(a; M) = 0. Notice that d = oo if and
only if d > r, in which case H(a; M) = H:(M) = 0 for all i. Hence depth; (M) > d.
We now assume d < oo. As I annihilates H'(a; M) for any i, the totalisation of
the complex C$K*(a; M) has cohomology isomorphic to the one of K*(a; M). It

provides a spectral sequence
'EVY = HIKP(a; M) = HPT9(a; M).

As H]KP(a; M) = 0 for ¢ < d, this in turn provides a natural into map H%(a; M)—H¢&(M)
which shows that depth; (M) < d. O

Corollary 1.3. If I is a finitely generated A-ideal, then for any A-module M,
depth;(M) = min {depth; (M,)}.
epth; (M) pg‘l}?]){ €p 1,,( P}

To show that this notion agrees with the one introduced by Northcott, we first

prove a lemma.
Lemma 1.4. Let N be a A-module and a € I a non zero divisor on N. Then
depth;(N/aN) = depth;(N) — 1.

Proof. Consider the exact sequence

Xa

0 N N N/aN —= 0

and the induced long exact sequence on cohomology with support in 7,

Xa

s HHN) —— H} 7 (N/aN) —= Hj(N) == Hj(N) — -

and let r := depth;(N). The above sequence shows that depth;(N/aN) > r — 1.
Furthermore, if 7 < oo, H}”fl(N/aN) = 0 if and only if the multiplication by
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a is injective on H}(N). But this does not hold since any element of Hj (V) is
annihilated by a power of a and H}(N) # 0 by definition. O
We will also use a version of the Dedekind-Mertens Lemma, that we now recall

in its general form, together with immediate corollaries that are useful in this text.

Theorem 1.5. (Generalized Dedekind-Mertens Lemma, [8, 3.2.1]). Let A be a
ring, M be a A-module and T a set of variables. For P € A[T] and Q € M[TL], let
¢(P) be the A-ideal generated by the coefficients of P, ¢(Q) be the submodule of M
generated by the coefficients of @ and £(Q) be the number of non zero coefficients
of Q.

Then one has the equality

e(P)" @ 1e(PQ) = o(P)De(Q),
In particular, the kernel of the multiplication by P in M [T is supported in V (c(P)).

Corollary 1.6. Let A be a ring, I = (ao, ..., ap) be a A-ideal and M be a A-module.
Set & :=ag+aiT+ -+ apyT? € A[T]. Then

ker(M[T] —> MIT]) ¢ HY(M[T]) = HY(M)[T].
Let S = R[X1,...,Xy,] be a polynomial ring over a commutative ring R and set
SJr = (Xl, e ,Xn)

Corollary 1.7. Let M be a graded S-module. Set ¢ :=T1 X1 + -+ + T, X,, with
degT; = 0. Then the kernel of the map,

MTh,... . T] —% M[Ty,. .. T (1)
is a graded S[T1, ..., Ty]-submodule of Hg+ (M)[Th,...,T,].

Corollary 1.8. Consider indeterminates (U; j)1<ij<n, & = Zlgjgn Ui X, A=
det(U; j)1<ij<n and R := R[(U; )i<ij<nla. Let 8’ := R'[Xyq,...,X,] and set
M':= M®@grR' for any S-module M. Then (&1,...,&,) is M'-reqular off V(Sy') =
V(Ela cee 55”1)

The following proposition shows that the above definition of depth agrees with
the one introduced by Northcott in [I0].

Proposition 1.9. Let » > 1 be an integer and I be a finitely generated A-ideal.
The following are equivalent,

(1) depth; (M) > r,

(2) There exists a faithfully flat extension B of A and a regular sequence f1,. .., fr
on B®a M contained in IB,

(3) There exists a polynomial extension B of A and a regular sequence f1,..., fr
on B®a M contained in IB,

(4) There exists a reqular sequence f1,...,fr on M[Ty,...,T;], where the T;’s

are variables, contained in TA[Ty,...,T,].
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Proof. The implications (4) = (3) = (2) are trivial. Furthermore (2) implies
that Hi5(B®a M) =0 for i < r using Lemma [[.4] which in turn implies (1) since
Hig(B®a M)~ B®a Hi(M) because B is flat over A.

Finally (1) implies (4) by induction on r, using Lemmal[[4land Corollary[L.6l O

Remark 1.10. Let r > 1 be an integer and I be a finitely generated A-ideal. If
depth; (M) >r and f1,..., fs € IB is a reqular sequence on B @4 M for some flat
extension B of A, then s < r and there exists a faithfully flat extension C' of B and
fst1y .-+ fr € IC such that f1,..., fr is regular on C' @4 M.

2. CASTELNUOVO-MUMFORD REGULARITY

Let S be a finitely generated standard graded algebra over a commutative ring
R. Recall that for a graded S-module M

reg(M) :=sup{p | Ji, HE (M),_; # 0},
with the convention that sup ) = —oo.

Lemma 2.1. Let M be a graded S-module. Consider the following properties,

(1) M, =0 for p>0,

(ii) M = HY, (M),

(iii) HY (M) =0 fori > 0.

Then (i) = (i) = (iii), (it) = (i) if M is finitely generated or reg(M) < oo,
and (ii1) = (it) if M, =0 for p < 0.

Proof. (i) = (ii) is clear since any homogeneous element in M is killed by a
power of any element of Sy if (¢) holds. If (i7) holds, then M, = 0 for any = € S,
hence the Cech complex on generators of S; (as an R-module) is concentrated in
homological degree 0, which shows (44).

