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Abstract

We propose a fully probabilistic extension of Event-B where all the non-deterministic choices are replaced
with probabilities. We present the syntax and the semantics of this extension and introduce novel and adapted
proof obligations for proving the correctness of probabilistic Event-B models. As a preliminary step towards
handling refinement of probabilistic Event-B models, we propose sufficient conditions for the almost-certain
convergence of a set of events and express them in terms of proof obligations. We illustrate our work by present-
ing a case study specified in both standard and probabilistic Event-B.

1 Introduction

As systems become more and more complex, with randomised algorithms [18]], probabilistic protocols [3] or
failing components, it is necessary to add new modelling features in order to take into account complex system
properties such as reliability [23]], responsiveness [[7, 22]], continuous evolution, energy consumption etc.

In this way, several research works have focused on the extension of Event-B to allow the expression of proba-
bilistic information in Event-B models. Event-B [1] is a formal method used for discrete systems modelling. It is
equipped with Rodin [2], an open toolset for modelling and proving systems. The development process in Event-B
is based on refinement: systems are typically developed progressively using an ordered sequence of models, where
each model contains more details than its predecessor.

In [16], Morgan et al. have summarised the difficulties of embedding probabilities into Event-B. This seminal
paper suggests that probabilities need to be introduced as a refinement of non-determinism. In Event-B, non-
determinism occurs in several places such as the choice between enabled events in a given state, the choice of the
parameter values in a given event, and the choice of the value given to a variable through some non-deterministic
assignments. The ideal probabilistic extension of Event-B should therefore allow using probabilities in all these
places. To the best of our knowledge, the existing works on extending Event-B with probabilities have mostly
focused on refining non-deterministic assignments into probabilistic assignments. In [8]], Hallerstede and Hoang
propose to focus on a qualitative aspect of probability. They propose to refine non-deterministic assignments into
qualitative probabilistic assignments where the actual probability values are not specified, and adapt the Event-B
semantics and proof obligations to this new setting. In [24]], Yilmaz study the refinement of qualitative probabilistic
Event-B models and propose a tool support inside Rodin. Other works [19, 21} [20] have extended this approach by
refining non-deterministic assignments into quantitative probabilistic assignments where, unlike in [8]], the actual
probability values are specified. This new proposition is then exploited in order to assess several system properties
such as reliability and responsiveness.

Unfortunately, other sources of non-determinism than assignments have been left untouched in these works.
In [L6]], the authors argue that probabilistic choice between events or parameter values can be achieved by trans-
formations of the models that embed these choices inside probabilistic assignments. While this is unarguably true,
such transformations are not trivial and greatly impede the understanding of Event-B models. Moreover, these
transformations would need to be included in the refinement chain when designers need it, which would certainly
be counter-intuitive to engineers.



Instead, we propose a different approach in which probabilistic choices can be introduced as a refinement of any
potential non-deterministic choice, be it between enabled events, parameter values or assignments. Our long-
term goal is to produce a probabilistic extension of Event-B where probabilistic events/parameters/assignments
can be introduced natively either as standalone modelling artifacts or as a refinement of their non-deterministic
counterparts. This long-term goal is clearly ambitious and will require several years of study to be achieved.

As a first step towards this long-term objective, we consider a slightly simplified modelling process where the
engineer introduces probabilities in the last refinement step of a model, when the system is already sufficiently
detailed. For now, we also restrict ourselves to purely probabilistic systems: when probabilities are introduced
in the model, they replace all non-deterministic choices. We therefore propose a fully probabilistic extension
of Event-B where all non-deterministic choices are replaced with probabilistic ones. As for standard Event-B
models, the consistency of probabilistic Event-B models is expressed in terms of proof obligations. We therefore
introduce new proof obligations dedicated to the consistency of probabilistic Event-B models and explain how
standard Event-B proof obligations can be adapted to the probabilistic setting. In order to prove the correctness of
our approach, we show that the semantics of a probabilistic Event-B model is a (potentially infinite-state) discrete
time Markov chain.

As explained in [16]], ensuring the refinement of Event-B models where probabilistic choice is not reduced to
assignments is a difficult problem. While we do not solve this problem in its entirety, we take a preliminary step
towards this goal by providing sufficient conditions, expressed in terms of proof obligations, for the almost-certain
convergence of a set of events. Convergence is a required property in standard Event-B for proving refinement
steps as soon as new events are introduced in the model. Almost-certain convergence has already been studied
in [8] and [[11], in the context of non-deterministic models with probabilistic assignments, but we show that the
proof obligations developed in this context are not sufficient for models where probabilistic choice also appears in
the choice of events and parameter valuations.

Finally, we illustrate our work on a classical case study: the emergency brake system. In particular, we show
that some of the requirements provided in this case study cannot be taken into account using standard Event-B
while their specification using probabilistic Event-B is intuitive, in particular when probabilities can be taken into
account for the choice between enabled events.

All the results we present in this paper are being implemented in a prototype plugin for Rodin, which we briefly
present at the end of the paper.

Related work. As said above, [16]] is a seminal paper that identifies the challenges when considering a probablistic
extension for Event-B: introducing probabilities in the three places where non-determinism appears in standard
Event-B (between enabled events, on the parameter values choice and on non-deterministic assignments) is the
major dificulty to preserve the practicality of Event-B, and in particular the refinement development framework.
Existing works such as the book of Morgan and Mclver [17] partially answer these challenges. In particular, [[17]
introduces a probabilistic refinement calculus where the refinement of probabilistic guarded commands (= as-
signements) is worked out. The PhD work of Hoang [15}13110] adapts these results to the classical B-Method and
the underlying guarded substitution language. Following these works, Hallerstede and Hoang [8] have proposed
a first probabilistic extension of Event-B, where probabilities are introduced as a refinement of non-determinism
in non-deterministic assignments. In this first extension, Hallerstede and Hoang focus on a qualitative aspect of
probabilities and adapt the Event-B semantics and proof obligations to this new setting. Quantitative probabilistic
assignments are then introduced in [[19} 21} 20]. Almost-certain convergence of a set of events is studied in [8]]
and [[L1] in this context of non-deterministic models with probabilistic assignments. Event-B refinement of such
models is studied in [24].

Unfortunately, while the refinement method and underlying theory introduced in these works is undoubtedly a
good starting point for addressing refinement of fully probabilistic Event-B models, none of these works can be
directly adapted to our setting as they do not consider probabilistic choice between enabled events or in the choice
of parameter values. We show in Section [0] that the proof obligations dedicated to almost-certain convergence
for non-deterministic systems with probabilistic assignments cannot be adapted to our setting and that additionnal
proof obligations are required. The inherent complexity of introducing probabilistic choice between events and
for parameter valuations is such that the introduction of a functionnal refinement procedure in our setting is still
out of our reach, although we are making progress as Section [6] shows.

Outline. The paper is structured as follows. Section [2] presents an overview of the Event-B method and of
our running case study. In Section [3] we introduce the syntax of fully probabilistic Event-B and illustrate our
approach on the running case study. Section [ presents new and modified proof obligations for the consistency of
probabilistic Event-B models. The semantics of a fully probabilistic Event-B model is described in Section [5]and



Section|[f|treats the almost-certain convergence of fully probabilistic Event-B models. Finally, Section[7]concludes
and presents hints for future work. For space reasons, the full proofs of our results as well as additional material
and examples are presented in a separate appendix, to be consulted at the discretion of the reviewers.

2 Event-B

We first present the basic elements of the Event-B method and then introduce our running case study.

2.1 Preliminaries

Event-B [1] is a formal method used for the development of complex systems. Systems are described in Event-B
by means of models. For the sake of simplicity, we assume in the rest of the paper that an Event-B model is
expressed by a tuple M = (v,1(¥),V (), Evts, Init) where v= {v| ...v,} is a set of variables, /(¥) is an invariant,
V (V) is an (optional) variant used for proving the convergence of the model, Evts is a set of events and Init € Evts is
an initialisation event. The invariant /() is a conjunction of predicates over the variables of the system specifying
properties that must always hold.

