
HAL Id: hal-01316581
https://hal.science/hal-01316581v1

Preprint submitted on 17 May 2016 (v1), last revised 31 Jan 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Spatio-colour Asplünd ’s metric and Logarithmic Image
Processing for Colour Images (LIPC)

Guillaume Noyel, Michel Jourlin

To cite this version:
Guillaume Noyel, Michel Jourlin. Spatio-colour Asplünd ’s metric and Logarithmic Image Processing
for Colour Images (LIPC). 2016. �hal-01316581v1�

https://hal.science/hal-01316581v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Spatio-colour Asplünd’s metric and Logarithmic
Image Processing for Colour Images (LIPC)

Guillaume Noyel1 and Michel Jourlin1,2

1 International Prevention Research Institute, 95 cours Lafayette, 69006 Lyon, France
2 Lab. H. Curien, UMR CNRS 5516, 18 rue Pr. B. Lauras, 42000 St-Etienne, France

www.i-pri.org

Abstract. Asplünd’s metric, which is useful for pattern matching, con-
sists in a double-sided probing, i.e. the over-graph and the sub-graph of
a function are probed jointly. This paper extends the Asplünd’s met-
ric we previously defined for colour and multivariate images using a
marginal approach (i.e. component by component) to the first spatio-
colour Asplünd’s metric based on the vectorial colour LIP model (LIPC).
LIPC is a non-linear model with operations between colour images which
are consistent with the human visual system. The defined colour metric
is insensitive to lighting variations and a variant which is robust to noise
is used for colour pattern matching.

Keywords: Asplünd’s metric, spatio-colour metric, colour Logarithmic
Image Processing, double-sided probing, colour pattern recognition

1 Introduction

The Asplünd’s metric initially defined for binary shapes [1, 4] has been extended
to grey-scale images by Jourlin et al. [6, 7] and to colour and multivariate images
in the LIP framework by Noyel et al. [13]. It consists in probing a function by
two homothetic template functions, i.e. the probes which are computed by the
LIP multiplication.

The Logarithmic Image Processing (LIP) model initially defined for grey
level images by Jourlin et al. in [8, 9] is perfectly suited for images acquired by
transmitted light (i.e. when the observed object is located between the source
and the sensor) and by reflected light because of its consistency with the Human
Vision [3]. In the LIP framework, the results of operations such as addition,
subtraction or multiplication by a scalar stay in the bounded domain of images
([0...255] for 8-bits images). The necessity to analyse together the channels of
the colour images (i.e. by a vectorial analysis) has led to the introduction of the
Logarithmic Image Processing for Colour images (LIPC) by Jourlin et al. in [5].

The LIP Asplünd’s metric was defined in [13] in a marginal way (i.e. channel
by channel). In this paper, our contribution is to extend this metric by using the
spatio-colour properties [11, 12] of the colour LIPC framework.

After some prerequisites about the colour LIPC model and about the marginal
LIP Asplünd’s metric, we will define a spatio-colour Asplünd’s metric in the
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LIPC framework. Then we will perform spatio-colour pattern matching which is
robust to noise. Examples will illustrate the definitions.

2 Prerequisites

2.1 LIPC model

A colour image f , defined on a domain D ⊂ R
N , with values in T 3 = [0,M [3,

M ∈ R, is written:

f :

{

D → T 3 = [0,M [3

x → f(x) = (fR(x), fG(x), fB(x))
(1)

fR , fG , fB are the red, green and blue channels (i.e. components) of f , f(x) is
a vector-pixel and x is the spatial coordinate of the vector-pixel. The real value
M is equal to 28 = 256 for 8 bits images. Given P the number of pixels, the
matrix F of E → T , E = 3× P , associated to the image f is written:

F =





fR(x1) fR(x2) ... fR(xP )
fG(x1) fG(x2) ... fG(xP )
fB(x1) fB(x2) ... fB(xP )



 (2)

To make easier the comments, the word “image” designates both the matrix F

and the image f . The image space for 24-bits images F is written I3.
A colour image is a particular case of a multivariate image defined as fλ :

D → T L, where L ∈ N is the number of channels [11, 12].
As for the grey-level LIP, the colour LIPC framework is based on colour

transmittance [5]. It is valid for transmitted and reflected images [3]. It models
the human perceptual system approach by taking into account: i) the sensitivity
of the human eye in the visible domain characterised by colour matching func-
tions of Stiles and Burch (1959) [14] and ii) the spectral distribution of light
with the D65 illuminant [14].