If (i7) holds, any element in M is killed by a power of S, hence if M is finitely
generated by (m¢)ier, any generator my is killed by Sivt, for some N; € N. It then
follows that any element in M of degree bigger than max;er{deg(m;) + N;} is 0.
If reg(M) < oo, (ii) = (i) follows trivially from the definition of reg(M).

If (iii) holds set N := M/Hg, (M). The exact sequence 0—Hg, (M)—M—N—0
gives rise to a long exact sequence in local cohomology showing that H§+ (N)=0
for all i. As depthg, (N) = +o0, Lemma [[.2 shows that N = S; N. This implies
that N =0 as N, =0 for u < 0. (]

The following two propositions extend classical results on regularity.

Proposition 2.2. Let £ > 1 and m be integers and M be a graded S-module.
IfH§+(M)m_i =0 fori>{, then Hg+ (M)u—i =0 for p>m and i > L.
Assume that H§+ (M)pm—; = 0 for all i and let w > m. Then H'g+ (M)—i =0

fori>0 and Hg (M), = M, /S1M),_1.

Proof. We may assume that S = R[X;, ..., X,] is a polynomial ring over R. We

then prove the assertion by induction on n.
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When n = 0, M = Hg, (M) and H§ (M) = 0 for i # 0, and the claim follows
in both cases.
Next assume that n > 1 and the assertion is true for n — 1 over any commutative
ring. Let
E=X\T" '+ .+ X, \T+ X, €R[T,X1,...,X,]
The Dedekind-Mertens Lemma implies that
ker(¢ : M[T](-1)—MIT]) ¢ Hg (M[T]),

by Corollary [L8. But Hg, (N[T]) = Hg, (N)[T] for any S-module N and any i.
Hence, replacing R by R[T], M by M[T] and X,, by &, we may assume that

K :=ker(X, : M(=1)=M) C Hg_(M).
We then have H§+ (K) =0 for ¢ # 0 and the exact sequence

X Xn

0 —= K ——= M(-1) M Q 0
induces for all ¢ an exact sequence
. XXn . . i
H§, (M)(—1) —— H§, (M) — H§ (Q) — Hstl(M)(—l).

For i + j = m, the equalities
Hg, (M); =0 and Hg ™ (M)(-1); = Hg ' (M);j—1 =0

imply H§ (Q); = 0. Hence Hg (Q); = 0 for i > £ and i +j = m. As Q is
annihilated by Xy, setting n := (X1,..., Xn—1) one has Hg, (Q) = H(Q) for all
i. Applying the recursion hypothesis to the R[X1,..., X,,—1]-module Q, it follows
that

Hs, (Q); = Hiy(Q); =0, Vi>{ ¥j>m—i.
Hence X, : H, (M);—1—Hg, (M);isonto fori > Landi+j > m. As Hg (M)y—; =

0 for ¢+ > /¢, this proves our claim. O

Remark 2.3. Notice that the exact sequence 0—Sy M—M—M /S M—0 induces

an ezxact sequence
0—Hg, (St M)—Hg, (M)—M/S M—H (S4M)—Hg, (M)—0

Proposition 2.4. If S = R[X1,...,X,] is a polynomial ring, then for any graded
S-module M

(i) reg(M) = sup{p | 3i, Tor; (M, R),+; # 0},

(i1) reg(M) = sup{p | 3, Hi(X1,..., Xn; M, )uyi # 0},

(iii) reg(M) = sup{p | 3j, HI(X1,..., Xn; M, ),—j # 0},

(iv) reg(M) = sup{p | 37, Extg(R,M, Ju—j # 0}.

In particular, M is generated in degrees at most reg(M) (when reg(M) = —oo,
it means that M is generated in degrees at most u, for any p € Z).
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Proof. We first show this equality if reg(M) < co. Let Ko(M) := Ko(X1,..., Xn; M)
and K*(M) := K*(X1, ..., Xp: M). As Ko(M) = Ko(S)®sM, Ko(M) = Homs(K4(S), M)
and K,(S) is a free S-resolution of R, it follows that H;(K.(M)) ~ Tory (M, R)
and H/ (K*(M)) ~ Exté(R, M). Furthermore, the complexes K*®(M) and Ko(M
are isomorphic, up to a shift in homological degree and internal degree : K*(M) ~
K, —o(M)(n), proving that

Ext} (R, M)

p—j = HI (K (M) j = Hy—j (Ko(M))u—jin = Torn_; (M, R)u—jin
and the equivalence of the four items.

To prove (ii), the double complex Cly,  y Ko¢(M) gives rise to two spectral

n

sequences whose first terms are respectively
B = KX, Xy HY (M), 'R = Tor® (HE (M), R)

and

"EPT=Clx, xu) Tor® (M,R), "EY?= Hg, (Tor® (M, R)).
Recall that Ko(M)x, is acyclic for any i, hence " EY"? = 0 for p # 0 which implies
that " E24 = 0 for p # 0 and "E%? ~ Tor® (M, R).

On the other hand, ("EY"?), = 0 for p > reg(M) — ¢ — p as H§ (M) lives in
degrees at most reg(M) — ¢. It follows first that Tor® ;(M, R) lives in degrees at
most reg(M) — j showing that Tory (M, R),4; = 0 for p > reg(M).

To conclude, choose j such that H§+ (M )reg(nry—j # 0. Set p:=reg(M) —j+n
and notice that (EY?), =0 when p+¢=-n+j+1. As’E{? =0forp < —n
it follows that 0 # H§+ (M)egary—; = (Ey™), ~ ('EX™), which shows that
"EQI™" o Tor (M, R)reg(a)+n—j # 0.

