
HAL Id: hal-01316525
https://hal.science/hal-01316525v1

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Fault Tolerance using Intel MPX and TSX
Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Christof Fetzer,

Pascal Felber

To cite this version:
Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Christof Fetzer, Pascal Felber. Efficient Fault
Tolerance using Intel MPX and TSX. Fast Abstract in the 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun 2016, Toulouse, France. �hal-01316525�

https://hal.science/hal-01316525v1
https://hal.archives-ouvertes.fr

Efficient Fault Tolerance using Intel MPX and TSX

Oleksii Oleksenko*, Dmitrii Kuvaiskii*, Pramod Bhatotia*, Christof Fetzer*, Pascal Felber**

* Technische Universität Dresden, Germany

** University of Neuchâtel, Switzerland

Abstract—Hardware faults can cause data corruptions during
computation, and they are especially harmful if these corruptions
happen in data pointers. Existing solutions, however, incur high
performance overheads, which is unacceptable for compute-
intensive applications. In this work, we present an efficient fault-
tolerance approach against hardware faults by exploiting the new
extensions to the x86 architecture. In particular, we propose that
Intel MPX can be effectively used to detect faults in data pointers,
while Intel TSX can provide roll-back recovery against these
corruptions. Our preliminary evaluation supports this hypothesis,
and we estimate the average overhead to be roughly around 50%.

I. INTRODUCTION

Critical components of the software stack such as operating
systems, file systems, and databases are written in a low-
level language (primarily, in C/C++) for improved performance
and flexibility in memory management. However, the normal
program flow can be arbitrarily corrupted by bit-flips in CPU
or RAM during run-time. The resulting corruptions can lead
to catastrophic consequences; especially, if the corruption
happens in data pointers—as they can cause the loss of the
whole data structure [1]. For instance, consider the case of
Memcached—a widely used in-memory key-value store—if a
fault happens in one of the hash table’s pointers then an entire
data bucket may be lost!

To mitigate data corruptions, a wealth of approaches based
on duplicated execution [2] or thread-level redundancy [3]
have been proposed. However, these existing solutions in-
cur prohibitively high performance overheads, which makes
them impractical to deploy for cyber-physical systems. This
is particularly important for safety-critical applications that
require both high assurance for fault-tolerance and minimal
performance overheads for real-time constraints.

In the paper, we make a case for efficient fault tolerance
against hardware faults. We aim to provide fault-tolerance for
low-level systems code by leveraging the new ISA extensions
in the x86 architecture. In particular, we aim to use the Intel
Memory Protection Extensions (MPX) [4] to detect faults
in data pointers, and use Intel Transactional Synchronization
Extensions (TSX) [5] to provide recovery against faults.

In order to validate this early-stage idea, we measured the
performance overheads of Intel MPX and Intel TSX separately
on a set of applications from PARSEC benchmark [6]. The
results demonstrate that the total performance overhead of the
future implementation is expected to be 50% on average, which
is a significant improvement over the state-of-the-art software-
based solutions for fault-tolerance.

II. ASSUMPTIONS

System model. We assume that the underlying hardware is
based on the micro-architecture with support for memory

������

��	
���

���������
��

������

������������	
���

���������
��

����������
��������

��� ���

Fig. 1: The concept of fault detection using MPX: (a) correct state, (b) a fault
in pointer causes object bounds violation.

protection and hardware transactional memory. In particu-
lar, our approach is based on the new generations of Intel
architecture—starting Skylake—with respective support for
memory protection via MPX [4] and transactional memory
via TSX [5].

Fault model. Since the recovery mechanism relies on re-
execution, we assume that faults are transient in nature. Persis-
tent faults can also be detected, but instead of recovery, they
will cause a crash of the system after several unsuccessful
retries (fail-stop semantics). Besides, our fault model does not
impose any restriction on the number of bit-flips, and it is
not restricted to Single-Event Upset (SEU) model [2]. In fact,
higher bit-flip orders are likely to lead to the bigger changes
in the pointer value, which in turn improves the fault detection
probabilities. Moreover, we do not make any assumptions on
memory protection, that is, we deal with errors in both DRAM
and CPU.

III. DESIGN

Our approach is based on two sets of extensions to the x86
architecture, namely on Intel MPX and TSX.

Fault detection. The fault detection principle is as follows:
if a fault occurs in a pointer, the new value will violate the
corresponding bounds with high probability (see Figure 1)
and MPX can be exploited to detect such violations. MPX
is an extension that adds a set of instructions for pointer
bounds checking, as well as new registers for storing bounds
data. MPX instruments all memory accesses (stores and loads)
with bounds checks which are stored in the separate “bounds
table”. Even though its main goal is to protect from memory
vulnerabilities in unsafe languages, such as buffer overflows,
it can also be applied for hardware fault detection.