Events. An event has the following form:

event e; = any 7 where G;(7,7) then S;(7,7) end ‘
where e; is the name of the event, 7 = {t; ...1,]} represents the set of parameters of the event, G;(7,V) is the guard
of the event and S;(7,7) is the action of the event. An event is enabled in a given valuation of the variables (also
called a configuration) if and only if there exists a parameter valuation such that its guard G;(7, v) is satisfied in this
context. Parameters and guards are optional. The action S;(7,7) of an event may contain several assignments that
are executed in parallel. Assignments can be written in several forms in standard Event-B, but they can always be
reduced to what we call Predicate assignments in the following. In order to simplify the writing of (Probabilistic)
Event-B programs, we only distinguish the following three forms of assignments:

e Deterministic assignment: x:= E(f, V) means that the expression E(,V) is assigned to the variable x.

e Predicate assignment: x :| Q,(f,v,x’) means that the variable x is assigned a new value x’ such that the
predicate Q,(7,v,x’) is satisfied.

o Enumerated assignment: x :€ {E|(f,V) ... E,(f,7)} means that the variable x is assigned a new value taken
from the set {E;(f,V) ... E,(7,V)}.

Before-after predicate. The formal semantics of an assignment is described by means of a before-after predicate
(BAP) Q,(7,v,x’), which describes the relationship between the values of the variable before (x) and after (x’) the
execution of an assignment.

e The BAP of a deterministic assignment is x'= E(7,7).

e The BAP of a predicate assignment is Qy(7,v,x’).

e The BAP of an enumerated assignment is X’ €{E; (f,V) ... E,(7,V)}.

Recall that the action S;(7,7) of a given event may contain several assignments that are executed in parallel.

Assume that v; ... v; are the variables assigned in S;(f,V) — variables v;; ... v, are thus not modified — and let

Q,, (V1) ... Q) (f,V,v’;) be their corresponding BAP. Then the BAP S;(7,V,7°) of the event action S;(7,7) is:
SiF,7,7) 2 QuETNT) Ao AQuETVY A Vip1=Vip1) Ao A (V=Vy) ‘

Proof obligations. The consistency of a standard Event-B model is characterised by proof obligations (POs)
which must be discharged. These POs allow to prove that the model is sound with respect to some behavioural
semantics. Formal definitions of all the standard Event-B POs are given in [1]]. In the following, we only recall
the most important of them: (event/INV) for invariant preservation, which states that the invariant still holds after
the execution of each event in the Event-B model M. Given an event e; with guard G;(f,7) and action S;(7,7), this
PO is expressed as follows:

1(9) A GilF,P) ASi(f,5,5") - 1(7) (event/INV) |




model
StdEmergencyBrake
constants
MAX_WEAR
axioms
MAX_WEAREN
MAX_WEAR>1
variables
pedal
brake
wear
invariant
pedale{up,down}
brakec{applied,released}
weareN
wear<MAX_WEAR
events
Init =
then
pedal:=up
brake:=released
wear:=0
end

PushPedal =
when
pedal=up
then
pedal:e{down, up}
end

ReleasePedal =

when
pedal=down

then
pedal:=up

end

ApplyBrake =
when
pedal=down A
brake=released
N wear<MAX_WEAR
then
brake:=applied
wear:=wear+1
end

ApplyBrakeFailure =
when
pedal=down
A brake=released
then
brake:=released
end

ReleaseBrake =
when
pedal=up
A brake=applied
then
brake:=released
end

Figure 1: Event-B model of the emergency brake system

2.2 The Emergency Brake System

We now introduce our running example, based on a simplified scenario of the emergency brake system in charge
of manoeuvring the brake of a vehicle.

Specification. To command the brake, a pedal is provided to the driver: when the pedal is switched to “down”,
the brake must be applied; when the pedal is switched to “up”, the brake must be released. Some requirements
constrain the model:

R1. Pedal failure: when the driver tries to switch “down” the pedal, it may stay in the same position;
R2. Risk of pedal failure: the risk of pedal failure is set to 10%;

R3. Brake failure: the brake may not be applied although the pedal has been switched down;

R4. Maximum brake wear: the brake cannot be applied more than a fixed number of times;

R5. Brake wear: due to brake wear, the risk of brake failure increases each time the brake is applied.

Event-B model. The model StdEmergencyBrake given in Fig. |1| presents an Event-B specification of the emer-
gency brake system. The state of the system is described by means of three variables: pedal models the driver
command, brake represents the state of the emergency brake (applied or released) and wear counts the number of
times the brake is applied. The constant MAX_WEAR represents the maximum number of times the brake can be
applied.

The event PushPedal models the driver command, i.e, switching the pedal to down. For taking into account the
possible pedal failure mentioned in R1, we use an enumerated non-deterministic assignment pedal :€ {down,up}
to express that the pedal is switched to down (the attempted behaviour) or remains in the up position (failure).
Using standard Event-B, we cannot take into account the quantitative risk of failure expressed in R2. The event
ApplyBrake models the brake application, i.e. the variable brake is assigned the value applied (and the variable
wear is increased). The event ApplyBrakeFailure models failure during the brake application: the value of variable
brake remains released. When wear<MAX_WEAR, the events ApplyBrake and ApplyBrakeFailure are enabled at
the same time (when pedal=down A brake=released), the subsequent non-determinism between these two events
reflects requirement R3. On the other hand, when wear=MAX_WEAR, ApplyBrakeFailure is enabled while the
guard of ApplyBrake is not satisfied. Therefore, the brake necessarilly fails as soon as wear=MAX_WEAR, which
means that the brake event cannot be triggered more than MAX_WEAR times (the maximum brake wear) as ex-
pressed by R4. Requirement R5 cannot be modelled in standard Event-B.

3 Introducing Probabilities in Event-B

The typical way of defining a probabilistic Event-B model from a classical Event-B model M is to go through M
and replace all occurrences of non-deterministic choices with probabilistic choices. In Event-B, non-determinism
can appear in three places: the choice of the enabled event to be executed, the choice of the parameter value to



be taken and the choice of the value to be assigned to a given variable in a non-deterministic assignment. In the
following, we go through these three sources of non-determinism and explain how to turn them into probabilistic
choices.

3.1 Introducing probabilistic choices

In standard Event-B, when several events are enabled in a given configuration, the event to be executed is chosen
non-deterministically. In order to resolve this non-deterministic choice, we propose to equip each probabilistic
event with a weight. In configurations where several probabilistic events are enabled, the probability of choosing
one of them will therefore be computed as the ratio of its weight against the total value of the weights of all enabled
events in this state. Using weights instead of actual probability values is convenient as the set of enabled events
evolves with the configuration of the system. Moreover, for the sake of expressivity, we propose to express the
weight W;(V) of a probabilistic event e; as an expression over the variables v of the probabilistic Event-B model.
The probability of executing a given event can therefore evolve as the system progresses. A probabilistic event is
therefore allowed to be executed only if i) its guards is fulfilled and ii) its weight is strictly positive.
In standard Event-B, events can be equipped with parameters. In each configuration where this is possible, a
valuation of the parameters is chosen such that the guard G;(7, V) of the event is satisfied. When there are several
such parameter valuations, one of them is selected non-deterministically. We therefore propose to replace this
non-deterministic choice by a uniform choice over all parameter valuations ensuring that the guard of the event
is satisfied. The uniform distribution is a default choice but our results can be extended to any other discrete
distribution.
Recall that non-deterministic assignments in Event-B are expressed in two forms: predicate non-deterministic
assignments and enumerated non-deterministic assignments. We propose to replace predicate non-deterministic
assignments by predicate probabilistic assignments written
X:D Qu(f,v,x")

Instead of choosing non-deterministically among the values of x' such that the predicate Q,(f,7,x’) is true as in
standard predicate non-deterministic assignments, we propose to choose this new value using an uniform distribu-
tion. For simplicity reasons, we enforce that this uniform distribution must be discrete, and therefore that the set
of values x’ such that Q,(f,7,x’) is true must always be finite. As above, the uniform distribution we propose by
default could be replaced by any other discrete distribution.
We propose to replace enumerated non-deterministic assignments by enumerated probabilistic assignments writ-
ten

x:=E({,7)@), &...0E,({,v)@,,

In this structure, the variable x is assigned the expression E; with probability p;. In order to define a correct
probability distribution, each p; must be strictly positive and smaller or equal to 1, and they must sum up to 1.
Although rational numbers are not natively handled in Event-B, we assume that an adequate context is present.
That can be done by defining a "Rational” theory in Rodin using the theory plug-in providing capabilities to define
and use mathematical extensions to the Event-B language and the proving infrastructure [6]].