In the LIPC framework, the transmittance of the sum of two images T
F△+ cG

is equal to the product of their transmittances TF and TG: T
F△+ cG

= TF ∗
TG. The symbol of the LIPC addition is △+ c and ∗ represents the element-wise
multiplication [5]. The addition of two images F,G ∈ I3 is:

F△+ c G = Ḱ−1Ú(Ú−1ḰF ∗ Ú−1ḰG). (3)

Ḱ and Ú are real matrices of size 3×3 corresponding to the LIPC mixing model
3. From the LIPC addition, a multiplication by a scalar α ∈ R has been defined:

α△× c F = Ḱ−1Ú(Ú−1ḰF)α. (5)

3 With colour matching functions of Stiles and Burch (1959) and D65 illuminant [5],
matrices Ḱ and Ú equal to:

Ú =





25.0440 53.1416 176.8144
21.3002 185.9744 47.7254

229.2474 19.9944 5.7583



Ḱ =





0.6991 0.2109 0.0899
0.1947 0.8002 0.0049
0.0681 0.0002 0.9315



 (4)
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The space (I3,△+ c,△× c) is the positive cone of a vector space with robust math-
ematical properties.

Physical interpretation [5]: the LIPC addition corresponds to the superposi-
tion of two semi-transparent layers. A LIPC multiplication by a scalar α ∈]0, 1[
brightens the result by suppressing layers, while a scalar α ∈]1,+∞[ darkens the
result by superimposing α times the image on itself.

2.2 Marginal Asplünd’s metric for colour and multivariate images

In [13], an Asplünd’s metric between colour images was defined with the LIP
model by using marginal approach (i.e. channel by channel) [11, 12] .

Definition 1. The Asplünd’s metric (with LIP multiplication) between two colour
images f and g on a region Z ⊂ D is

d△
×

As,Z(f ,g) = ln(λ/µ) (6)

with λ = inf {k, ∀x ∈ Z, k △× gR(x) ≥ fR(x), k △× gG(x) ≥ fG(x), k △× gB(x) ≥ fB(x)}
and µ = sup {k, ∀x ∈ Z, k △× gR(x) ≤ fR(x), k △× gG(x) ≤ fG(x), k △× gB(x) ≤ fB(x)}.

In particular, by the property of the distance d△
×

As,Z(f ,g) = d△
×

As,Z(g, f).

3 Asplünd’s metric defined in the Logarithmic Image
Processing Colour (LIPC) framework

Given two colours C1 = (r1, g1, b1), C2 = (r2, g2, b2) ∈ T 3, as we are only looking
for lower and upper bounds, a marginal order [2] is used: C1 ≥ C2 ⇔ {r1 ≥ r2
and g1 ≥ g2.

Definition 2. Given two colours C1, C2 ∈ T 3, their Asplünd’s distance (with
LIPC multiplication) is equal to:

d△
×

c

As (C1, C2) = ln(µ/λ) (7)

λ = infk {k △× c C2 ≥ C1} and µ = supk {k △× c C2 ≤ C1}.

Strictly speaking, d△
×

c

As is a metric if the colours Cn are replaced by their

equivalence classes C̃n =
{

C ∈ T 3/∃α ∈ R
+, α△× c C = Cn}.

Comment: in eq. 7 contrary to the Asplünd’s distance (with LIP multiplica-
tion) defined in [13], we have λ ≤ µ because, by definition of the colour LIPC
model the scales are inverted as compared to the grey LIP model [5].

