
HAL Id: hal-01316521
https://hal.science/hal-01316521

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Control of MapReduce Performance and
Availability

Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara
Bouchenak

To cite this version:
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak. Towards Control
of MapReduce Performance and Availability. DSN 2016 - 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun 2016, Toulouse, France. �hal-01316521�

https://hal.science/hal-01316521
https://hal.archives-ouvertes.fr

Towards Control of MapReduce
Performance and Availability

Sophie Cerf1, Mihaly Berekmeri1, Bogdan Robu1, Nicolas Marchand1 and Sara Bouchenak2

1 Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-38402 Grenoble, France
2 LIRIS UMR 5205, INSA de Lyon, France

{sophie.cerf, mihaly.berekmeri, bogdan.robu, nicolas.marchand}@gipsa-lab.fr, sara.bouchenak@insa-lyon.fr

Abstract—MapReduce is a popular programming model for
distributed data processing and Big Data applications. Extensive
research has been conducted either to improve the dependability
or to increase performance of MapReduce, ranging from adaptive
and on-demand fault-tolerance solutions, adaptive task scheduling
techniques to optimized job execution mechanisms. This paper
investigates a novel solution that controls MapReduce systems
and provides guarantees in terms of both performance and
availability, while reducing utilization costs. We follow a control
theoretic approach for MapReduce cluster scaling and admission
control. Preliminary results based on a simulation environment,
previously validated on a real MapReduce cluster, show the
effectiveness of the proposed control solutions for a Hadoop
MapReduce cluster.

I. INTRODUCTION

The amount of data produced by everything from mobile
phones, tablets, computers to smart watches brings novel chal-
lenges in data storage and analysis. Many solutions have arisen
in research and industry to handle these large amounts of data.
MapReduce is a popular programming model and execution
environment for developing and executing distributed data-
intensive and computer-intensive applications [3]. However,
the complexity of configuration of such a system is con-
tinuously increasing while the user expectations remain the
same: continuous availability and fast response times are the
required norm. Moreover, with the advent of cloud solutions,
the environments where these systems need to run is becoming
more and more dynamic.

Ensuring performance and dependability of MapReduce
systems still poses several challenges. Although the framework
hides the complexities of parallelism to the users, deploy-
ing an efficient MapReduce implementation poses multiple
challenges. Furthermore many factors have been identified
that negatively influence the performance of MapReduce jobs
(CPU, input/output and network skews, hardware and soft-
ware failures, node homogeneity assumption not holding up,
bursty workloads) and extensive research has been conducted
to improve dependability or performance of MapReduce by
changing the behavior and/or algorithms of the MapReduce
framework itself (see [7] for instance). Although these solu-
tions improve upon how MapReduce works, no guarantees
are provided in term of performance and availability. Some
solutions for performance modeling [5] and control [2] can be
found in the literature. However to the best of our knowledge,
there are no work to provide concurrent guarantees in terms
of combined dependability and performance, while reducing
utilization costs. The presented work is in line with our
previous modeling and control (see [1]) by extending it to
optimaly deal with performance-availability-costs compromise.

To that end, we design and implement the first optimal
control algorithm for MapReduce systems that ensures the de-

sired service availability and performance while continuously
minimizing costs as well. Preliminary simulation based on
a model validated on a real MapReduce system shows the
soundness of the approach.

II. BACKGROUND AND MOTIVATION

MapReduce is a programming paradigm developed for
parallel, distributed computations over large amounts of data. It
has been developed in 2008 by Google to automatically handle
most of the complexity of parallel computing and nowadays
it is backed by Big Data industry leaders such as Facebook,
Yahoo or LinkedIn (see [4], [3] among others). The most used
open source implementation of the MapReduce programming
model is Hadoop [6].

The choice of control variables out of Hadoop’s many
parameters (more than 170) is not straightforward. After an
in depth analysis of Hadoop’s behavior (see [1]), we chose
the MapReduce cluster size (N) and the the maximum number
of admitted clients (MC) as our tunable signals that we can
use to control MapReduce behavior, as they are known to
have a high influence on both service availability and perfor-
mance. MapReduce admission control is a classical technique
to prevent server thrashing since it consists of limiting the
maximum number of clients that are allowed to concurrently
send requests to the central controller.

One of the important challenges in current MapReduce
deployments is assuring certain service time and availability
thresholds for jobs while minimizing cost. These specifications
are given as the maximum response time Rtmax and the min-
imum availability Avmin to be guaranteed by the MapReduce
system.

III. PROPOSED SOLUTION

We proceed in two steps: first we study the impact of
control signals on measured variables, which is called mod-
eling and second, based on this model, we design the control
algorithm which, after taking into account the system states
and its environment, automatically decides the values of the
control variables. A schematic overview of this approach is
shown in Fig. 1.

�������
��	��
���

N
�MC Rt
�Av

C

���������������
�������
�
	����

��������
�
	����

��������

Fig. 1. MapReduce control schema

a) Modeling MapReduce: Capturing the complex be-
havior of MapReduce systems is highly challenging. A model
that captures the dynamics of MapReduce systems and can be
used to predict performance and availability levels was already
validated in [1]. The model is built as a set of difference
equations that describe the impact of changes in the control
variables on system’s outputs.