Remark that standard deterministic assignments are conserved, but can also be considered as enumerated proba-
bilistic assignments where m = 1.

3.2 Syntax

Turning all non-deterministic choices into probabilistic choices has side effects on the syntax of events and models.
In probabilistic Event-B, we therefore propose to use the following syntax for a probabilistic event ¢; :

’ e; = weight W;(?) any 7 where G;(7,7) then S;(7,7) end

where W;(v) is the weight of the event, G;(,7) is the guard of the event and S;(7,7V) is a probabilistic action, i.e.
an action consisting only of deterministic and probabilistic assignments which are executed in parallel.

For simplicity reasons we impose, as in standard Event-B, that the initialisation event must be deterministic. The
results we present in the rest of the paper can nevertheless easily be extended to probabilistic initialisation events.

Definition 1 Probabilistic Event-B Model A probabilistic Event-B model is a tuple M = (v,1(¥), PEvts, Init) where
v ={vi...vn} is a set of variables, 1(V) is the invariant, PEvts is a set of probabilistic events and Init is the
initialisation event.



model PushPedal = ApplyBrakeFailure =
ProbaEmergencyBrake weight weight
MAX_WEAR wear
constants when when
MAX_WEAR pedal=up pedal=down
then A brake=released
axioms pedal:= down @9/10 then
MAX_WEAReN @ up @1/10 brake:=released
MAX_WEAR>1 end end
variables ReleasePedal = ReleaseBrake =
pedal weight weight
brake MAX_WEAR MAX_WEAR — wear
wear when when
pedal=down pedal=up
invariant then N brake=applied
pedale{up,down} pedal:=up then
brake€ {applied,released} end brake:=released
weareN end
wear < MAXWEAR ApplyBrake =
weight
MAX_WEAR — wear
events when
pedal=down A
Init = brake=released
then A wear < MAXWEAR
pedal:=up then
brake:=released brake:=applied
wear:=0 wear:=wear+1
end end

Figure 2: Probabilistic model of the emergency brake system

3.3 Running Example

A probabilistic version of the emergency brake system from Section[2.2]is given in Fig.[2] This model has the same
variables pedal, brake and wear, the same invariants and the same events as the Event-B model StdEmergencyBrake
from Fig. [l Remark that, unlike in standard Event-B, requirements R2 and R5 can be taken into account in this
probabilistic version. R2 is specified in the probabilistic event PushPedal by using an enumerated probabilistic
assignment instead of a non-deterministic assignment: the variable pedal is assigned the value down with a prob-
ability 9/10 (attempted behaviour) and the value up with a probability 1/10 (failure), hence resulting in a risk of
pedal failure of 10%. Requirement R5 is taken into account by annotating probabilistic event ApplyBrake with a
weight MAX_WEAR—wear and probabilistic event ApplyBrakeFai- lure with a weight wear. As the probabilistic
event ApplyBrake increases the variable wear when it is executed, the weight of the probabilistic event ApplyBrake
decreases each time it is executed whereas the weight of the probabilistic event ApplyBrakeFailure increases. The
failure of the brake is modelled by means of a probabilistic choice between ApplyBrake and ApplyBrakeFailure
instead of a non-deterministic choice as in the standard version, which implies that the more ApplyBrake is ex-
ecuted, the higher the probability that ApplyBrakeFailure occurs instead. In this version, all requirements are
therefore taken into account.

4 Consistency of probabilistic Event-B models

As in standard Event-B, the consistency of a probabilistic Event-B model is defined by means of proof obligations
(POs). In this section, we therefore introduce new POs specific to probabilistic Event-B and explain how we adapt
standard Event-B POs in order to prove the consistency of probabilistic Event-B models.

4.1 Specific POs for Probabilistic Event-B

Numeric weight. For simplicity reasons, we impose that the expression W;(v) representing the weight of a given
probabilistic event must evaluate to natural numbers.
] 1(7) A Gi(F,7) - W,(5) € NAT (eventWGHT/NAT) ‘

Parameter values finiteness. In order to be able to use a discrete uniform distribution over the set of parameter
valuations ensuring that the guard of a probabilistic event is satisfied, we impose that this set must be finite.
’ I(7) I finite ({7 | Gi(F,7)}) (eventparam/pWD) ‘

Enumerated probabilistic assignments well-definedness and feasibility. In all enumerated probabilistic assign-
ments, it is necessary to ensure that the discrete probability values p; ... p, define a correct probability distribution.



Formally, this leads to two POs:

1. Probability values p; in enumerated probabilistic assignments are strictly positive and smaller or equal to 1.

’ Fo<p <1 (event/assign/pWD1) ‘

2. The sum of the probability values p; ...p, in enumerated probabilistic assignments must be equal to 1.

’ Fpi+...+pa=1 (event/assign/oWD2) ‘

Feasability of enumerated probabilistic assignments is trivial: as soon as at least one expression E;(7, V) is present
and well-defined, it always returns a value.

Predicate probabilistic assignment well-definedness and feasibility. To define a discrete uniform distribution
over the set of values of a variable x making the predicate Q,(f,v,x’) of the corresponding assignment satisfied,
we impose that this set must be finite.

(V) A Gi(f,7) AWy(9)>0 F finite ({x" | Q«(7,7,x")}) (event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured by the standard feasibility PO [1] inherited from
Event-B. It ensures that the set {x’ | Q.(f,7,x’) } is not empty.

4.2 Modifications to Standard POs

Where standard Event-B POs are concerned, the main difference in probabilistic Event-B is the condition for a
probabilistic event to be enabled. Indeed, while it suffices to show that the guard of an event is satisfied for this
event to be enabled in standard Event-B, we also have to show in probabilistic Event-B that its weight is strictly
positive. We therefore modify standard Event-B POs as follows.

Invariant preservation. The invariant must be preserved by all enabled probabilistic events.
’ 1(V) AGif,7) AW;(@) >0AS(f,7,v) F I(V) (event/pINV) ‘

Deadlock freedom. In all acceptable configurations, there must exist at least one enabled probabilistic event.
’ L(F) F (GIED) AWI() > 0) V...V (GulFsP) A Wa(P)>0) (model/pDLF) ‘

For the sake of understanding, we hereby insist on the separation between the guard of an event, which reflects
the classical notion of enabledness, and the fact that its weight must be strictly positive. Obviously, one could
also automatically re-write the guard of all probabilistic events in order to include the condition on its weight.
This solution would allow conserving most of the standard Event-B consistency POs without modifications in the
probabilistic setting.

