
HAL Id: hal-01316541
https://hal.science/hal-01316541

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relying on Consensus does not Make Bitcoin Safer
Emmanuelle Anceaume, Romaric Ludinard, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, Romaric Ludinard, Bruno Sericola. Relying on Consensus does not Make
Bitcoin Safer. Fast Abstract in the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Jun 2016, Toulouse, France. �hal-01316541�

https://hal.science/hal-01316541
https://hal.archives-ouvertes.fr

Relying on Consensus does not Make Bitcoin Safer

Emmanuelle Anceaume
CNRS, UMR 6074 - IRISA

emmanuelle.anceaume@irisa.fr

Romaric Ludinard
ENSAI, UMR 9194 - CREST

romaric.ludinard@ensai.fr

Bruno Sericola
INRIA Rennes - Bretagne Atlantique

bruno.sericola@inria.fr

I. INTRODUCTION

Several distributed cryptocurrencies systems have emerged,

and among them, Bitcoin [1] is often designated as the pioneer

this kind of systems. As such, Bitcoin shows some vulnerabil-

ities in presence of malicious entities, and some recent works

have proposed to improve upon Bitcoin weaknesses. This brief

abstract is devoted to the analysis of one of these recent works,

and shows through an analytical performance evaluation that

new Bitcoin improvements are still needed.

II. THE BITCOIN NETWORK

The Bitcoin network [1] is a peer-to-peer payment network

that relies on distributed algorithms and cryptographic tools

to allow entities to anonymously buy items or services with

bitcoins (i.e., Bitcoin currencies). The main ingredients of

this network are transactions issued by buyers each time they

wish to spend bitcoins and the blockchain, a public transaction

ledger which eventually contains an ordered sequence of all

the issued transactions (more precisely, an ordered sequence

of transactions blocks, each one being a set of issued trans-

actions). Three types of entities participate to the Bitcoin

ecosystem: users, that spend and receive bitcoins, peers that

propagate transactions in the Bitcoin network and maintain a

local copy of the blockchain, and miners, that establish the

order in which transactions are committed in the blockchain.

Of course at any time, an entity may play any role in the

Bitcoin ecosystem. Specifically, suppose that Alice wishes to

buy some item from Bob. Alice creates a transaction T , in

which she indicates the price b of that item, a set of outputs
which represents the recipient accounts of the b bitcoins, i.e.,
Bob’s one, and a set of inputs which provides a digest of

transactions {T1, T2, . . . , T�} Alice’s account was recipient of

(i.e., these transactions contribute to Alice earnings). The total

number of bitcoins s received by Alice in {T1, T2, . . . , T�}
must be at least greater than b. An output from a previous

transaction can be referenced at most once in the input of a

subsequent transaction, otherwise it would mean that the same

bitcoins could be spent several times. Thus, if s > b Alice

may add herself as one of the outputs of her own transaction

to get change. Note that Alice may voluntarily pay a small

transaction fee which will be kept by the miner that contributes

to the commitment of transaction T . Finally, Alice digitally

signs transaction T and submits her transaction T to any peer

of Bitcoin for validation purpose. When peer Carol receives

T for validity check, she scans the transactions recorded in

her local copy of the blockchain. Validity check is achieved

by verifying that none of these transactions {T1, T2, . . . , T�}
already appear in the blockchain. Once this is positively

checked, Carol informs Bob that T is valid (Bob can provide

his item to Alice), and disseminates T to the Bitcoin network

so that eventually all the peers will locally be aware of T .

The validation process is not sufficient to guarantee that

Alice is not trying to spend the very same bitcoins to David.

To handle this double spending issue without introducing a

trusted central authority, all the transactions must be publicly

announced, and the order in which they are committed must

be unique. The implementation proposed in Bitcoin consists in

incentivizing participants of the network, the so-called miners,

to spend lot of their CPU to satisfy a given proof-of-work. The

effort to build a proof-of-work is large enough to dissuade

miners from changing a block in the blockchain as it requires

to redo the work for that block and for all the subsequent

ones to ensure the consistency of the blocks. Once the proof-

of-work has been generated, it forms, together with the set of

locally pending transactions, a numbered block that the miner

includes in its local copy of the blockchain, and disseminates

it to all the entities of the Bitcoin network so that each one will

append it to its local copy of the blockchain. Bitcoin miners

are incentivized by receiving a reward which is a function of

the number of transactions recorded in the blocks they have

successfully generated, and the possible transactions fees that

appear in those transactions. Note that those rewards are the

way bitcoins are created.

As previously described, miners are rewarded for generating

blocks, which introduces a competition among them to find

the next proof-of-work. This competition may lead to the

generation of concurrent blocks leading to the creation of

branches in the blockchain, and thus jeopardizing the existence

of a unique history of validated transactions. Hopefully, this

inconsistency should be transient. Indeed, Bitcoin relies on the

assumption that eventually, some miner will be able to gener-

ate a proof-of-work quicker than any of the other miners which

will make the branch of the blockchain his block depends on

longer than any of the other concurrent ones. By construction,

Bitcoin declares the longer branch as the legal one. Thus

eventually, each peer will update its own blockchain replica

with that branch and will remove the concurrent branches

together with their transactions. Hence, Bitcoin system will

eventually stabilize in a state where each peer will share a

consistent version of the Blockchain. Anyway, even if Bitcoin

eventually converges to a legal state, stabilization may take

time, i.e., up to several hours [2]. During this period of time, an

attacker may repeatedly perform double-spend attacks either

by using its own CPU resources or by simply taking advantage

of the presence of a fork. PeerCensus [3] proposes to solve this

issue by providing strong consistency guarantees to Bitcoin.