To finish the proof, we must show that reg(M) < oo if there exists po such that
Tor? (M, R), =0 for all i and p > pp.

We first show that in this case, there exists a graded free S-resolution Fy of M
with F; = @jer,S(—d;j), and d;; < po for all ¢ and j. Notice that if M is graded and
(M/S+M)s, =0, then M is generated in degree at most v, showing the existence
of a graded epimorphism ¢ : Fo—M with Fj as claimed. The exact sequence,

0— ker(¢p)—Fo—M—0
gives rise to another
Tory (M, R)— ker(¢) /Sy ker(¢p)—Fo/S+ Fo

and proves the existence of Fy as claimed such that Fy— ker(¢) is a graded epi-
morphism. As Torf(M, R) ~ Torf_l(ker(@,R), for j > 2, the conclusion follows
by induction on 1.

Finally, it suffices to remark that if F, is a graded resolution as above, then
Hg+ (M), ~ Hy—i(Hg, (F,),) vanishes in degree bigger than —n + max; j{d;;} <
—n+ po, as Hg, (Fo)u = 0 for all ¢ for such a pu. Hence reg(M) < po. O
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Lemma 2.5. For any graded S-module N,
reg(N) = sup {reg(N @ Ry)}.
peSpec(R)

Furthermore, reg(N) = reg(N ®gr Ry) for some p € Spec(R) if reg(N) < oo.
Proof. For p € Spec(R),
Hfﬁ (N ®r Rp)y ~ (H§+ (N)p) ®r Ry
from which the claim directly follows. ([

3. DEPTH OF THE GRADED COMPONENTS OF A GRADED MODULE

As in the previous section, S is a finitely generated standard graded algebra over

a commutative ring R.

Proposition 3.1. Let I be a finitely generated R-ideal, M be a graded S-module
and d be an integer. Assume that depth;(M,) > d for ;1> 0. Then

(i) depth;(M,,) > d for any p such that Hg+(M)# =0 forq <d,

(i1) if depth;(M,) = d for some p such that Hg+(M)# = 0 for ¢ < d, then
depth;(M,) < d for any v > p.

Proof. Let a = (a1,...,a,) be generators of I. Recall that H?(a; M), =
HP?(a;M,,), as I is a R-ideal. Hence, if depth;(M,) > d for > 0, the S-modules
HP(a; M) are supported in V(Sy) for p < d, by Lemma and (1) = (i) in
Lemma 21l Comparing the two spectral sequences obtained from the double com-
plex C§+ K*(a; M), computing the hypercohomology H® of K*® we obtain on one
hand that H' ~ H'(a; M) for i < d and H ~ Hg (H%(a; M)). On the other hand,
one has a spectral sequence

'EYY = HE KP = HP
which shows that (H?), =0 for i < d if Hg+ (M), =0 for ¢ < d, proving (i).

For (ii), the condition Hg (M), = 0 for ¢ < d implies that Hg, (H%(a; M)),,
Hg+(Hd(a;M#)) = 0. Hence if H%(a; M) # 0, then 0 # (S;)""*H%(a; M),
H%a; M),,, which shows (ii) by Lemma 2l O

N

Corollary 3.2. Let I be an R-ideal and M be a graded S-module.
Then depth; (M) is independent of p for p > reg(M) — depthg, (M).

Theorem 3.3. Let I be an R-ideal and M be a graded S-module with reg(M) < oo.
Set r 1= reg(M) — depthg, (M), d := min,>,{depth;(M,)} = depth;(M>,) and
po := inf{v > r | depth;(M,) = d}.

Then depth; (M) = d for all > po.

Proof. We may assume that d < oco. By definition of d, depth;(M,) > d for
[ > pio, as fip > 1. On the other hand, depth;(M,,) < d for u > v by Proposition
B (ii). The conclusion follows. O



4. COHOMOLOGICAL DIMENSION

Let A be a commutative ring (with unit), I a finitely generated ideal and M
a A-module. First remark that it follows from (l) that if M is annihilated by an

ideal J, for instance if J = anns (M), considering M as an A/J-module one has

A
(3) od (M) = cdf/,) (M),

Furthermore,

Proposition 4.1. Let M be a A-module.

(a)

<
cdr(M) < ECNI{I}&%( f.g.{cd[(E)}.

(b)
Cd[(M) S Cd](A/ ann A4 M) S Cd](A)

(c) If M is finitely generated, then

cd;(M) =cdj(A/annyg M).

Proof. (a) M is the filtered inductive limit of its submodules of finite type (for
the inclusion), and local cohomology commutes with filtered inductive limits.

(b) The spectral sequence (2)) shows that cd;(N) < cd;(A) for any module N,
in particular cd;(A/anng(M)) < cdj(A). Together with @) applied with J :=
ann (M), we get cdf (M) = cd?Y”,) (M) < cdlY”)) [ (A)T) = cd(A)J).

(¢) According to (b), it suffices to show that cd;(A/anng M) < cd;(M). Re-
placing A by A/ anns (M), we may assume that M is faithful.

We will show that cd; (M) < r implies cd;(A) < r. This is clear for r > ara, (1),
and we now perform a descending recursion on r. Assume this is true for » + 1. If

cd; (M) < r, by recursion hypothesis we now that cd;(A) < r + 1, hence spectral
sequence (2)) implies that

0=H;™ (M) =M H "' (A).

