
HAL Id: hal-01316509
https://hal.science/hal-01316509v1

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BBOBB: A total order broadcast algorithm achieving
low latency and high throughput

Michel Simatic, Benoit Tellier

To cite this version:
Michel Simatic, Benoit Tellier. BBOBB: A total order broadcast algorithm achieving low latency
and high throughput. 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2016), Jun 2016, Toulouse, France. �hal-01316509�

https://hal.science/hal-01316509v1
https://hal.archives-ouvertes.fr


BBOBB: A total order broadcast algorithm
achieving low latency and high throughput

Michel Simatic and Benoit Tellier
Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier - 91011 Évry Cedex

Email: [First name].[Last name]@telecom-sudparis.eu

Abstract—Within data centers, many applications rely on
a total order broadcast algorithm to achieve fault-tolerance.
In this context, reducing latency and improving throughput
are important issues. Current algorithms fail to optimize both
latency and throughput at the same time. This paper presents
BBOBB, a new total order broadcast algorithm. BBOBB offers
simultaneously a low latency and a high throughput, especially
for small application messages.

I. INTRODUCTION

Total order broadcast is a fundamental group communica-
tion abstraction that lies at the core of different approaches to
replication, such as state-machine replication [1], [2]. Total
order broadcast guarantees that 1) every non-faulty replica
receive all requests and 2) no two replicas disagree on the
order in which requests are received. From a performance
perspective, since 1984 when Chang and Maxemchuk pub-
lished the historical first algorithm [3], reducing latency and
improving throughput have been the two main driving forces
for new algorithms. Reducing latency contributes to reducing
application’s response time. Improving throughput contributes
to optimizing data center resources usage and reducing its
energy consumption. Current algorithms fail to optimize both
latency and throughput at the same time [4]. For instance,
LCR [5] and TRAINS [6] are algorithms which optimize
throughput to the detriment of latency. FastCast [7] is an
attempt to combine low latency and high throughput, but its
throughput is lower than the throughput of LCR and TRAINS.

This paper presents BBOBB (Broadcast Based On a Bi-
nary Behavior), a new total order broadcast algorithm inspired
by the binary round-robin protocol [8] and the use of a broad-
cast tree in GentleRain [9]. BBOBB offers simultaneously
a low latency and a high throughput, especially for small
application messages: In this case, the average latency is

3n
2 log2(n)

instead of
3(n−1)

2 .

II. MODEL

Concerning the system model, we assume a small cluster
of homogeneous machines interconnected by a local area
network. Each machine hosts a process participating in the
algorithm. BBOBB relies on a membership service. This
service implements the abstraction of a perfect failure detec-
tor (P ) [10] to which each process has access. In addition,
it provides each process with the same ordered view of the
processes participating in the algorithm.

Concerning the performance model, we assume that our
LAN is based on a switch. Thus, we use the round-based model
proposed in [5]. In one round: 1) a network card can send a

message and simultaneously receive one; 2) a process can send
a message to all or a subset of processes; 3) the network is
able to carry several messages simultaneously.

III. ALGORITHM

When a process pi wants to broadcast an application
message m with total order guarantees, pi stores m into lbi,
a local batch of application messages.

BBOBB is a distributed wave algorithm. During a
step, each process sends its own batch and the batches
received until now to a process chosen according to a binary
scheme. Let us detail the algorithm. We assume there are n
participating processes. When a new wave starts, its first step
consists in each process pi copying lbi into a batch bi and
fsending1 a set of batches containing only bi to its successor
p(i+1) mod n. Step two of the wave consists in each process
pi fsending a set of batches containing the batch b(i−1) mod n

received from pi’s predecessor and bi to p(i+2) mod n. More
generally, step j (j ≥ 2) consists in each process pi fsending
a set of batches containing bu,u∈[(i+1−2j−1) mod n,i] to

p(i+2j−1) mod n. When pi receives messages of step k with 2k

greater or equal to the number n of participating processes, pi
has received all of the batches of this wave. We demonstrate
this by proving by induction that: ∀i ∈ [0, n), ∀j ∈ [1, k],
pi has received batches bu,u∈[(i+1−2j) mod n,i] at the end
of step j. By definition, at the end of step 1, any pi
has received b(i−1) mod n and bi: The property holds for
j = 1. Let us assume it is true for step j ∈ [1, k).
Then, ∀i ∈ [0, n), pi has received bu,u∈[(i+1−2j) mod n,i]

at the end of step j. In particular, p(i−2j) mod n has
received bu,u∈[(i−2j+1−2j) mod n,(i−2j) mod n]. During
step j + 1, p(i−2j) mod n fsends a set containing
bu,u∈[(i+1−2j+1) mod n,(i−2j) mod n] to pi. Thus, at the end of
step j + 1, pi has received batches bu,u∈[(i+1−2j+1) mod n,i]:
The property holds for j + 1. We conclude that, at step k,
every pi has received all of the batches. Moreover, thanks to
the membership service, any pi has the same ordered view
of the processes participating in BBOBB: each pi delivers
application messages contained in batch b0, then application
messages in b1, etc. The wave is finished.

Figure 1 presents an example: Participating processes E, F ,
G and H have built local batches le, lf , lg and lh containing
application messages to be TO-broadcast. At the end of the
wave, each process has received all of the batches e, f , g and
h: It delivers application messages contained in batch e, then
application messages in f , etc.

1fsend() is a primitive for sending messages reliably and in FIFO order.
TCP is an example of a protocol providing Fsend().