5 Semantics

Semantics of standard Event-B models can be expressed in terms of Labelled Transition Systems [3]. Informally,
given an Event-B model M = (v,1(¥), Evts, Init), its semantics is the LTS M = (S,s9,AP,L,Acts,T) where S
is a set of states, Acts is the set of actions (event names), so € S is the initial state obtained by executing the
Init event, AP is the set of valuations of the variables in v that satisfy the invariant /(v), L : S — AP is a labelling
function that provides the valuations of the variables in a given state, and 7 C S x Acts x S is the transition relation
corresponding to the actions of the events.

In the following, we extend this work by presenting the semantics of probabilistic Event-B models in terms of
Discrete Time Markov Chains (DTMC).

Remark that our goal, unlike in [19} 21] is not to translate our models into DTMCs and use standard model-
checking techniques to verify them. Instead, we aim at reasoning directly on probabilistic Event-B models and
benefiting from the symbolic proof mechanism that is the signature of the Event-B approach. The following
DTMC semantics are nevertheless introduced as a demonstration of the correctness of our approach and results.



5.1 Notations

Let M = (9,1(v), PEvts, Init) be a probabilistic Event-B model and ¢ be a valuation its variables. Given a variable
x € ¥, we write [o]x for the value of x in 6. Given an expression E(¥) over variables in v, we write [G]E (V) (or
[6]E when clear from the context) for the evaluation of E(v) in the context of G.

Given a probabilistic event ¢; with a set of parameters 7 and a valuation ¢ of the variables, we write Ty’ for the
set of parameter valuations 6 such that the guard of e; evaluates to true in the context of ¢ and 6. Formally,
Ts' = {0 [0,0]G;(f,V) = true}. Recall that parameter valuations are chosen uniformly on this set. We write Pye;

for the uniform distribution on the set 7.

Given a valuation ¢ of the variables and a probabilistic event e;, we say that e; is enabled in © iff (a) the weight of
e; evaluates to a strictly positive value in ¢ and (b) either e; has no parameter and its guard evaluates to true in ¢
or there exists at least one parameter valuation 0 such that the guard of e; evaluates to true in the context of ¢ and
0,ie. Ty #0.

Given a probabilistic event e;, we write Var(e;) for the set of variables in v that are modified by the action of ¢;, i.e.
the variables that appear on the left side of an assignment in S;(7, 7). Recall that a variable x € Var(e;) must be on
the left side of either a predicate probabilistic assignment or a enumerated probabilistic assignment. In both cases,
given an original valuation G of the variables, a valuation 0 of the parameters of e; and a target valuation 6’ of the
variables, we write Pyo(x,6”) for the probability that x is assigned the new value [6']x when executing e; from the
valuation ¢ and with parameter valuation . If ¢; is not equipped with parameters, this is written Py’ (x,0”). In the
following, we always use the more general notation and assume that it is replaced with the specific one when there
are no parameters. The formal definition of Péie (x,0") is given in Appendix

5.2 DTMC semantics

Informally, the semantics of a probabilistic Event-B model M = (v,1(¥), PEvts, Init) is a Probabilistic LTS [M] =
(S,s0,AP,L,Acts, P) where the states, labels, actions, atomic propositions and initial state are similarly obtained
as for the standard LTS semantics of Event-B. The only difference with the standard LTS semantics is that the
transitions are equipped with probabilities, which we explain below. In the following, we identify the states with
the valuations of the variables defined in their labels.

Intuitively, the transition probabilities are obtained as follows: Let e; € PEvts be a probabilistic event, x € v be a
variable and s, s" be two states of [M] such that (s, e;,s') is a transition in the standard LTS semantics, i.e. where ¢;
is enabled in s and there exists a parameter valuation 8 € 7", if any, such that the action of ¢; may take the system
from s to s’. The probability assigned to transition (s,e;,s’) is then equal to the product of (1) the probability that
the event e; is chosen from the set of enabled events in state s, (2) the probability of choosing each parameter
valuation 0, and (3) the overall probability that each modified variable is assigned the value given in s’ under
parameter valuation 6.

Definition 2 Probabilistic Event-B Semantics The semantics of a probabilistic Event-B model M = (v,1(V), PEvts, Init)
is a PLTS [M] = (S,s0,AP,L,Acts, P) where S is a set of states where each state is uniquely identified by its la-

bel, so € S is the initial state obtained after the execution of the Init event, AP represents the valuations of all
variables that satisfy the invariant of the model: AP = {c | [6]I(V) = true}, L : S — AP is the labelling function
that assigns to each state the corresponding valuation of the variables, Acts is the alphabet of actions (event
names), and P : S X Acts X S — [0,1] is the transition probability function such that for a given state s, for

all e;,s' € Acts X S, we have P(s,e;,s") =0 if e; ¢ Acts(s) or 3x € X\{Var(e;)} st [s]x # [s'|x and otherwise
[SM’VI(V) Z (PT;’i (e) « H P;ie(xvs/))

P(s,e,s') = —————— X
o Ze_,-EActs(x) [S]Wj(v) 0eT’i ~—~—" x&Var(e;)
—_— ) 2

)] 3)

In the following proposition, we show that the semantics of a probabilistic Event-B model as defined above is
indeed a DTMC. For space reasons, the proof of this proposition is given in Appendix [A.3]

Proposition 1 The semantics of a probabilistic Event-B model M satisfying the POs given in Section is a
DTMC.

For space reasons, the DTMC of the probabilistic emergency brake system is given in Appendix [A.2]



6 Convergence

The development process in Event-B is inherently based on refinement. As said earlier, systems are typically
developed progressively using an ordered sequence of models, where each model contains more details than its
predecessor. One key aspect of refinement is the addition, in one refinement step, of new variables and new events
that characterize the evolution of those variables. In order to preserve certain properties, it is then necessary to
show that the introduction of these new events in a refined model cannot prevent the system from behaving as
specified in the abstract model. In particular, it is necessary to show that such new events are “convergent”, in
the sense that they cannot keep control indefinitely: at some point the system has to stop executing new events in
order to follow the behaviour specified in its abstract model.

Although this paper does not adress refinement in probabilistic Event-B, we propose a solution in order to prove
that a given set of events almost-certainly converges in a probabilistic Event-B model, which is a necessary step
for adressing refinement in the future. We therefore start this section with a brief recall of how events can be
proven convergent in standard Event-B and then propose a set of sufficient conditions, expressed as POs, that
allow proving that a set of events is almost-certainly convergent in probabilistic Event-B.

Convergence in Standard Event-B. In order to prove that a set of events is convergent in Event-B, one has to
show that it is not possible to keep executing convergent events infinitely, and therefore that a non-convergent
event is eventually performed from any state. The classical solution is therefore to introduce a natural number
expression V(v), called a variant, and show that all convergent events strictly decrease the value of this variant. As
a consequence, when the variant hits zero, it is guaranteed that no convergent event can be performed. In practice,
this is expressed using two POs:

1. Numeric variant. Under the guard G;(7,v) of each convergent event e;, the variant V(v) is greater than 0.

] 1(7) AGi(f,7) F V(P)ENAT (event/var/NAT)‘

2. Convergence. The action S;(7,7) of each convergent event e; must always decrease the variant V(v).

] (7)) AGif,7) F V5. Si(F,5,7") =V(F)<V(D) (event/VAR)‘

Almost-certain Convergence in the litterature. In the context of probabilistic Event-B, instead of proving that
a given set of events necessarilly converges as in standard Event-B, we are interested in showing that a given set
of events almost-certainly converges. In other words, we are interested in showing that, in all states of the system
where convergent events can be executed, the probability of eventually taking a non-convergent event or reaching
a deadlock is 1 (the probability of infinitely executing convergent events is 0).