III. PEERCENSUS

PeerCensus [3] proposes to limit the occurrence of both

forks and double-spend attacks by guaranteeing that the order

in which transactions are committed follows the order in

which they have been submitted to the network. This strong

consistency schema is implemented by relying on Byzantine

Fault Tolerant consensus protocols [4] run among a subset E
of miners, namely, all the miners that successfully generated

a block since the genesis of Bitcoin. From a scalability point

of view, the PeerCensus approach highly depends on Bitcoin

popularity. Indeed, the number of blocks in the blockchain

has recently exceeded k = 400, 000 blocks, meaning that if

each block has been generated by a different miner, at least k
miners will be involved in the execution of each forthcoming

consensus, leading to a message complexity in O(k3). Beyond

this aspect, making E membership at the k-th execution of

consensus depend on the decision obtained at the (k − 1)-
th consensus execution leads with high probability to the

permanent pollution of E . By pollution we mean the presence

of more than one third of byzantine miners in E , even if from

a global point of view, Bitcoin network contains less than one

third of Byzantine entities. The following analysis proves our

assertion.
We denote by μ ∈]0, 1[the proportion of Byzantine miners

in Bitcoin, and by 1 − μ the proportion of correct ones. We

assume that the delay that elapses between two consecutive

blocks generations is constant (which reflects the real behavior

of Bitcoin). Let Bk = (h,m) denote the state of the blockchain

at time k, where h (resp. m) represents the number of blocks

generated by a correct miner (resp. by a byzantine miner). We

assume that Nakamoto, the Bitcoin system creator, is honest

and thus we have B0 = (1, 0). Process B = {Bk|k ≥ 0}, with

Bk ∈ ∗× is an homogeneous discrete time Markov chain

that represents the evolution of the blockchain composition

over time. From state Bk = (h,m), two transitions are possi-

ble : either a new block is generated by a correct miner, and the

blockchain goes to state Bk+1 = (h+ 1,m) with probability

1 − μ, or the new block is generated by a byzantine miner

and the blockchain goes to the state Bk+1 = (h,m+ 1) with

probability μ. State Bk = (h,m) of the blockchain at time k is

said polluted if the number m of Byzantine miners belonging

to E is larger than or equal to (k − 1)/3 [5]. Conversely, a

state that is not polluted is said safe. We partition the space

state ∗ × into two sub-spaces S and T corresponding

respectively to the set of safe and polluted states. Blockchain

composition evolution can be seen as a random walk over
∗ × . Given k ≥ 0, h ≥ 1 and m ≥ 0, and for (1, 0) as

initial state, by using the central limit theorem, we get

lim
k−→∞

{Bk ∈ S} =

⎧⎨
⎩

0 if μ > 1/3
1/2 if μ = 1/3
1 if μ < 1/3.

(1)

(a) {T > k} as a function of μ and
the blockchain size k

(b) Asymptotic behavior of {T >
k} as a function of μ

Relation 1, while in accordance with [3], does not allow us

to claim that all the executions that lead to state Bk are

safe, i.e., ∀0 ≥ k′ ≥ k,Bk′ ∈ S . This argument is of

prime importance, as once E is polluted, the adversary will

be able to impose its decision at each forthcoming consensus,

either on the transactions to be committed or on the blocks

to be included in the blockchain. Let us now derive the

probability of k consecutive safe executions of consensus.

Let T be the time spend in states of S before reaching for

the first time a state of P . Formally, the random variable

T is defined by T = min{k ≥ 0|Bk ∈ P}, and we have

{T > k} = {B0 ∈ S, B1 ∈ S, . . . , Bk ∈ S}. Theorem 1

gives the law of the first instant of pollution of the blockchain,

as well as its asymptotic behavior.

Theorem 1. Given 0 < μ < 1, for all k ≥ 0, we have

{T > k} = 1

1− μ

k+1∑
h=�2k/3�+1

(
k + 1

h

)
(1− μ)hμk+1−h

− 3μ

1− μ

k∑
h=�2k/3�+1

(
k

h

)
(1− μ)hμk−h.

Let �(μ) = lim
k−→∞

{T > k}. We have �(μ) = 0 if μ > 1/3

and �(μ) = 1− 2μ/(1− μ) otherwise.

We observe in Figure 1(a) the fast convergence of T to its

limit �(μ), while Figure 1(b) shows that when 0 < μ ≤ 1/3,

the probability to have a series of safe consensus executions

is strictly less than 1. For exemple, for μ = 1/4 < 1/3, we

have �(μ) = 1/3 meaning that among all the trajectories of k
consensus executions, only 1/3 of them are safe. This result

clearly shows the limitations of the PeerCensus approach to

solve Bitcoin weaknesses.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[2] “Bitcoin Unconfirmed Transactions,” https://blockchain.info/
unconfirmed-transactions.

[3] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin Meets Strong Consis-
tency,” in 17th International Conference on Distributed Computing and
Networking (ICDCN), 2016.

[4] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[5] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Transactions on Programming Languages and Systems, vol. 4, no. 3,
1982.