As M is faithful and of finite type, [I3] 4.3] shows that H;H(A) = 0, which implies
that edj(A) <. O
The following corollary has been proved by M. Dibaei and A. Vahidi in the

Noetherian case in [4] 2.2].

Corollary 4.2. Let M be a A-module and I, J two finitely generated ideals. Then
cdry (M) <edjp(A/anng M) 4 cd (M),
and cdr1 (M) < cdp(M) + cd (M) if M is finitely generated.
Proof. We may assume that M is faithful. If a is a finte set of generators

of I and b a finite set of generators of J, the double complex with components
Ci(A) ®4 CL(M) gives rise to a spectral sequence with second term Hi(H?(M))
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that abuts to H}i]](M ). Hence,
cdp s (M) < max{i+ | Hi(H}(M)) £ 0} < edy(4) + cdy (M),

by Proposition 1] (b).
Furthermore, by Proposition [£1] (c), cd;(A) = cd;(M) whenever M is faithful
and finitely generated. g

Corollary 4.3. Let M be a finitely generated A-module and a an ideal of A such
that a'M = 0 for some t. Then

Cd](M) = Cd](M/CLM).

Proof. Let d := cdj(M) = cd;(A/ annsa (M)) (by PropositionTl(c)). As M/aM
is annihilated by ann 4 (M), it follows from Proposition[£Ib) that cd;(M/aM) < d.
Furthermore, Proposition Ib) shows that the functor N — H¢(N) restricted to
the category of A-modules annihilated by ann4 (M) is right exact. It implies that
HY(M/aM) = HE(M) @4 Afa = H{(M)/aHE(M).

If cd;(M/aM) < d it implies

HY(M) = aH{(M) = 2H{(M) = - = a"H}(M) = 0,
which contradicts the definition of d. O

Proposition 4.4. Let 0—M'—M—M"—0 be an ezact sequence of A-modules.
Then
cd; (M) <max{cd;(M"),cd;(M")} < cd;(A/anns(M)).

Furthermore all inequalities are equalities if M is finitely generated.

Proof. First the exact sequences
Hj(M")~H(M)~H(M"), i€ Z,

show the inequality on the left. As both A-modules M’ and M"" are annihilated by
ann4 (M), the inequlity on the right follows from (B]) and Proposition ELI(b).
Finally, the extreme terms are equal according to Proposition ETl(c) if M is

finitely generated. 0

Remark 4.5. If A is a domain, distinct from its field of fractions K and I a proper
finitely generated ideal, then A is a submodule of K such that

—o0o =cd;(K) <0< cds(A).
Corollary 4.6. If M is a Noetherian A-module, then

cdr(M) = pesggi((M) cdr(4/p) = pezgslsi)%M) cdr(d/p) = pel\%x?j((M) edr(4/p).

Proof. Let Ming (M) be the minimal primes in the support of M. Every p €
Supp 4 (M) contains some q € Miny (M), and the canonical epimorphism A/q—A/p



11

gives an inequality cd;(A/p) < c¢d;(A/q) by Proposition 44l It follows that

a cdy(A = a cdr(A/p).
ey AP = i A4/

On the other hand Miny (M) C Assa(M) and for p € Assa(M) the existence of
a monomorphism A/p—M implies by Proposition 4] that cd;(A/p) < edf(M).
Hence

d;(A < d;(A <ecd;(M
pel\?ilr?j((M)C 1( /p)_pegsi)%M)c 1(A/p) < cdi(M),

and it remains to show that cd;(M) < maxpegupp, (mr) cdr(A4/p).
Observe that, if M # 0, it admits a finite filtration by cyclic modules A/p;
(1 <i<t) with p; € Supp4(M) for all i. Again by Proposition [£4] we obtain
cdr (M) = max {cd(A/p:)} < pesggf(M){ch(A/p)}-
This concludes the proof. O
The following result generalizes the main theorem of [5], which applies in the

case of two finitely generated modules over a Noetherian ring.

Proposition 4.7. Let M and N be A-modules. Assume M is finitely presented
and Supp 4(N) C Supp4(M). Then

Cd[(N) S Cd[(M).

Proof. Let E be a finitely generated submodule of N. The inclusion Supp 4(N) C
Supp 4 (M) implies that

(4) Vanna (M) C \/anns(E).

As M is finitely generated, the Fitting ideal Fitt%(M ) has the same radical as

anng (M) and contains a power of anny(M). Furthermore, as M is finitely pre-
sented, this ideal is finitely generated. It then follows from (@) that there exist ¢
such that ann(M)! C anns(F). By Corollary 3] and Proposition &1l (b) and (c),

one has
cd;(FE) <cdj(E/anns(M)E) < cdj(A/anns(M)) = cdf(M).

The conclusion follows by Proposition ] (a) applied to the A-module N. O
Now, let S be a finitely generated standard graded algebra over a commutative

ring R.
Definition 4.8. For a graded S-module M,

as, (M) :=sup{u | H5, (M), # 0},
so that reg(M) = max;{a, (M) + i}.

Proposition 4.9. Let M be a finitely generated graded S-module and I be a finitely
generated R-ideal. Then
(a) cdr(M,) is a non decreasing function of p for u > ag+ (M),
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(b) cd;(M,,) is constant for p > reg(M) +n — depthg, (M) if n > 0.

Proof. We may, and will, assume that cdg, (M) > 0, as the proposition is
immediate when cdg, (M) = 0 by Lemma 2l We also remark that it suffices to
prove the claim after the faithfully flat base change R—R’, hence we may further
assume (making an invertible linear change of coordinates) by Remark [[L§ that the
sequence (X1,...,X,) is M-regular off V(54 ).