Fig. 1. Message sequence chart of a wave executed by participating processes
E, F , G and H

Group membership changes: When a new process arrives
or a participating process leaves (intentionaly or not), the
membership service generates a view_change event on
all processes. Upon receiving this event, each process pi
executes a view change procedure similar to the one of LCR
protocol [5]. Once this procedure is done, pi starts a new wave.

IV. PERFORMANCE EVALUATION

The latency of broadcasting a message is the number of
rounds that are necessary from the initial broadcast of message
m until the last process delivers m [5]. In BBOBB, unlike other
total order broadcast algorithms, it is not sufficient to count
the number of network messages to determine the number of
rounds. This is because the network messages sent during the
different steps of a wave do not have the same size. There are
2 cases. First case: The size of the header of network messages
(e.g. 40 bytes for TCP and IPv4, 60 bytes for TCP and IPv6)
is negligible against the average size of batches. Then, sending
a network message containing a set of batches takes as long as
sending one network message per batch. In this case, a wave
lasts n − 1 rounds (where n is the number of participating

processes). The average latency is
3(n−1)

2 . Second case: The
size of the header of network messages is not negligible against
the average size of batches. Then, sending a network message
containing a set of batches is less sensitive to the number of
batches inside the set. In this case, a wave lasts n

log2(n)
rounds.

The average latency is 3n
2 log2(n)

, which is remarkably lower

than
3(n−1)

2 as soon as n ≥ 4.

Concerning BBOBB throughput, Guerraoui et al. prove
that, given n computers involved in a total order broadcast
algorithm, wired on a switch providing a throughput Dlink

on each link, the maximum throughput is Dlink × n
n−1 [5].

However, their demonstration of this upper bound is based
on the number of messages. Using the same demonstra-
tion with BBOBB leads to the non pertinent upper bound
Dlink × n

log2(n)
. To prove that Dlink × n

n−1 is indeed the

upper bound, we notice that, during a wave, any process pi
delivers n × Sbatch bytes (where Sbatch is the average total
size of all application messages in a batch). But, pi receives
only (n − 1) × Sbatch bytes from the network (the bytes of
all batches except the batch of pi). We conclude that the
maximum throughput is Dlink × n·Sbatch

(n−1)·Sbatch
. In addition, the

maximum throughput is reduced by the prediction-oriented

throughput efficiency (POTE), i.e. the theoretical ratio be-
tween the number of bytes delivered per network message
and the number of bytes of the network message [6]. When
batches of messages are small, POTEBBOBB is better than
POTETRAINS, TRAINS currently having the best POTE [6]:
BBOBB is closer to maximum theoretical throughput than
TRAINS.

V. RELATED WORK

TRAINS [6] has better throughput than LCR [5]. BBOBB
has a better throughput than TRAINS, and a lower latency.
FastCast [7] has been designed to provide a low latency and
a high throughput. For small messages, as soon as there
are at least 4 processes, BBOBB has a lower latency than
FastCast [7], with a better throughput.

Cason et al. present the importance of latency variability
in nowadays applications [11]. We need a full implementation
of BBOBB to measure this variability.

VI. CONCLUSION AND PERSPECTIVES

This paper presents BBOBB, a new total order broadcast
algorithm. BBOBB offers simultaneously a low latency and a
high throughput, especially for small application messages. We
are currently implementing BBOBB to study experimentally
its performance and in particular its latency variability.

REFERENCES

[1] L. Lamport, “The implementation of reliable distributed multiprocess
systems,” Computer Networks, vol. 2, no. 2, pp. 95–114, May 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, pp. 299–
319, December 1990.

[3] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Trans. on Comput. Syst., vol. 2, no. 3, pp. 251–273, 1984.

[4] P. Urbán, X. Défago, and A. Schiper, “Contention-aware metrics for
distributed algorithms: Comparison of atomic broadcast algorithms,”
in Proceedings of the Nineth International Conference on Computer
Communications and Networks, October 2000, pp. 582–589.

[5] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput
optimal total order broadcast for cluster environments,” ACM Trans. on
Comput. Syst., vol. 28, pp. 5:1–5:32, July 2010.

[6] M. Simatic, A. Foltz, D. Graux, N. Hascoët, S. Ouillon, N. Reboud,
and T. Wang, “TRAINS: A Throughput-Efficient Uniform Total Order
Broadcast Algorithm,” in Proceedings of the International Conference
on New Technologies of Distributed Systems (NTDS), Paris, France, Jul.
2015, pp. 1–8.

[7] G. Berthou and V. Quéma, “FastCast: a Throughput- and Latency-
efficient Total Order Broadcast Protocol,” in Proceedings of the In-
ternational Middleware Conference, 2013, pp. 1–20.

[8] S. Ranganathan, A. George, R. Todd, and M. Chidester, “Gossip-style
failure detection and distributed consensus for scalable heterogeneous
clusters,” Cluster Computing, vol. 4, no. 3, pp. 197–209, 2001.

[9] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proceedings
of the ACM Symposium on Cloud Computing, 2014, pp. 4:1–4:13.

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of ACM, vol. 43, pp. 225–267, March
1996. [Online]. Available: http://doi.acm.org/10.1145/226643.226647

[11] D. Cason, P. J. Marandi, L. E. Buzato, and F. Pedone, “Chasing the tail
of atomic broadcast protocols,” in Proceedings of the 34th Symposium
on Reliable Distributed Systems, Sept 2015, pp. 286–295.


