N
N

N

HAL

open science

Cluster Workload Analytics Revisited
Subrata Mitra, Suhas Javagal, Todd Gamblin, Adam Moody, Stephen Harrell,
Saurabh Bagchi

» To cite this version:

Subrata Mitra, Suhas Javagal, Todd Gamblin, Adam Moody, Stephen Harrell, et al.. Cluster Work-
load Analytics Revisited. Fast Abstract in the 46th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, Jun 2016, Toulouse, France. hal-01316530

HAL Id: hal-01316530
https://hal.science/hal-01316530
Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01316530
https://hal.archives-ouvertes.fr

Cluster Workload Analytics Revisited

Subrata Mitra*, Suhas Javagal*
{mitra4, sjavagal}@purdue.cdu
Purdue University, IN, USA

* Equal contributors

Abstract—Community compute clusters are now common in
big organizations such as in universities and industries. These are
excellent targets for analyzing resource usage and failure events
because of the diverse user base and corresponding diversity of
workloads. We introduce an public repository that hosts such
rich dataset and would be useful for systems and dependability
research communities. In this paper, we discuss our goals, provide
details of the dataset, and present some statistical analysis.

I. INTRODUCTION

Large high performance computing (HPC) clusters have
become common in academic institutes, industries, and gov-
ernment labs. These clusters cater to the need for compute-
intensive scientific applications and various kinds of big-
data analytics. The large scale applications that run on these
clusters, tackle problems that are infeasible to run on per-
sonal computers. However, managing such large and shared
resources can be challenging due to the following four reasons.
Diversity of users: Often the user-base of these clusters are
quite diverse both in terms of the nature of jobs they run, as
well as the level of experience the users have in dealing with
large, shared community cluster.
Diversity of execution environments: These diverse set of
applications often use special libraries (e.g., particular versions
of MPI), run on specialized hardware(e.g., Nvidia GPUs, Intel
MICs) or show different resource usage patterns (e.g., many
small jobs, strong or weak scaling).
Privacy and security: Cluster managers often have very
limited visibility inside users’ development and execution envi-
ronment. Users usually write their own job submission scripts
that wrap various applications. The scripts allow customization
of the execution in a wide variety of ways. Due to the
complexity of some scripts and the lack of any standard, it is
often difficult to parse/identify what are the core applications
that are being invoked from a script and how it is run.
Failures: Failures are not infrequent in large clusters. These
can be either transient (in the OS, hardware or network) or
permanent failures (e.g., hard-drive crash, memory failures).
The diversity of applications and its user-base also increases
the chance of workload-related soft (or performance) failures.
For example, if one application creates network congestion that
might lead to slowdown of other applications.
We have initiated efforts to build an open data repository [1] of
system usage and failure information from community cluster
at Purdue. Our final goal is to develop tools and techniques
that would improve cluster management through data-driven
divisions. We also hope our workload data repository would
enable dependability researchers to perform analyses on real-
world, large-scale data. There have been previous efforts to
create public failure repositories, the most notable of which
is the Computer Failure Data Repository (CFDR) [2] which
has 13 datasets from different clusters from HPC and Internet
services domain. However, there are few issues with this
dataset. Firstly, it is not up-to-date and hence offer very limited

Todd Gamblin, Adam Moody

Lawrence Livermore National Laboratory

Stephen Harrell, Saurabh Bagchi
{sharrell, sbagchi} @purdue.edu
Purdue University, IN, USA

insights on today’s workload patterns. Secondly, the dataset is
focused on node-level hardware or OS failures. Thus, it does
not capture failure situations that might occur due to interplay
between different workloads. Finally, in addition to failures,
cluster administrators are also interested in job performance
and optimal usage of the cluster resources and these are not
covered by the CFDR dataset. To address these issues, we

Details University community cluster
Duration Oct 2014 — Mar 2015
Total number of jobs 489,971
Number of unique users 306
No. of unique application behaviors 3,373

TABLE I: Summary of workload data in the open repository
have created a new publicly available workload dataset [1].