In particular the kernel of the map M —M (1) induced by multiplication by X,
is contained in Hg+ (M). Tt follows an injection M, —M,, ;1 for v > a%+ (M) which
proves (a) by Proposition 4l as M, 11 is finitely generated over R.

To prove (b) we consider the two converging spectral sequences arising from the

double complex C}Ko(X1, ..., X,; M). They have as respective second terms
Tor® ,(H{(M),R) and HY(Tor® (M,R)).

Let d := maxl,>ag+(M){cd[(M,,)}. We may assume d > 0. It follows from the

comparison of the spectral sequences that
Torg (H{(M), R), 1 = H{(My41)/S1H{(M,) = 0

if H{YY(M,_;) =0for 1 <i<n—1and H(Tor{ (M, R),41) = 0 for all 4.

But Tor{ (M,R),11 = 0 for v > reg(M) + i and Tor?(M,R) = 0 for i >
n — depthg, (M) by Lemma

It follows that H¢(M,) = 0 implies H¢(M,41) = 0 if

v> mf:mx{a%+ (M) + n,reg(M) + n — depthg, (M)} = reg(M) +n — depthg, (M).
This implies (b), in view of (a). O
5. ASSOCIATED PRIMES OF THE GRADED COMPONENTS OF A GRADED MODULE

Let S be a standard graded Noetherian algebra over a commutative ring R.

Theorem 5.1. Let M be a graded S-module. then

| Assp(M,) = {BNR, P € Asss(M)}.

HEZ

Proof. For p € Z, let p € Assg(M,). There exists x € M,, with p = anng(z).
Hence pR, = anng,(z). Let Q be a S ®p Rp-ideal, maximal among those of the
form annsg , r, (), y € M®@gRy, that contains annp, (). The ideal Q is associated
to M ®gr Ry, hence P := QNS is associated to M and ‘PN R = p. One inclusion
follows.

Conversely, let ¥ be an ideal associated to M. We need to show that p :=PNR
is associated to M, for some p. This will be the case if pR, is associated (M),
so that we may assume that R is local with maximal ideal p. Let m # 0 in M such
that Pm = 0. If m, is the degree v component of m, one has pm, = 0. Hence
choosing p such that m,, # 0, one has p C anng(m,,), hence p = anng(m,), as p is

maximal. O
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Theorem 5.2. Let M be a graded S-module. If Hg+ (M), =0, then Assp(M,) C
Assr(M,,) for all p > v.

Proof. Let x1,...,z, be generators of S; as an R-module and Ti,...,T, be
variables. Set P := Z\alzu—v 2®T*. The polynomial P is of bidegree (1 — v, u—v)
for the bigraduation defined by setting deg(z;) := (1,0) and deg(7;) := (0, 1), and
¢(P) = (S4)#~¥. Theorem [[0] shows that the kernel K of the map

M) =L M(T]

T]. Hence K vanishes in bidegree (v,6) for any 6. In

is a submodule of Hg (M)]

particular, it provides an injective map

X P
M, = M[I],,,O — M[Z];w—u-

As M[T], ;,—v is a finite direct sum of copies of M,,, it follows that any associated

prime of M, is associated to M,,. O

Theorem 5.3. Let M be a finitely generated graded S-module and A be the finite
set Upez Assr(M,,) (Theorem[51]). Set

J(M) := fglea}{a& (Hp (M g Ry))} < ag, (M).

Then for any ideal p € Spec(R), Lr, (H) (M, ®rRy)) is a nondecreasing function
of i, for u> J(M).

Proof. First notice that HS(M ®@r Rp) =0if p ¢ A Let p € A. We will prove
that (g, (HS(MH ®r Rp)) is a nondecreasing function of p, for p > a%+ (HS(M ®R
Ry)). The proof of Theorem [52 applied to the S ®r Rp-module HS(M ®r Rp),
with P := )" «;T; provides an injective morphism of R,[T]-modules

HO(M ®g Ry)u L] —= HY)(M ®p Ry),s1[L].

Let Ry(T) := S™'R,[T] with S the multiplicative system of polynomials whose
coefficient ideal is the unit ideal. The above injection induces an injective morphism
of R, (T)-modules of finite length

H)(M ®r Ry), @r, Ry(L) — H)(M ®g Ry)u11 @r, Rp(T).

For any Ry,-module N of finite length, the Ry, (I')-module N ® g, Ry(T) is a module

of the same length as the Ry-module IN. The conclusion follows. (]

Corollary 5.4. Let M be a finitely generated graded S-module. Then for any
p € Spec(R) of height 0, Lr,(M, ®r Ry) is a nondecreasing function of p, for
w> a%+(M). In particular M,, ® g R, = 0 for all p > reg(M) or M,, ®r R, # 0
for all pp > reg(M).

Proof. Notice that M ®r R, = Hg(M ®r Rp) as p is of height 0. Also recall
that M (hence M ®@g Ry) is generated in degrees at most reg(M). O
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Lemma 5.5. Let M be a graded S-module generated in degree at most B. Then,
(i) My £0 = Mysy #0, if o > ol (M),
(i) M, #0 & M1 #0 if p> max{B,a%JM)},
(1ii) M, #0 < M1 # 0 if p > reg(M).

Proof. (i) follows from Theorem as R is Noetherian. Now (ii) and (i)
follows from (i), as M,, =0 = M,41 =0 for 1 > B and M is generated in degrees
at most reg(M). O

Remark 5.6. The proof of Theorem[5.2 shows that the above lemma holds without

assuming that R is Noetherian.

