Michel Simatic

Benoit Tellier

BBOBB: A total order broadcast algorithm achieving low latency and high throughput

HAL is a

I. INTRODUCTION

Total order broadcast is a fundamental group communication abstraction that lies at the core of different approaches to replication, such as state-machine replication [START_REF] Lamport | The implementation of reliable distributed multiprocess systems[END_REF], [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: a tutorial[END_REF]. Total order broadcast guarantees that 1) every non-faulty replica receive all requests and 2) no two replicas disagree on the order in which requests are received. From a performance perspective, since 1984 when Chang and Maxemchuk published the historical first algorithm [START_REF] Chang | Reliable broadcast protocols[END_REF], reducing latency and improving throughput have been the two main driving forces for new algorithms. Reducing latency contributes to reducing application's response time. Improving throughput contributes to optimizing data center resources usage and reducing its energy consumption. Current algorithms fail to optimize both latency and throughput at the same time [START_REF] Urbán | Contention-aware metrics for distributed algorithms: Comparison of atomic broadcast algorithms[END_REF]. For instance, LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] and TRAINS [START_REF] Simatic | TRAINS: A Throughput-Efficient Uniform Total Order Broadcast Algorithm[END_REF] are algorithms which optimize throughput to the detriment of latency. FastCast [START_REF] Berthou | FastCast: a Throughput-and Latencyefficient Total Order Broadcast Protocol[END_REF] is an attempt to combine low latency and high throughput, but its throughput is lower than the throughput of LCR and TRAINS. This paper presents BBOBB (Broadcast Based On a Binary Behavior), a new total order broadcast algorithm inspired by the binary round-robin protocol [START_REF] Ranganathan | Gossip-style failure detection and distributed consensus for scalable heterogeneous clusters[END_REF] and the use of a broadcast tree in GentleRain [START_REF] Du | Gentlerain: Cheap and scalable causal consistency with physical clocks[END_REF]. BBOBB offers simultaneously a low latency and a high throughput, especially for small application messages: In this case, the average latency is

3n 2 log 2 (n) instead of 3(n-1) 2 .

II. MODEL

Concerning the system model, we assume a small cluster of homogeneous machines interconnected by a local area network. Each machine hosts a process participating in the algorithm. BBOBB relies on a membership service. This service implements the abstraction of a perfect failure detector (P) [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF] to which each process has access. In addition, it provides each process with the same ordered view of the processes participating in the algorithm.

Concerning the performance model, we assume that our LAN is based on a switch. Thus, we use the round-based model proposed in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. In one round: 1) a network card can send a message and simultaneously receive one; 2) a process can send a message to all or a subset of processes; 3) the network is able to carry several messages simultaneously.

III. ALGORITHM

When a process p i wants to broadcast an application message m with total order guarantees, p i stores m into lb i , a local batch of application messages.

BBOBB is a distributed wave algorithm. During a step, each process sends its own batch and the batches received until now to a process chosen according to a binary scheme. Let us detail the algorithm. We assume there are n participating processes. When a new wave starts, its first step consists in each process p i copying lb i into a batch b i and fsending1 a set of batches containing only b i to its successor p (i+1) mod n . Step two of the wave consists in each process p i fsending a set of batches containing the batch b (i-1) mod n received from p i 's predecessor and b i to p (i+2) mod n . More generally, step j (j ≥ 2) consists in each process p i fsending a set of batches containing b u,u∈[(i+1-2 j-1) mod n,i] to p (i+2 j-1) mod n . When p i receives messages of step k with 2 k greater or equal to the number n of participating processes, p i has received all of the batches of this wave. We demonstrate this by proving by induction that: ∀i ∈ [0, n), ∀j ∈ [1, k], p i has received batches b u,u∈[(i+1-2 j) mod n,i] at the end of step j. By definition, at the end of step 1, any p i has received b (i-1) mod n and b i : The property holds for j = 1. Let us assume it is true for step j ∈ [1, k). Then, ∀i ∈ [0, n), p i has received b u,u∈[(i+1-2 j) mod n,i] at the end of step j. In particular,