It contains workload traces for 489,971 jobs from Conte at
Purdue, one of the largest university-wide community clusters
with a diverse user base and diverse workloads, as presented in
Table I. We also made sure that the data is fully anonymized.
In addition, we plan to periodically update our repository by
adding latest dataset from Conte and also from other university
and government lab clusters.

II. DESCRIPTION OF OUR COMMUNITY CLUSTER, Conte
Node hardware, network and filesystem: Conte has 580 nodes
each with two 16 core Intel Xeon E5-2670 processors, two
Xeon Phi accelerator cards and 64GB of memory. Nodes are
connected through a 40GB/s Infiniband (IB) network. These
filesystems are used university wide and are accessed through
the IP over IB egress. The scratch filesystem used by the jobs
is a Lustre 2.4 installation that can sustain upto 23GB/s and
is connected via the above-mentioned IB network. The total
capacity is 1.4PB with current utilization being 49%. Every
node has a local filesystem but only usable by the OS.
Software and Scheduling: Each node runs RHEL 6.6 OS.
The nodes are administrated using the Kickstart installers
and Puppet configuration management software. Along with
default RHEL libraries, the environment also provides many
other important pre-installed libraries and applications which
can be used through command: module load <name>.
The scheduling is done by TORQUE 4, an open source
implementation of Portable Batch System (PBS) and with
Moab as the resources manager. At submission time, each
job requests a time duration of execution (a wall clock time),
number of nodes and, optionally, amount of memory needed
using PBS submission scripts. A job is killed when it exceeds
the specified time limit or by an out-of-memory (OOM)
killer(a kernel level memory manager). Job scheduling uses a
community cluster allocation method in which, some research
groups purchase nodes and get semi-dedicated access to the
nodes that they purchase through their own queue and can also
access a far greater number of nodes from the general pool
through a shared queue (called standby queue), on demand
and opportunistically. For the purchased nodes, research groups
get a service level agreement (SLA) of maximum 4 hours wait

time for the job at the head of their group-specific queue. When
those nodes are not in use, jobs from the standby queue are
scheduled on those nodes with a maximum walltime limit of 4
hours. By default, a single job is scheduled on an entire node
but sharing can be enabled using a configuration parameter in
the job submission scripts.

ITII. DATA SOURCES
Our dataset has five major components. For privacy reasons,
only the first two of these five data sources could be made
available in our public repository.
Accounting logs: The accounting logs extracted from
TORQUE provides job scheduling related details such as the
job id, queue, start and end timestamps, user id, requested
resources, resources consumed, the nodes on which job was
actually run and an exit status.
TACC Stats: TACC stats [3] data provides more fine-grained
resource usage profile on all the nodes used by the job. For
each node, TACC Stats data has periodic snapshots of various
system metrics which include: usage metrics for the local disk
and the Lustre filesystem, Infiniband and IP network traffic,
and process and memory statistics.
Syslog: The Syslog data comprises of kernel and system
messages of all nodes. It contains memory errors, OOM Kkiller
messages, filesystem status, etc. all in free form text.
Library lists: The library list data captures the periodic snap-
shots of the shared libraries accessed by the jobs in each
computing node. Consequently, many such snapshots will be
created corresponding to a long running job. Also a job using
multiple nodes will have files for libraries loaded in each node.
Job scripts: Job script data contains the user’s job submission
scripts written with PBS directives to specify the resource
requirements and the layout of the tasks a job would perform.

IV. DATA ANALYSIS

The existing dataset in our repository [1] can facilitate various
data-driven analysis such as to find hidden trends in job fail-
ures, resource wastage or degraded performance, thus enabling
better management of community clusters. As a representative
example we analyze if certain libraries can be implicated
in jobs failures. The actual reason for a job failure can be
anything from node level hardware problems, bugs in the
software stack to problems in the network fabric. Therefore, a
comprehensive analysis of job failure patterns would help to
understand the root-causes.