6. DUALITY RESULTS

6.1. Preliminaries on RHom. Let (X,Ox) be a ringed space and Y be closed
in X. For any complex K*® € D(X), let C(K*®) be the Godement resolution of K*®,
and set

~ RT(X,K*) := C(K*) and RTy (X, K*) := Ty (X, C(K*)) in D(X),

~ RT(X, K*) := T(X,C(K*)) and Ry (X, K*) := 'y (X, C(K*)) in D(T(X, Ox)).

Notice that a flasque resolution of K*® in DT (X) (e.g. an injective resolution)
can be used in place of C(K*) if K* € D*(X).

We set H(X,K*) = H{(RT(X,K*)), Hi(X,K*) = Hi(RT'y(X,K*)) and
H(X,K®) := H'(RT'(X, K*)), which coincides with the usual notations for Ox-
modules when considered as complexes concentrated in degree 0.

If there exists d such that, for any O x-module &, H (X, &) = 0 (resp. H{ (X, &) =
0) for ¢ > d then any flasque resolution of K* can be used in place of C(K*®) to
compute H'(X, K*) and H (X, K*) (resp. Hi- (X, K*)).

Given K*® in D(X) and L® in D*(X) one checks that the class in D(X) (resp.
in D(I'(X,Ox))) of the complex Homg, (K°®,I°) (resp. Homg, (K*®,I°)) is in-
dependant of the choice of an injective resolution I°® of L® in D*(X), and one

set
RHomg, (K*,L*):=Homg, (K* I°) and RHomg, (K*, L®) := Homp, (K*,I°).

When the components of the complex K*® are locally free Ox-modules, there is a

quasi-isomorphism
RHompg, (K*,L*) ~ Homgy  (K*,L*).
For a pair (£, F) of Ox-modules, one defines
Homy (&, F) :=T'y (X, Homp, (€, F)) = Homo, (£, Ty F)

and
Homy (€, F) :=Ty Homo (€, F) = Homo, (€, Ty F),

and then extends these definitions to pairs of complexes of Ox-modules as usual.
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Assume L* is bounded below. Given a bounded below injective resolution I® of

L*®, the components of the complex Homg, (K, 1°) are flasques hence
RTy (RHomg, (K°®,L*)) = Ry (Homg, (K*,1%))
=Ty (Homp, (K°*,1%))
= Homy (K*,1°),
in the following cases :
(a) K* is bounded below,
(b) there exists d such that, for any Ox-module &, Hi, (X,€) =0 for i > d.
In cases (a) and (b) Hom$ (K*®, I°) is independent of the choice of I® (up to an

isomorphism in D(X)), and one sets
RIS (K*,L*) = Hom$ (K*,I*).
As the components of I'y I* are injective Ox-modules, Homy (K*,1°) ~ Homg,  (K*,TyI®) ~
RHomg,  (K*,RT'y L®). In other words,
RIS (K*, L*) ~ RHomy, (K*, RTy L*)

if (a) or (b) holds.

6.2. Some spectral sequences. Let A be a commutative ring (with unit) and I

be a finitely generated A-ideal. Set (X,Ox) := (Spec(4),A) and Y :=V(I) C X.
Assume that there exists n such that
Hi(A) = HL(X,0x) =0, fori #n.
Then RT'y (Ox) ~ HY(Ox)[—n]in DT (X, Ox). Givena complex K* € D~ (X, Ox),
it follows that

RI‘y(RHomZQX(K',Ox)) ZRHOW’L&){(K',RI‘)/(O}())
~ RHomg  (K*, HY (Ox))[—n]

in D(X,Ox). Such an isomorphism holds for K* € D(X,Ox) when X has finite
homological dimension, hence, for instance, if A is Noetherian of finite dimension.
Assuming further that the components of K* are locally free Ox-modules of

finite type, under one of the two hypotheses above, one has
RTy (Homg, (K*®,0x)) ~ Homg, (K*, Hy (Ox))[—n] in D(X, Ox).
This provides a spectral sequence
EY =HY (HYHomg  (K*,0x)) = HPT"(Homg,  (K*, Hy (Ox))),

in the two cases above.

As the Ox-modules taking place in this spectral sequence are quasi-coherent,

and the components of K*® are finitely presented (recall that Hom4(M,N) =
Homo (M N ) if M is finitely presented) the above results shows the following

Proposition.
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Proposition 6.1. Let A be a commutative ring and I a finitely generated A-ideal.

Assume that there exists n such that
Hi(A) = Hi(X,0x) =0 for i # n.

Then, for any bounded below complex of projective A-modules of finite type (resp.
for any complex of projective A-modules of finite type if A is Noetherian of finite

dimension) K*®, there exists a spectral sequence
EY? = HY(H?Hom% (K*®, A)) = HPT7"(Hom% (K*, H}'(A))).

Corollary 6.2. Assume (A, m) is local Gorenstein of dimension n. Then for any

complex K* of free A-modules of finite type, there is a spectral sequence
ER — HE,(H Hom'y (K*, A)) = HP 1" (Hom®y (K, Ha(A)).
Proof. Under the hypotheses of the Corollary, H (A) = 0 for i # n and HZ(A)
is injective. O

Example 6.3. In the context of the Corollary, taking for K*® the dual of a resolution
of finitely generated module M by free modules of finite type it gives the local duality

HE (M) ~Homa (Ext’y " (M, A), H}:(A)).