This property has already been investigated in [[8] and [[L1], in the context of events having probabilistic actions
but where non-determinism is still present between events. In this context, Hallerstede and Hoang propose in [§]]
sufficient conditions for a set of events to almost-certainly converge. These conditions can be summarized as
follows: As in standard Event-B, one needs to exhibit a natural number expression V(v) called a variant, but unlike
in the standard setting, only one resulting valuation of the execution of each convergent event needs to decrease
this variant. Indeed, in this case, the probability of decreasing the variant is strictly positive. Unfortunately, using
such a permissive condition is not sufficient: there might also be a strictly positive probability of increasing the
variant. Therefore, Hallerstede and Hoang require the introduction of another natural number expression U()
which must maximise the variant V(¥) and never increase. The proposition from [8] is refined in [L1], where
Hoang requires in addition that the probabilities considered in probabilistic assignments are bounded away from
0. This is ensured by requiring that the set of values that can be returned by a probabilistic assignment is finite.

Adaptation to fully probabilistic Event-B. We now show how to adapt the results proposed in [8]] and [11] to
our fully probabilistic Event-B setting. Since there are no non-deterministic choices between enabled events, it
is not anymore necessary to require that all enabled events in a given configuration may decrease the variant.
We therefore start by relaxing the condition proposed in [8]: we only require that, in all configurations where
a convergent event is enabled, there is at least one convergent event for which at least one resulting valuation
decreases the variant.

1. Almost-certain convergence. In all configurations where at least one convergent event is enabled, there
must exist at least one valuation v’ obtained after the execution of one of these enabled events which de-
creases the variant.



1() A ((G1E,P) AW1(P) > 0)V...V(Gi(F,7) AW;(¥) >0)) F
37, GiF;7) AWI(7)>0A S1(5.7) AVE) V@) V...V (37 Gi(F,7) A Wi(f)>0A Si(F,5,7) A V() <V()) (model/pVar)

As in [8], we also require that convergent events can only be enabled when the variant is positive and that the
variant is bounded above. In order to simplify the reasoning, we propose to use a constant bound U, as in [11].

2. Numeric variant. Convergent events can only be enabled when the variant is greater or equal to 0.

’ 1(%) A Gi(f,7) A Wi(H)>0 I V(5)ENAT (event/var/pNAT)‘

3. Bounded variant. Convergent events can only be enabled when the variant is less or equal to U.

] 1(7) A Gilf.7) A Wi(7)>0 - V(H)< U (event/pBOUND)‘

Finally, the finiteness of the set of values that can be returned by a probabilistic assignment is already ensured
by the syntax for enumerated probabilistic assignments and by PO (event/assign/pWD3) for predicate probabilistic
assignments and their non-emptyness is ensured by the standard feasability POs.

Inadequacy of adapted POs. Unfortunately, as we deal with potentially infinite-state systems, POs 1-3 presented
above are not anymore sufficient for proving that the probability of eventually executing a non-convergent event
or reaching a deadlock state is 1. Indeed, although the probability of decreasing the variant is always strictly
positive because of PO (model/pVar) and although the number of values that can be returned by a given probabilistic
assignment is always finite, the combination of event weights and parameter choice can make this value infinitely
small in some cases. In this case, it is well known that almost-certain reachability/convergence is not ensured.
This problem is a direct consequence of the unboundedness of the weights of convergent events, which, by getting
arbitrarily big, cause the probability of decreasing the variant to get arbitrarily small. Examples illustrating this
fact are given in Appendix B}

Additional Proof Obligations. We therefore adapt classical results from infinite-state DTMC to our setting and
propose sufficient conditions in terms of proof obligations to prove the almost-certain convergence of a given
set of events. Informally, the following POs ensure that the probability of decreasing the variant cannot get
infinitely small by requiring that both the weights of convergent events and the number of potential values given
to parameters in convergent events are bounded.

4. Bounded weight. The weight of all convergent events must be bounded above by a constant upper bound
BW.

] 1(7) A Gi(F,) - W,(5) < BW (event/wght/BOUND)‘

5. Bounded parameters. The number of potential values for parameters in convergent events must be bounded
above by a constant upper bound BP.

’ I(7) F card({7 | Gi(7,7)}) <BP (event/param/BOUND)‘

We now formally prove that the conditions presented above are sufficient for guaranteeing the almost-certain
convergence of a given set of events in a probabilistic Event-B model.

Theorem 1 Let M = (v,1(v),V (), PEvts, Init) be a probabilistic Event-B model and PEvts, C PEvts a set of
convergent events. If M satisfies the above POs (1-5), then the set PEvts, almost-certainly converges.

Proof. We consider the DTMC semantics [M]] of the probabilistic Event-B model M and use the global coarseness
property of infinite-state DTMC [[14] to show that, from all states of [[M], the probability of eventually taking a
non-convergent event or reaching a deadlock is 1. The full proof is presented in Appendix [B.3] g

7 Conclusion
As suggested by Morgan et al. in [[16], the ideal probabilistic extension of Event-B should allow using probabilities

as a refinement of non-deterministic choices in all places where such choices exist. In Event-B, non-determinism
occurs in several places and, to the best of our knowledge, existing works on extending Event-B with probabilities
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Figure 3: Probabilistic plugin to the Rodin platform

have only focused on refining non-deterministic assignments into probabilistic assignments |8, |19}, 21]] while leav-
ing other sources of non-determinism such as the choice between enabled events or the choice between admissible
parameter values untouched.

In this paper, we have proposed a fully probabilistic extension of Event-B where probabilistic choices are in-
troduced as replacement of all non-deterministic choices, be it between enabled events, parameter values or as-
signments as suggested by Morgan et al. in their seminal work. Our long term goal is to produce a probabilistic
extension of Event-B where the developer can choose at his convenience where to refine non-deterministic choices
with probabilities and where to keep non-deterministic choices intact. However, this long-term goal is clearly am-
bitious and will require several years of study to be achieved. In this paper, we have therefore focused on a more
reasonable objective, restricting ourselves to purely probabilistic systems where probabilities appear in the last
step of refinement. Although the long-term goal presented above is not yet achieved, this is clearly a first step in
the right direction.

In particular, we have introduced new notations and semantics, along with novel and adapted POs dedicated to the
consistency of probabilistic Event-B models. We have shown that, when these POs are satisfied, the semantics of
a probabilistic Event-B model is a discrete time Markov chain. Finally, we have provided sufficient conditions,
expressed in terms of POs, to show that a probabilistic Event-B model satisfies the almost-certain convergence of
a given set of events, which is a necessary step for adressing refinement in the future.

In parallel, we have started the development of a prototype plugin for the Rodin Platform. This plugin currently
allows the specification of fully probabilistic Event-B models and the semi-automatic generation of a probabilistic
Event-B model from a standard Event-B model as shown in Fig [3] It also supports the generation of several
consistency proof obligations on probabilistic Event-B models.

Future work. As the development in Event-B is intrinsically based on a refinement process, we plan on studying
the refinement of probabilistic Event-B models, including (but not restricting to) the "probabilisation" of non-
deterministic models, the introduction of new probabilistic events, and, the merge and the split of probabilistic
events. We also plan to study how to handle Event-B models combining non-deterministic and probabilistic
events as well as the (probabilistic) refinement of such models.

Most of the properties of interest that are verified in standard Event-B are safety-related. They are most of the time
expressed by means of invariants and discharged as POs. We therefore plan to consider probabilistic invariants,
i.e. invariants related to probabilistic distributions [[12]. In addition, critical systems must also satisfy some
liveness properties. In this paper, we have studied the almost-certain convergence of a given set of events, but
other probabilistic liveness properties could be considered. Indeed, the verification of other liveness properties
on standard Event-B models using refinement and proof obligations have been considered in [9, 4]. We will
pursue these works and extend them to the verification of probabilistic liveness properties on probabilistic Event-
B models.
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The appendix is given as complementary material for the understanding and correctness of our propositions and
results. They can be consulted at the discretion of the reviewers for review purpose and will be removed in the
final version of the paper.