The exact probability of pointer fault detection depends on

0

25

50

75

100

blackscholes canneal ferret streamcluster vips mean

S
lo

w
do

w
n,

 % MPX

TSX

Estimate

Fig. 2: Performance overhead over native execution for different x86 extensions

the object size and the bit flip order. For example, in case
of 64-bit pointers (as in x86–64 architecture), probability of
detecting a single bit flip is defined as follows:

where is the probability of detecting a fault and is the
size of the object in bytes.

Fault Recovery. The recovery mechanism is based on re-
execution using TSX. Initially, TSX was designed as an alter-
native approach to the problem of thread synchronization. It,
however, can be re-purposed for performing rollbacks, which
gives us the ability to do fault recovery by re-executing a
transaction (as, for example, done in HAFT [7]). Moreover,
transactions in TSX are performed on hardware level using
the L1 data cache, which makes them efficient (see IV).

Thus, TSX in combination with MPX for fault detection,
gives us the ability to recover from hardware faults in pointers
with reasonably low performance overheads. It works as fol-
lows: when MPX detects an error, it raises an exception and
TSX reacts by performing a rollback of a currently executing
transaction. This way, if a fault was transient and happened in
the ongoing transaction, it will be recovered.

IV. EVALUATION

In this section, we examine two key concerns of our
approach:

What is the expected total performance overhead?

What are the overheads of the MPX (detection) and
TSX (recovery) parts?

Experimental setup. We evaluated two considered CPU ex-
tensions with applications from the multithreaded benchmark
suite PARSEC 3.0 [6]. All applications are built using Intel
C++ Compiler 16.0.

For the performance evaluation, we used a 4-cores Intel
Skylake processor operating at 2.7 GHz. It has 16 GB of RAM
and is running Linux kernel 4.2.0. Each core has 32 KB L1
cache, 256 KB L2 cache, and 8192 KB of L3 cache are shared
between all cores.

Results. Figure 2 presents the results of our preliminary perfor-
mance measurements. The estimation here is done by summing
up the overheads from MPX and TSX. The slowdowns are
relative to the native versions with the same optimization flags.
On average, the total overhead is expected to be 50%. The
relative value, however, could be even lower, since the program

may already be using MPX for security and fault detection will
come for free.

In general, these results prove that combination of MPX
and TSX used for fault tolerance may show better results than
existing software-based solutions and, at the same time, will
not require any additional or specialized hardware.

V. CONCLUSION

In this paper, we presented an approach on improving the
performance of hardware fault detection and recovery in the
restricted case of data pointer errors. Our hypothesis is that
the efficient fault tolerance can be achieved by combining
MPX and TSX extensions in the new x86 architecture, and
our preliminary experiments show that it actually is the case—
the average performance overhead is estimated to be 50%.
However, our initial results should be interpreted with a
grain of salt because: firstly, the fault-tolerance approach is
restricted to data pointers only; and secondly, these overheads
are based on micro-benchmarks. Nonetheless, we believe that
these initial findings will foster discussion on a new direction
for efficient fault-tolerance approaches based on the new ISA
extensions.

Since our approach is restricted only to pointer faults,
it must be combined with some other solutions to achieve
complete fault tolerance. For example, in Elzar [8], pointer
dereferences are one of the major bottlenecks, and removing
them can significantly improve performance. Thus, our pro-
posed approach and Elzar can be used together: the former for
pointer dereferences and the latter for all non-pointer variables.
We plan to explore this direction in our future work.

REFERENCES

[1] Y. Aumann and M. A. Bender, “Fault tolerant data structures,” in FOCS,
1996.

[2] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in CGO, 2005.

[3] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evalu-
ation of redundant multi-threading alternatives,” in ISCA, 2002.

[4] C. W. Otterstad, “A brief evaluation of Intel MPX,” in SysCon, 2015.

[5] K. L. R. M. Yoo, C. J. Hughes and R. Rajwar, “Performance evaluation
of Intel transactional synchronization extensions for high-performance
computing,” in SC, 2013.

[6] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for chip-
multiprocessors,” in MoBS, 2009.

[7] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, “HAFT:
Hardware-assisted fault tolerance,” in EuroSys, 2016.

[8] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer,
“ELZAR: Triple Modular Redundancy using Intel AVX (Practical Expe-
rience Report),” in DSN, 2016.