Corollary 6.4. Assume I is generated by a weakly regqular sequence of length n,
then for any bounded below complex K*® of projectiveA-modules of finite type, there

is a spectral sequence
E? = H?(H?Hom% (K*®, A)) = HPT7"(Hom% (K*®, H}'(A))).

Example 6.5. Let R be a commutative ring, X; for 1 < i <n be indeterminates,
set A = R[Xy,...,X,], with its standard grading and p = (X1,...,X,). As
Hp(A) ~ (X1 X)) 'RIXY, .., XY, it follows that for any graded free A-

n

module of finite type F and every integer v, the pairing
Hom (F, Hy(A))—y—n @r F, — HJ(A)-n ~ R
(u: F=HP(A)(~v —n)) ®r & ——— u(z)

defines a perfect duality between R-modules of finite type, and this duality is func-
torial in the free graded A-module F. It gives, for each integer v, an isomorphism

of complexes of R-modules
Hom? (K*®, Hy' (A))-y—n =~ Homp (K}, R).
Together with Corollary it gives for any v a spectral sequence of R-modules

EY? = HP(HY Hom% (K*, A)), = HP*1~"(Hom$(K*

v R)).
Replacing K*® by its dual F®, one deduces of a spectral sequence

EYT = HY(HY(F*),) = H**"" (Homf, (Hom} (F*, A)——n, R)).
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For instance, if M is a graded A-module admitting a resolution by free modules of
finite rank, taking for K® such a resolution, that one may assume to be graded, it

follows a spectral sequence :
ED? = HY(Ext?, (M, A)), = Ext? 7" (M_,_,, R).

6.3. The Herzog-Rahimi spectral sequences. We keep notations as in the
preceding subsection. For any graded complex K*® whose components are of finite

type, we have established an isomorphism
RT,(Hom$ (K*, A)) ~ Hom% (K*, H;'(A))[-n] in D(A),
whenever K* is bounded above or A is Noetherian of finite dimension.

In each of these cases, it follows, for any integer v, isomorphisms

RT',(Hom% (K*, A)), ~ Hom¥y(K*

—vV—n’

R)[-n] in D(R).

Hence if F'* is a graded complex of finite free A-modules, and either A is Noetherian

of finite dimension or F'® is bounded below, one has isomorphisms
RT,(F*), ~Homy(Hom% (F*, A)_p_n, R)[—n]
~ RHom$%,(Hom% (F*, A)_,_n, R)[-n] in D(R).
Now, assume further that (R, m) is local Gorenstein of dimension d. The above

isomorphisms then give

RHom%,(RTy(F*),, HL(R)) =~ RHom%(RT,(F*),, R[w(R))[d]
~ RI'w(RHom%(RTy(F*),, R))[d]
~ RT (RHomYy (RHomYy, (Hom, (F*, A)_,_n, R), R))[n + d
~ R (Hom% (F*, A)_,_p)[n + d]

As R is Gorenstein, HZ(R) is the injective envelope of the residue field of R,

and we obtain a spectral sequence
By = Hi (H(Hom (F*, A)_y—y)) = Homp(H" " P74(RTy(F*),), Hy(R)).

If M is graded A-module with free resolution F'®, this spectral sequence takes the

form
Y = HE (Bxth (M, A)—,—) = Homp (H} "7 "U(M),, Hy(R)).

Which is the Herzog-Rahimi spectral sequence, as wy ~ A(—n) in this situation.

7. TAMENESS OF LOCAL COHOMOLOGY OVER NOETHERIAN RINGS

In this section S is a finitely generated standard graded algebra over an epimor-

phic image R of a Gorenstein ring.

Theorem 7.1. Let (R, m) be a local Noetherian Gorenstein ring of dimension d, S
be a finitely generated standard graded Cohen-Macaulay algebra over R and M be
a finitely generated graded S-module. Set — := Hompg(—, HL(R)). Then, there
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is a spectral sequence

ij _ rri j dim S—(i+j
By = Hi (Bxt}(M,ws)y) = (HE™ 579 (M) ).

Proof. See [R, section 4] or the previous section. O

For a R-module or a S-module M, we set

Hy (M) = U HO(M) C M.
ICR, dim(R/I)<i

We will need the following facts about the functor H [0] (—),

Lemma 7.2. Let M be a graded S-module. Then
(i) Hiy (M) = Hp (Ms).
(i) If p a prime ideal of R with dim(R/p) = i, then

Proof. Claim (i) follows from the fact that, for any R-ideal I, H?(M), =
HY(M.,). For (ii), recall that inductive limits commute with tensor products and
notice that if dim(R/I) < 4, then H?p (M®grR,) =0ifI Z p, and H?p (M®rRy) =
H)(M ®g Ry) else. O

Theorem 7.3. Let S be a polynomial ring in n variables over an equidimensional
Gorenstein ring R of dimension d. Let M be a finitely generated graded S-module.

Then there exists A, B,C, D, E defined below such that :

(1a) For v > A, dimH§+(M),,Y =d= dimH§+(M),7,1 =d.

(1b) For v > B, dimst+(M)_7 =d< dimHg, (M)_y_1=d.

(2a) Fory > C, dmH§ (M) >d—1= dimH§ (M) >d—1.

(2b) Forv> D, dimHg, (M)_y >d—1< dimHg (M)_y-1 >d—1.

(3) Fory>E, dimHg (M)-y >d—2= dimHg, (M)_y-1 >d—2.

In particular, there exists vo such that either dim Hg+ (M)~ is constant fory < o
of value at least d — 2, or dimHg+ (M), < d—2 for any v < 0.