Methodology: The exit code of a job is useful to find the
cause of the failure. Usually these exit codes are set by the
job scheduling system or by the kernel but users can also set
their own exit status. However, after analyzing job scripts and
discussing with our cluster administrators, we identified the
exit code convention as: (1) 0 denotes a successful run, (2)
negative error codes usually indicate a failure of the scheduler
or the nodes, (3) in the absence of user specified code, exit code
from the last executed command in the job script is reported.
On analyzing user-defined exit codes inside the job scripts,
we found that the most common user-defined exit code is
1(26%). 5 users specified negative exit codes and 44 users
explicitly returned O to mark success. Exit code > 128 or >
256 can be decomposed as 128 (or 256) + a system
signal where the system signal can be SIGTERM/SIGKILL
(memory exhaustion), SIGSEGV (segment violation), SIG-
BUS (file system error), SIGILL/SIGFPE (bad operation), etc.
indicating the root case of an unsuccessful job termination.

500 % of
Reason failed jobs

400 Time expired (timeout) 20.3
@300 Memory exhaustion 152
§ Segmentation Fault 9.3
200 |17 Libraries have a really high Quit/keyboard interrupt 53
EScore w.rt memory failur File system/path problem 3.7

100 [[E5EOER LUmEronkilTES Self abort/assert failure 06

0 MWt .
i Libraries Fig. 2: Few major types of job failures

showing percentage of failed jobs. We could
Flg 1: Distribution of FScore values w.r.t not classify 40% of the failed jobs and about
failures due to memory problems in Conte. 6% of jobs had generic exit code (-1).
However, in TORQUE, exit code 1 indicates a generic error
and cannot be assigned to any particular category.
Classification of job failures with the help of exit codes: The
analysis of the job’s exit codes revealed in Conte 16.2% of
the jobs had failed (exit code not equal to 0). Based on exit
code and runtime of the job, we have summarized the jobs
with various problem manifestations in Figure 2.
Which library to blame? While executing a job uses a variety
of libraries: libraries from the environment, written by the user
or third-party. It is worthwhile to consider if a failure is caused
by a particular library or due to interaction among a set of
libraries. We now illustrate how the source of a certain kind of
failure can be narrowed down to few libraries using statistical

analysis. We introduce the FScore scoring metrics as:
P (L|F)
P,.(L|F)+P.(L|job succeeded)

Where for library L and failure type F, P.(L|F) and
P.(L|job succeeded) denotes the probability that a job using
library L failed with type F' and succeeded respectively,
and Freqpp is the number of jobs with failure F' that
also uses library L. It should be noted that P.(L|F) and
P.(L|job succeeded) are not complementary to each other
because library L might be also be associated with other type
of failures. Suspicious libraries can be identified for detailed
investigation by choosing the top K, ordered by the FScore.
Fig. 1 shows the FScore distribution for jobs failed due to
memory problems in Conte. The names of the libraries are
not shared due to security reasons.

Threats to validity: Using syslog messages, we found that
92% of the jobs that failed with exit codes representing
memory exhaustion, was also preceded by syslog with OOM
related messages and 77% of the jobs that output the memory
exhaustion message, ultimately exited with exit codes for
memory exhaustion. But a drawback of the exit code based or
scheduler dependent failure analysis is that more fine-grained
failure classification cannot be achieved. A thorough analysis
of syslog might unravel more nuanced causes of failure.

V. CONCLUSION
We introduce a public data repository that currently holds a
variety of resource usage and application level metrics from
a large number of jobs submitted to a big community cluster
at Purdue. Based on this data set, we present some statistical
analysis that help diagnosing the root cause of job failures. We
strongly believe the research community would benefit from
this open workload data repository and wish it would enable
more insightful analyses in future.
REFERENCES

FScore =

X FreqL|F

[1] “FRESCO - The Open Data Repository for Workloads and Failures in
Large-scale Computing Clusters,” https://diagrid.org/resources/247.

[2] “Computer Failure Data Repository: http://usenix.org/cfdr.”

[3] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource

use monitoring for hpc systems with tacc stats,” in HPC User Support
Tools (HUST), 2014.