A Complements to Probabilistic Semantics

A.1 Notations

In this section, we provide some basic notations specific to the DTMC semantics of probabilistic Event-B models.
Let M = (v,1(v), PEvts, Init) be a probabilistic Event-B model. Let ¢; be a probabilistic event in PEvts and let
x € Var(e;). Recall that x can be modified only by one assignment within the action of ¢;. If x is modified by a
enumerated probabilistic assignment (x :=E(f,V)@,, &... B E,(f,7) @, (m> 1)), then we write £,, (x) for the
set of all expressions that can be assigned to the variable x by this assignment.

fei(x) = {El (fvﬁ)a "'aEm(f’ﬁ>}

The probability of choosing an expression E; among all others expressions is written Py’ (E;) = p;.
Let ¢; € PEvts be a probabilistic event, x € Var(e;) be a variable, 6,6 two valuations of the variables ¥ and 0 a
valuation of the parameter values associated to the event e; such that e; is enabled in 6 w.r.t parameter valuation 6
and leads the system to ¢’.
If x is modified by a enumerated probabilistic assignment of e;, then we write Z,, (x) ‘gie for the set of expressions
in ‘E,,(x) such that their evaluation in the valuation 6 with parameter valuation 6 returns the value of x in the
valuation ¢’.
Formally,

o, (1[50 = {E € E,(x) | [0,0)(E(7,7)) = [o]x}

If e; is not equipped with parameters, then this subset is written E,, (x) g
If x is modified by a predicate probabilistic assignment (x : ®Qx(7,7,x’)), then we write V' (x) for the set of
values x’ that make the predicate Q,(7,7,x’) true when evaluated in ¢ and 6.

fVee,ic(x) ={x'| [0,8]0.(7,7,x) = true}

If ¢; is not equipped with parameters, then this subset is written V' (x).
In Section [5| we have defined the probability P<'¢(x,6") that the variable x is assigned the new value [6']x when
executing e; from the valuation ¢ with parameter valuation 6. Formally, this probability is given by:

1. if x is modified by a enumerated probabilistic assignment, then:

Foluo)= L PIE)
E€Ty (1)

2. if x is modified by a predicate probabilistic assignment, then:

1

a1
P cztrd("l/&ic(x))

og(X;0") = if [6']x € Vi (x) and O otherwise.

A.2 DTMC semantics of the probabilistic Emergency Brake system

Fig. @ presents the DTMC semantics of the probabilistic Event-B model of the emergency brake system given in
Fig.[2l The states of this DTMC correspond to the valuations of the variables pedal, brake and wear.

The transitions correspond to the possible occurrence of the events, labelled with their probability value. In this
example, we set the constant MAX_W EAR constant to 4. The probabilities are computed as follows:

In the state (d,r,0), three events are enabled: ApplyBrake, ApplyBrakeFailure and ReleasePedal. The event
ReleasePedal leads to the state (u,r,0) with probability % = 4+37+4, where ﬁ corresponds to the probability
of choosing the event ReleasePedal rather than the events ApplyBrake and ApplyBrakeFailure. The events
ApplyBrake and ApplyBrakeFailure have the same probability value, this value is similarly calculated as for
the event ReleasePedal. In the state (u,r,2), the event PushPedal is enabled, it leads to the state (u,r,2) with
probability 1—10 and the state (d,r,2) with probability 19—0. % corresponds to the probability of assigning the value
down to the variable pedal and % corresponds to the probability of assigning the value up to the variable pedal.
The probabilities of all the transitions in this DTMC are computed in a similar manner.
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Figure 4: DTMC of the probabilistic EBS with MAX_WEAR =4

A.3 Proof of Proposition 1

Given a probabilistic Event-B model M, the semantics [M]| of M is a DTMC.
We must prove that for each state s in [[M]), the sum of probabilities of the outgoing transitions from s is equal to
one. Let M be a probabilistic Event-B model, ¥ = (x],x2, ...,X,) the set of variables of M and s € S a state of [M]].
‘We assume that each variable x; in v takes its value from a set X;.
Recall that the probability of a transition (s,e;,s’) is O if e; & Acts(s) or 3x € W\{Var(e;)} | [s]x # [s']x and
otherwise: W)
S|Wilv Ci /

T oactsty W, ) X eeZT;[ (Pn.’ (8) x XG‘LI(ﬁ)Ps,e(x,s )

We must therefore show that Y, cacts(s) Lyes P(s,€i,8") = 1.

Y Pees)= ¥ YUy @ x [T PY0)

P(s,ei,s")

s'€S,e;€Acts(s) e;€Acts(s) s'€S ZFJGACtS(-Y) [S] Wj(v) 0cTyi x€eVar(e;)
[s]Wi(7) i (o
P(s,eis) = Y g x Y, (Pe(®)x Y., [ Poxs)
s'€S,e;€Acts(s) e;€Acts(s) ZejEACtS(S) [S]Wj(v) 0cT g s'eSxeVar(e;) >
Let S; = {s' € S|Vx € ¥\Var(e).[s]x = [s']x}.
[s]W;(¥) e ’
P(s,eis) = ), o= x Y (P(®)x Y [[ Poxs))
s'€8.e;€Acts(s) ei€Acts(s) ZejEACtS(S) M W; (V) 0T’ B s/ €Sy xeVar(e;) "

Vx € Var(e;), we recall that P{y(x,s') = ¥ " Py(E) if x is modified by a enumerated probabilistic assign-
’ 5,0

E€T,;(x)

ment and P{(x,s") = if x is modified by a predicate probabilistic assignment.

card(‘ll/(;is (%))
We then remark that P (x,s") does not really depend on s but only depends on v, = [s']x (as s’ corresponds to the
valuations of the Variak;les x; in the state s").

Given x € 7 and V. € X, we therefore write F'%“ (1) = P(x,s") if x € Var(e;).

For v = {x1,...,x,}, we have S| = { (v} ,...,v; )|V}, = [']x; if x; € Var(e;) and v}, € X; otherwise}.

We assume that Var(e;) = {x1,...,x; } with k <n,

Then for all expression o with o = [vy, ., = [s]Xk11, ..., Vx, = [s]x,] We have:

Yo=Y (L (X
s'esy v €X] v, €Xo vy €X

As a consequence, we have:

k
Y I e%0h=Y (Y (. X IR0

s'eS) xj€Var(e;) v;l €X| v"tz €X, V'/"k ex, i=1

= Y (Y o Y BPO0)EL0, ) E 4 0))

vfxl €X) V),fz €X vﬁ.k Xy

=[ Y EPOIL Y EPO)NLY BP0

v;.l €X) V./rz €X, v;k €Xy
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= ] [ X E*0L)

x;€Var(e;) v}i eXx;

By construction,for x; € Var(e;), we have ¥, cx, F2%4 (). ) = 1 Therefore, ¥,yc s, [levar(en) B ([s]x) = 1.

Xi
Asa consequence,
[S]VV,’(V).ZOGT:’,- PTfi (6)

Z P(s,ei,s') = Z

s'€8.e;€Acts(s) e;€Acts(s) ZejeACt5<S) [S]Wj (‘7)

_ ZeieActs(‘v) [S]VVI(‘j) (ZQGT:I' PT:I' (e)))
Ze_,EActs(x) [S] W; (‘7)

By construction, we have Yy« Py (0) = 1 and thus:

e Cts(s W/l v
plosoy . Eechests SWD

= — = 1
S/GS,e,'GACtS(S) ZEjGACtS<S) [S]W](V)

As a conclusion, we have that Vs, Y.ycg o;cActs(s) P(5; €i,5") = 1 and then [M]] is a DTMC.
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B Complements to Almost-certain Convergence

B.1 Necessity of bounding event weights

In this Section, we show by means of an example of a probabilistic Event-B model the necessity of the new PO
(event/wght/BOUND) introduced in order to prove the almost-certain convergence of a set of probabilistic convergent
events.