Colour metrics (with LIPC multiplication) between two colour images f and

g may be defined as the sum (d1 metric) or the supremum (d∞) of d△
×

c

As (C1, C2)
on the region of interest Z ⊂ D of cardinal #Z

d△
×

c

1,Z (f ,g) = 1
#Z

∑

x∈Z d△
×

c

As (f(x),g(x))

d△
×

c

∞,Z(f ,g) = supx∈Z d△
×

c

As (f(x),g(x))
(8)

The Asplünd’s metric can be extended to colour functions.
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Definition 3. The colour Asplünd’s metric (with LIPC multiplication) between
two colour images f and g on a region Z ⊂ D is

d△
×

c

As,Z(f ,g) = ln(µ/λ) (9)

with λ = infk {∀x ∈ Z, k △× c g(x) ≥ f(x)} and µ = supk {∀x ∈ Z, k △× c g(x) ≤ f(x)}.

In fig. 1, the Asplünd’s metric has been computed between the colour probe
g and the colour function f on their definition domain D.
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Fig. 1. Computation of the Asplünd’s distance between two colour functions

d△
×

c

As,D(f ,g) = 0.43. Each colour channel is represented by a line of the same colour.

Comment: the lower (resp. upper) bound µ △× c g (resp. λ △× c g) may not
be equal to any point of the function f but strictly less (or greater) than the
function. Indeed, one can demonstrate that the following assertion is verified:
“given C0 ∈ T 3, ∀C ∈ T 3, 6 ∃λ ∈ R

+/λ△× c C0 = C”.

The metric d△
×

c

As,Z can be adapted to local processing with a colour template
image (i.e. the probe) t defined on a spatial support Dt ⊂ D. For each point

x ∈ D, the distance d△
×

c

As,Dt
(f|Dt(x) , t) is computed on the neighbourhood Dt(x)

centred in x where f|Dt(x) is the restriction of f to Dt(x).

Definition 4. Given a colour image f defined on D with values in T 3,
(

T 3
)D

,

a colour probe t defined on Dt with values in T 3,
(

T 3
)Dt

and Dt(x) the neigh-
bourhood Dt centred in x ∈ D, the map of Asplünd’s distances (with △× c) is:

As△
×

c

t
f :

{

(

T 3
)D

×
(

T 3
)Dt

→ (R+)
D

(f , t) → As△
×

c

t
f(x) = d△

×
c

As,Dt
(f|Dt(x) , t)

(10)

In figure 2, the map of Asplünd’s distances is computed between a colour
function and a colour probe. The minima of the map corresponds to the location
of a pattern which is similar to the probe.

Asplünd’s distance is sensitive to noise because the probe lays on regional ex-
trema that may be caused by noise (Figure 1). In [7, 13], definitions of Asplünd’s
distance with a tolerance on the extrema have been introduced. In this paper,
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f between a colour function and a

colour probe. (a) and (b) Each colour channel is represented by a line of the same
colour.

we extend this definition for colour images with LIPC model using the same
approach as in [13].

To reduce the sensitivity of Asplünd’s distance to the noise, there exists a
metric defined in the context of “Measure Theory” named the Measure metric
or the M-metric. The image being digitized, the number of pixels lying in D is
finite, therefore the “measure” of a subset of D is linked to the cardinal of this
subset, for example the percentage P of its elements related to D (or a region
of interest R ⊂ D). In this case, we are looking for a subset D′ of D, such that
f|D′ and g|D′ are neighbours for Asplünd’s metric and the complementary set
D\D′ of D′ related to D is small sized when compared to D. This last condition

can be written as: P (D \D′) = #(D\D′)
#D

≤ p where p represents an acceptable
percentage and #D the number of elements in D.

Given ǫ a small positive real number, the neighbourhood of function f is

NP,dAs,ǫ,p(f) =

{

g \ ∃D′ ⊂ D, d△
×

c

As,D′(f|D′ ,g|D′ ) < ǫ and
#(D \D′)

#D
≤ p

}

(11)
As in [5, 13], the closest points of the probe to the function are discarded. In

figure 3, a tolerance of p = 20% is used to discard two points. The Asplünd’s

distance decreases from d△
×

c

As,D(f ,g) = 0.43 to d△
×

c

As,D,p=20%(f ,g) = 0.21.