Set a’; = end(Hg+ (H[%fj] (Exts(M,ws)))) < end(Hg+ (Extg(M,ws))) and r}
reg(H[%_j] (Exts(M,ws))). Then one has :

A:=al™", B:=r)"", C :=max{a} " a~"}, D := max{r}"" r07"} and

E = max{a) ", rg~ " —

1,ry =2 af i H2),

Proof. Recall that if N is a finitely generated R-module, dim N < r if and
only if Ny, = 0 for all p € Spec(R) with dim(R/p) = r. Furthermore, it follows
from Lemma and from Lemma and its proof that for any p € Spec(R) with
dim(R/p) = r and for any ¢, one has

as, (Hy (Extse,p, (M ®r Ry, wsepr,))) < as, (Hiy(Exts(M,ws))).

Therefore, reg(HS(Extfg(@RRp (M @R Ry, wsgpr,))) < ri_,, and, as a consequence,

it suffices to prove (1a) and (1) when dim R = 0, (2a) and (2b) when dim R = 1,
and (3) when dim R = 2.
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Notice that H);(N) = N for any S-module N.
If dim R = 0, by Theorem [T} (H§, (M)—,)" =~ Extey " (M,ws)~, and the result
follows from Lemma [55](i) and (iii).

If dim R = 1, Theorem [Z.] provides exact sequences
0— Hy (Exts™ (M, wg)y)—=(Hg, (M) )Y = H (Exts™ " (M, wg),)—0.

The result follows applying Lemma (i) and (iii) to HO(ExtZ "t(M,ws))
and Corollary 5.4 to Ext?™“(M,ws),. Indeed, HY (Ext% *(M,ws),) is zero if and
only if dim Ext? ™" (M, ws), < 1.

We now assume that dim R = 2. In this case Theorem [l provides a spectral

sequence which converges to (H§, (M)—_)",

Hy (Bxts™ " (M, ws)~) Hy (Extg™ (M, ws),)

1/)2"”2

Hy, (Bxts™ " (M, ws)~) Hy (Extg™ (M, ws),)

HE (Exty™ (M, ws)-) H2 (Extly ™ (M, ws)-)

It provides a filtration FY C F! C F? = (H'g+ (M)_.)Y, by graded S-modules,
such that F2/Fl ~ ker(yn=i*2), F1/FO ~ H}(Ext? "' (M,ws),) and F? ~
coker(ip2 7).

We will show that, the three modules satisfy :

(1) FO#0=F9,, #0,ify>a; ™",

(ii) F /F2 #0= Fl  /F9  #0if y > max{ry """ — 1,757 — 2},

(ili) F2/F} #0= F2,,/Fl, | #0if v > af 7"+

For (i) notice that coker(y2~**') = 0 if and only if Hj (Extg™'(M,ws),) = 0,
hence if and only if dim(Extg (M,ws)y) < 2. Hence (i) follows from Corollary
b4

For (i), let N := Ext?™ " (M, wg)/HS (Ext’ ™" (M, ws)). The exact sequence

0— Ho (Exte™ T (M, wg))— Exte ™ (M, ws)—N—0
shows that HY(N) = 0 (hence depth(N) > 1),
F'/F° = Hy (Exte " (M, wg)) ~ HL(N)

and

a}3+ (N) < max{als+ (Exte™ (M, ws)), a%+ (HQ (Exte™ " (M,ws)))}

rp T _9),

n—i+1
0 - 15 2

< max{r,
Hence, Proposition B] (ii) implies (ii)

For (iii), let o € HO (Exta (M, ws),) = HO (Exts "t?(M,ws))--
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Let x1,...,2; be generators of Sy as an R-module and set ¢ := ). 2;T; € S[T].
For v > ag+ (HQ (Exte™""?(M,wg))), La is not zero in HY, (Exts ™2 (M,ws)+1)[T]
by Theorem (see also the proof of Theorem [£.3)). The commutative diagram

—i <t n—i
HO (Exte " (M,ws),) — HY(Ext? (M, ws)11)[L]

w:;i”l lw:+f+2®sls[1]

2 (Bxty ™ (M, ws),) —— HA(BxtS 4 (M, wg)y1)[T]

then shows that 2 ~"*3(a) # 0 if Y7t s injective. Hence, 172 is injective if

y+1
w:_‘ffﬂ is. Claim (iii) follows. O

Theorem 7.4. Let S be a Noetherian standard graded algebra over a commutative

ring R. Assume R has dimension at most two and either R is an epimorphic image

of a Gorenstein ring or R is local. Let M be a finitely generated graded S-module.
Then there exists vo such that, for any 1,

{Hg+(M),Y =0 fory <7} or {Hg+(M),Y #0 for v <7o}.

Proof. First, if R is local, then we can complete R to reduce to the case where R
is a quotient of a regular ring (by Cohen structure theorem), hence an epimorphic
image of a Gorenstein ring.

As a Gorenstein ring is a finite product of equidimensional Gorenstein rings, and
each such ring is itself a quotient of a Gorenstein ring of any bigger dimension, R is
also a quotient of an equidimensionnal Gorenstein ring R’. We further remark that
R is the epimorphic image of R'/K, where K is generated by a regular sequence of
length dim R’ — 2 in R'.

Thus we may, and will, assume that R is an equidimensional Gorenstein ring of
dimension at most two. Now S is an epimorphic image of a polynomial ring in a
finite number of variables over R, so that we may, and will, also assume that .S is
a polynomial ring over R.

The result then follows from Theorem [7.3 O
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