Consider the probabilistic Event-B model M1 given in Figure[5} This model has two variables: x and y and three
events evtl, evt2 and evt3, two of which (evt1 and evt2) are convergent. The variant of this model is x and the
bound on the variant is clearly U = 2.

model
M1 evtl =
convergent evt3 =
variables weight weight
X 1 1
y when when
0<x<2 x=0
invariant then then
x€ INT x:=x—1 xi=—1
ye INT yi=2xy yi=—1
end end
variant
X evi2 =
convergent
events weight
y—1
Init = when
then 0<x<1
x:=1 then
y:=2 Xi=X+1

Figure 5: Probabilistic Event-B model M1
The DTMC semantics of M1 is given in Figure[6]

ev2(B) > evr1(1

) 2(33)

evt’
)

Figure 6: DTMC part of the model M1

In states where x = 1, only convergent events evt1 and evt2 are enabled and the local probability of choosing evt1
is % while the local probability of choosing evt2 is %

In states where x = 2, only evt1 can be chosen with probability 1.

In states where x = 0, the only enabled event is the (non-convergent) event evt3.

Clearly, the model M1 satisfies proof obligations (model/pVar), (event/var/pNAT) and (event/pBOUND). However, as we
show below, the probability of eventually taking a non-convergent event is strictly smaller than 1 from all states
where x > 0 because the probability of decreasing the variant, although strictly positive in all states, gets infinitely
small from states where x = 1 as y increases.

W.l.o.g., we compute the probability of eventually taking evt3 from the initial state where x = 1 and y = 2. The
reasoning starting from other states is similar. This probability is equal to the sum of

(1) the probability of directly taking evt1 from (1,2),

(2) the probability of reaching (1,4) and taking evt1 from (1,4),
(3) the probability of reaching (1,8) and taking evt1 from (1, 8)
@) ...
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Clearly, (1) is equal to %, (2) is equal to % . % = é, (3) is equal to % . % . % < % and in general, the probability of

reaching state (1,2) with i > 2 and taking evt1 from this state is strictly smaller than 2,%
As a consequence, the probability of eventually taking evt3 from the initial state is strictly smaller than

1 &1 3
PR ST

i=2
Therefore, M1 does not almost-certainly converge.

The behaviour we expose here is a direct consequence of the unboundedness of the weights of convergent events,
which, by getting arbitrarily big, cause the probability of decreasing the variant to get arbitrarily small.

B.2 Necessity of bounding event parameter values

As in the appendix [B.T] we show by means of an example that bounding parameter values through the new PO
(event/param/BOUND) is necessary for the almost-certain convergence of probabilistic Event-B models. The model
M2, given in Fig. [7]and its semantics, given in Fig. [§]are similar to the ones presented in appendix [B.T]

model evtl = evt3 =
M2 convergent weight
weight 1
1 when
variables any x=0
X t then
y where x:=—1
t e {1.. 27} A0<x<d y:=—1
then end
invariant x:PB((t=1 A X' —x+t=0) or
x€ INT (2 <t <2 AX—x—1=0))
ye INT y:=y+1
variant end
X
evt2 =
convergent
events weight
1
Init = when
then X=2
x:=1 then
y:=1 x:=x—1
end end

Figure 7: Probabilistic Event-B model M2

Figure 8: DTMC part of the model M2

In this case also, we observe that the probability of eventually executing non-convergent event evt3 from the
initial state is strictly smaller than 3/4. The main difference is that, in M2, only the choice of parameter values
is responsible for infinitely decreasing the probabilities of decreasing the variant. Bounding parameter values
through (event/param/BOUND) prevents this problem from happening.
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B.3 Proof of Theorem 1

Let M = (v,1(¥),V (¥), Evts, Init) be a probabilistic Event-B model. Evts = Evts, U Evts,, is the partition of the
set of events Evts into convergent events Evts, = {ey,...,e;} and non convergent events Evts,. = {ej41,...,en} (
1 <i<n).

We show that if M satisfies the following convergence POs:

1. event/var/pNAT
Ve € Evts, (V) AW (V) > OAG,(,7) -V (V) € NAT

2. event/pBOUND
Ve € Evts, (V) AW.(V) > 0AG.(f,7) FV(¥) <U

3. event/wght/BOUND
Ve € Evts, I(V) AG,(,v) - W(¥) < BW

4. event/param/BOUND
Ve € Evts..I(V) F card({f|G.(,7)}) < BP

5. model/pVar

IP)A(Gi(F,P) V.. \/G(t' V) E @GV W (P)AG(EV)ASI(EV)AV() <V(P)V
V(3P W) AGi(T,9) ASi(T, ) AV (V) <V (7))

then M almost-certainly converges (with probability 1).

Recall that almost-certain convergence of M consists in proving that, from all valuation of the variables of M
where a convergent event is enabled, the probability of eventually taking a non-convergent event or reaching a
deadlock is 1. In order to prove this result, we consider a slightly modified version of the DTMC semantics of
M and use classical results on DTMCs in order to show that the probability of eventually reaching a given set of
states is 1 from all states where non-convergent events are enabled.

Proof.

In order to take into account the difference between convergent and non-convergent events, we propose the fol-
lowing slightly modified version of the DTMC semantics of M. In this version, all the states are replicated in order
to “remember” the last event executed.

Formally, consider the probabilistic Event-B model M introduced above and let [M]] = (S, s0,AP, L, Acts, P) be the
DTMC semantics of M as introduced in Definition 2] We build the DTMC [M])’ = (T,ty,AP,L’,Acts,P') where

o T CSx(ActsU{e}) is the set of extended states, consisting in pairs (s,a) where s is a state of [M] and a
is an action (event name),

e 1) = (s0,€) is the initial state,
e L is such that L'((s,a)) = L(s) for all s € S and a € Acts, and
e P'issuch that P'((s,a),e,(s',b)) = P(s,e,s') if e = b and 0 otherwise for all action a.

It is easy to see that M almost-certainly converges iff the probability of eventually reaching either a deadlock state
or an extended state of the form 7 = (s,¢) where e is a non-convergent event is 1 in [M])’ from all (extended) states
where convergent events are enabled.

Since [[M]] has a potentially infinite set of states, showing such a result is not trivial. In order to prove it, we
therefore exploit existing results from the theory of DTMCs. In particular, we focus on the global coarseness
property introduced in [14]], which is a sufficient condition for the “decisiveness” of infinite-state Markov Chains.
Formally, given a Markov Chain M = (§,P) and a target set of states F C .S, we say that M is globally coarse
w.r.t. F iff there exists some minimal bound o > 0 such that for all state s € S, the probability of eventually
reaching F from s is either O or greater or equal to o. It is then shown in [14] that whenever a Markov Chain M is
globally coarse w.r.t. the set F, the probability of eventually reaching either F or a set of states (7~7) from which
F cannot be reached is 1 from any state of M.

In the following, we will apply this result to the DTMC [[M] in order to prove that M almost-certainly converges.
We therefore proceed as follows:
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(a) We start with introducing notations that will be used throughout the proof.

(b) We then propose a partition of the extended states T’ of [[M])’ and introduce our goal set F C T.

(c) We show that all states from each partition of T satisfy the global coarseness property w.r.t. F.

(d) We finally show that the set Fis empty and conclude.

We now detail each step of this proof.

(a) Consider the following notations:

In the DTMC [[M]’, we partition the set of actions (event names) as follows: Acts = Acts,. U Acts,,
where Acts,, is the set of non convergent actions and Acts, is the set of convergent actions.

Given an extended state ¢ and a set of states G C T, we write P(¢ = QG) for the probability of eventu-
ally reaching G from ¢.