A map of Asplünd’s distances (with △× c) can be defined.

Definition 5. Given a colour image f of
(

T 3
)D

, a colour probe t of
(

T 3
)Dt

and
a tolerance p ∈ [0, 1], the map of Asplünd’s distances with a tolerance is:

As△
×

c

t,p f :

{

(

T 3
)D

×
(

T 3
)Dt

→ R
+D

(f , t) → As△
×

c

t,p f(x) = d△
×

c

As,Dt,p
(f|Dt(x) , t)

(12)

Dt(x) is the neighbourhood Dt centred in x ∈ D.

Examples illustrate the results.
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Fig. 3. Colour Asplünd’s distance with a tolerance of p = 20%. (µ, λ) are the scalars
multiplying the probe without tolerance. (µ′, λ′) are the scalars multiplying the probe
with tolerance.

4 Examples and applications

(a) Image f and probe t (b) Map As△
×

c

t
f (c) Map As△

×
c

t,p=98%
f̃

(d) Noisy image f̃ (e) Map As△
×

c

t
f̃ (f) Correlation map

Fig. 4.Maps of Asplünd’s distances without tolerance As△
×

c

t
f̃ and with As△

×
c

t,p f̃ . f̃ image

with a white noise (σ2 = 2.6, spatial density 1%). (e) Correlation map.

In figure 4, our aim is to find bricks of homogeneous colour inside a colour
image of a brick wall with one blue brick. Usingt the image without noise f ,

the regional minima of the map As△
×

c

t
f (fig. 4 b) correspond to the locations

which are similar to the probe (with the Asplünd’s distance). The distance is
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inaccurate to find the position of the blue brick (large maxima) because it is
sensitive to the colour of the probe. In the image with noise f̃ (Gaussian white
noise of variance 2.6 and spatial density of 1%), the map without tolerance

As△
×

c

t
f̃ is more sensitive to noise (fig. 4 e) while the map with tolerance As△

×
c

t,p f̃

is less (fig 4 c). Indeed, the minima are preserved into the map with tolerance
(fig. 4 c) compared to the map without (fig. 4 e). The minima can be extracted
using standard operations of mathematical morphology [10, 15]. Importantly, all
the maps of Asplünd’s distances are insensitive to the vertical lighting drift.
Moreover, a correlation map is useless to find the location of the bricks (fig. 4
f).

In figure 5, two images of the same scene, a bright image f and a dark image
f̃ , are acquired with two different exposure times. The probe t is extracted in

the bright image and used to compute the map of Asplünd’s distance As△
×

c

t
f̃ in

the darker image. By finding the minima of the map, all the balls are detected
and their contours are added to the image of figure 5 (b). One can notice that
the Asplünd’s distance is very robust to the lighting variations.

(a) Initial image f (b) Dark image f̃ (c) Map As△
×

c

t
f̃

and probe t Balls detected

Fig. 5. Detection of coloured balls on a dark image f̃ with a probe t extracted in the
bright image f . (a) The border of the probe t is coloured in white.

5 Conclusion and perspectives

A new spatio-colour Asplünd’s distance based on colour LIPC model has been
defined. It is a true colour (i.e. vectorial) metric based on a colour model con-
sistent with the human visual system. It is also consistent with the previous
properties given in [7, 13]. An extension of this metric robust to noise has been
presented and illustrated on pattern recognition examples. This double-sided



8 Guillaume Noyel et al.

probing distance is efficient for colour pattern matching and performs better
than traditional correlation methods. In future work, we will evaluate in details
the properties of this colour distance on practical applications (e.g. in medical,
remote sensing or industrial images). We will compare it to the marginal colour
Asplünd’s distance and we will study the links between Asplünd’s probing and
mathematical morphology.
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