The input variables of the MapReduce model are the num-
ber of nodes N of the MapReduce cluster and the maximum
number of clients MC concurrently admitted. The workload C
(the number of concurrent clients that are sending requests to
the central controller) is considered as an exogenous signal that
we can not control. The outputs, measured variables, which we
desire to keep at certain levels, are the average response time
Rt of a MapReduce client request and the availability Av level
of MapReduce to its clients. Note that there is no limit on job
size or nature in our modeling process, we only assume that
variance in job properties is no more than 25%.

b) Control of MapReduce: The aim of our control
algorithm is to guarantee a given performance and availability,
using a minimal amount of resources, even when the system
face jumps in workload. This 3-fold objective consists the
first major improvement upon our previous work [1]. For that
purpose, we define a cost function that will be minimized,
which has two components: the first one is the difference
between the response time (resp. the availability) and the
reference values (Rtmax and Avmin), while the second one is
composed of the cluster size (N). Moreover, each of the above
mentioned components are in fact considered over a time hori-
zon, called prediction horizon, over which the model presented
in the previous section is used to foretell the behavior of the
MapReduce system. The algorithm chooses and periodically
updates a profile for the control signals which minimizes this
cost function over the whole prediction horizon, that is to
say a profile which guarantees performance and availability
while reducing the resource consumption N. This optimal
computation over a time horizon is the second major advance
of our work. Furthermore, by adding weights to the different
components of the cost function, we can give more importance
to particular specifications, as these components can express
contradictory requirements (availability vs. performance trade-
off for instance).

IV. PRELIMINARY RESULTS

For preliminary validation, we simulated the behavior of a
MapReduce framework with and without our control strategy
under a changing workload. For this example, we decide that
the availability should not be less than 98% and the response
time should be at most 120 seconds while always minimizing
the number of nodes. When the workload is too constraining
and these specifications cannot be fulfilled, we give higher
priority to the response time constraint and momentarily leave
out constraints on control signal N. However, this priority order
can be changed at any time.

Fig. 2 shows the results of our simulations. We see that
our strategy enables to have the desired availability while
significantly improving MapReduce performance by scaling
the cluster and rejecting some requests according to workload
fluctuations. Without any control strategy all specifications can
not be kept at the same time.

� �� �� �� �� ��� ��� ��� ����	

��

�
�

�
��
��

� �� �� �� �� ��� ��� ��� ���

��
��

��
�
��

���
�

�

��

��

��

���

�������
���
 ����������
���
 �
� � �����
���
���

!� ��� �
�
� �� �� �� �� ��� ��� ��� ���"�

�#
�

��
�!

�
��

��
�

�

$�

���

�$�

���

�������
���
 ����������
���
 �%� � ����#�
����� �

!� ��� �
�
� �� �� �� �� ��� ��� ��� ���

�&
�'

��

�

��

��

��

�������
���
 ����������
���

!� ��� �
�
� �� �� �� �� ��� ��� ��� ���

�(
	

�

$

��

�$

�������
���
 ����������
���

���
�

Fig. 2. Comparison of MapReduce performance and availability with and
without control (Avmin = 98% and Rtmax = 120 s)

V. CONCLUSION & FUTURE WORKS

In order to improve both performance and availability of
a MapReduce deployment subject to a changing workload
we introduce a control strategy that, through mathematical
optimization, scales the resources of the cluster and performs
admission control. The solution we develop is a small add-
on to the system that runs in parallel of MapReduce in a non
intrusive way. We simulated our control algorithm using a pre-
viously on-line validated model, results are promising as they
show significant performance improvements of MapReduce,
while guaranteeing almost full availability and minimizing
resource usage.

Future works are being investigated that aim at validating
our control strategy using a real MapReduce deployment.
Moreover, we would like to improve our algorithm by reducing
the number of cluster reconfigurations, as it is a costly issue
in cloud computing, while still providing mathematical perfor-
mance and availability guarantees through formal optimization.

REFERENCES

[1] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B. Robu.
Feedback autonomic provisioning for guaranteeing performance in
mapreduce systems. IEEE Transactions on Cloud Computing, 2016.

[2] M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh. Stea-
mengine: Driving mapreduce provisioning in the cloud. In High Per-
formance Computing (HiPC), 2011 18th International Conference on,
pages 1–10. IEEE, 2011.

[3] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] Y. Shen. Enabling the New Era of Cloud Computing: Data Security,
Transfer, and Management: Data Security, Transfer, and Management.
IGI Global, 2013.

[5] A. Verma, L. Cherkasova, and R.H. Campbell. Resource provisioning
framework for MapReduce jobs with performance goals. In Middleware
2011, volume 7049 of Lecture Notes in Computer Science, pages 165–
186. Springer Berlin Heidelberg, 2011.

[6] T. White. Hadoop: the definitive guide. O’Reilly Media, CA, 2012.

[7] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10:10–10, 2010.