Given a predicate P and an extended state r = (s,a) of [M]’, we write P(r) for the evaluation of P in
the state s.

Given an extended state r = (s,a) € T, we write Acts(¢) for the set of events enabled in s. Similarly, we
write Acts,(¢) for the set of convergent events enabled in s and Acts,(¢) for the set of non convergent
events enabled in s.

Given a set of events E and a state 1 = (s,a) € T, we write W/(E) (or W*(E) when clear from the
context) for the sum of the weights of the events from E that are enabled in s.

Given a state t = (s,a) € T, we write Succ(t) for the set of extended states that are reached from ¢:
Succ(t) = {t' € T|3e € Acts(t).P'(t,e,t’) > 0}

Given a finite execution G = fy, €0, 11, - . ., In—1,€n—1,t, Of [M])’, the length of ¢ is written L(c) and is
equal to the number of transitions executed in 6. In the above example case, L(G) = n.

(b) We now introduce the following sets of extended states T :

Ty ={t = (s,a) € T | Je € Evts,,30 € T¢,G,(s,0) AVe' € Evts,,V0 € T,
-G, (s,0)} is the set of extended states where only convergent events are enabled.

Ty ={t = (s,a) € T | Je € Evts.,30 € T*,G,(s5,0) A3e’ € Evts,.,30 € T,
G, (s,0)} is the set of states where both convergent and non convergent events are enabled.

T3 ={t=(s,a) €T | Ve € Evts.,V0 € T, ~G,(s,0)} is the set of states where no convergent events
are enabled.

Ty ={t = (s,a) € T | a € Evts,} is the set of states reached after performing a non convergent event.

It is easy to see that 7' = T; U T, U T3 defines a partition of 7. The convergence property for our probabilistic
Event-B model M clegrly concerns states from 73 and 7. We therefore define our target set as F' = T3 U Tj.
As in [14], we write F for the subset of states of 7' from which it is impossible to reach F. We show later
that F is empty.

(c) We now show that all extended states in 77 and 7> and T3 satisfy the global coarseness property w.r.t F, i.e.
that there exists a minimal bound o > 0 such that for each extended state ¢ € T, the probability of eventually
reaching F is either O or greater or equal to o.

We begin with states in 7. Let t; = (s2,a) € T». Let F, be the subset of states that are reached from 1,
by non convergent events. Obviously, /> C 74 C F. Formally,

B={t'"=(s,d)eT |t €Succ(tr) Nd" € Acts,.}
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By definition of 75, at least one convergent event is enabled in #,, therefore we have W’ (Acts,) > 0.
Likewise, at least one non convergent event can be enabled in 7, thus W2 (Acts,;) > 0. Therefore
W2 (Acts) > 0.
Recall from section 3] that the probability of a transition (f2,e,’) where e € Actsc(2) and ' = (5, €) €
F, is given by:

We(s2)
P(tr,e,t") = P(sy,e,5') = ———— x PTL o(x,s")
W2 (Acts) eeZT'e . E\I,} © o

By definition, all non convergent events e take the system in states in F; regardless of the probabilistic
choice made inside the action of e. Therefore:

) P(,ed)= Y, Wels2)

e€Acts,c(52),1' €, ecActs,¢(s7) W2 (ACtS)
Therefore, the probability of eventually reaching F; from t, is above %,

We now show by contradiction that there exists 0y > 0 8.t Vi, € Tr, P(tz |= OF,) > 0.

Assume the contrary, i.e. Vo > 0,35 € T s.t Pty = OF) < d.
Let o be such that (0%2 —1) > BW x card(Acts,). There must exist t, = (s2,a) € T» such that P(r; |=

OF,) < ap. By the result above, we know that P(f, = OF,) > W2 (Actsc)

W2 (Acts) - As a consequence, we must
have:

W52 (Actspc)
Wsz(Acts)

Recall that W*2 (Acts) = W*2(Acts,,) + W*2(Acts,). Therefore,

W2 (Acts) W92 (Acts,) 1
Ws2(Acts,.)  W52(Acts,.) ~ O

Asa consequence,

1
w52 (ACtSC) > W (ACtsnc) : (OC - 1)
2

By definition of 75, we have W*2(Acts,,.) > 1, therefore

1
W92 (Acts;) > (— — 1)
)
Finally, by definition of o, we have W*2(Acts,) > BW X card(Acts,), which is clearly in contradiction
with PO event/wght/BOUND.

We therefore conclude that there exists 0y > 0 such that Vi, € Tr, P(t2 = OF) > dp.

‘We now move to extended states in 77 : we show that there exists o; such that for all extended states
thetl,P ([1 ': <>F) > 0.

Recall that the probability function of [M])’ is expressed as follows: For all #; = (s1,a) € Ty, e € Acts,
andt’ = (s',a) € T, we have

W (Sl)
P(t1,e,t') = P(si,e,8) = ————=x Y | Pre (8 x ] P elxs)]
W (ACtS) (')ETe xeVar(e) 1
Since #; € T, this expression can only be non-zero if e is a convergent event. In this case, PO even-
t/wght/BOUND ensures that W*1 (Acts) < BW - card(Acts, ). Therefore, for all convergent events enabled

We(s1) 1
w1 (Acts) = BW-card(Acts.) *

Moreover, PO event/param/BOUND ensures that the number of parameter valuations satisfying the guard
of e in 51 is bounded by BP. As a consequence,

in t;, we have
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Y (P @)% [T o)) = g% ¥ [ T Poles)]

967}”1 xeVar(e) OGT{'] x€eVar(e)
Finally, since the probabilities inside each probabilistic assignment (P¢(E)) are constant and in finite

number, there is a minimal value > 0 (which we do not detail here) such that for all #; = (s1,a) €
Ti,e € Actsc, and t' = (s',e) € T, whenever P(t1,e,t') > 0, we have

Y [ TT Polrs)] =B

O€T, xeVar(e)

As a consequence, there exists a minimal value y > 0 such that P'(11,e,¢’) > yfor all t; € Ty, e € Acts,,
and ¢’ € T such that P'(t1,e,t') > 0.

Now, let 1o = (so,a0) € Ti be an extended state. By definition of 77 and because of POs event/p-
BOUND, event/var/pNAT and model/pVar, the value of the variant in fq is between 0 and U and there
must exist a transition that leads the system to an extended state 11 = (s1,a;) s.t. V(t1) < V(to).
Necessarilly, we have t; € T1 or t; € T, or t; € Tz, therefore there must exist a finite execution
G =10,€0,01,- -y tyn—1,tn—1,ty Witht, € HUT3 and Vi < n,t; € T} and L(c) < U + 1.

Ift, € T3 C F, then P(ty = OF) > Y/*!. Otherwise, we have t,, € T and P(t, |= OF) > oy, therefore
P(to = OF) > o -/,

As a consequence, since 0y < 1, we have YW+ > o, -y/*! and there exists o) = o -y¥/*! > 0 such
that for all extended states 7} € T1,P(t) = OF) > a.

e Finally, since 73 C F, we have P(t3 = OF ) = 1 for all extended states 13 € T3.

We therefore conclude that [M]’ is globally coarse w.r.t F. As a consequence, ¥z € T, P(t = OF V OF) = 1.

(d) We have shown above that for all extended states either in 71,7> or T3, we have P(¢ = OF) > 0. Since
T =T1UT, UTs, F is therefore necessarilly empty.

Since [M]’ is globally coarse w.r.t F and F is empty, we have that for all extended state ¢ € T, the probability
of eventually reaching the target set ' is 1. As a consequence, the probability of eventually reaching either a
deadlock state or an extended state of the form 7 = (s,e) where e is a non-convergent event is 1 in [M])’ from all
(extended) states where convergent events are enabled, which concludes our proof.

]
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