p (i-2 j) mod n has received b u,u∈[(i-2 j +1-2 j) mod n,(i-2 j) mod n] . During step j + 1, p (i-2 j) mod n fsends a set containing b u,u∈[(i+1-2 j+1) mod n,(i-2 j) mod n] to p i . Thus, at the end of step j + 1, p i has received batches b u,u∈[(i+1-2 j+1) mod n,i] :
The property holds for j + 1. We conclude that, at step k, every p i has received all of the batches. Moreover, thanks to the membership service, any p i has the same ordered view of the processes participating in BBOBB: each p i delivers application messages contained in batch b 0 , then application messages in b 1 , etc. The wave is finished. Figure 1 presents an example: Participating processes E, F , G and H have built local batches le, lf , lg and lh containing application messages to be TO-broadcast. At the end of the wave, each process has received all of the batches e, f , g and h: It delivers application messages contained in batch e, then application messages in f , etc. Group membership changes: When a new process arrives or a participating process leaves (intentionaly or not), the membership service generates a view_change event on all processes. Upon receiving this event, each process p i executes a view change procedure similar to the one of LCR protocol [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. Once this procedure is done, p i starts a new wave.

IV. PERFORMANCE EVALUATION

The latency of broadcasting a message is the number of rounds that are necessary from the initial broadcast of message m until the last process delivers m [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. In BBOBB, unlike other total order broadcast algorithms, it is not sufficient to count the number of network messages to determine the number of rounds. This is because the network messages sent during the different steps of a wave do not have the same size. There are 2 cases. First case: The size of the header of network messages (e.g. 40 bytes for TCP and IPv4, 60 bytes for TCP and IPv6) is negligible against the average size of batches. Then, sending a network message containing a set of batches takes as long as sending one network message per batch. In this case, a wave lasts n -1 rounds (where n is the number of participating processes). The average latency is 3(n-1)

2

. Second case: The size of the header of network messages is not negligible against the average size of batches. Then, sending a network message containing a set of batches is less sensitive to the number of batches inside the set. In this case, a wave lasts n log 2 (n) rounds. The average latency is 3n 2 log 2 (n) , which is remarkably lower than 3(n-1) 2 as soon as n ≥ 4.

Concerning BBOBB throughput, Guerraoui et al. prove that, given n computers involved in a total order broadcast algorithm, wired on a switch providing a throughput D link on each link, the maximum throughput is D link × n n-1 [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. However, their demonstration of this upper bound is based on the number of messages. Using the same demonstration with BBOBB leads to the non pertinent upper bound D link × n log 2 (n) . To prove that D link × n n-1 is indeed the upper bound, we notice that, during a wave, any process p i delivers n × S batch bytes (where S batch is the average total size of all application messages in a batch). But, p i receives only (n -1) × S batch bytes from the network (the bytes of all batches except the batch of p i). We conclude that the maximum throughput is D link × n•S batch (n-1)•S batch . In addition, the maximum throughput is reduced by the prediction-oriented throughput efficiency (P OT E), i.e. the theoretical ratio between the number of bytes delivered per network message and the number of bytes of the network message [START_REF] Simatic | TRAINS: A Throughput-Efficient Uniform Total Order Broadcast Algorithm[END_REF]. When batches of messages are small, P OT E BBOBB is better than P OT E TRAINS , TRAINS currently having the best P OT E [START_REF] Simatic | TRAINS: A Throughput-Efficient Uniform Total Order Broadcast Algorithm[END_REF]: BBOBB is closer to maximum theoretical throughput than TRAINS.

V. RELATED WORK TRAINS [START_REF] Simatic | TRAINS: A Throughput-Efficient Uniform Total Order Broadcast Algorithm[END_REF] has better throughput than LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. BBOBB has a better throughput than TRAINS, and a lower latency. FastCast [START_REF] Berthou | FastCast: a Throughput-and Latencyefficient Total Order Broadcast Protocol[END_REF] has been designed to provide a low latency and a high throughput. For small messages, as soon as there are at least 4 processes, BBOBB has a lower latency than FastCast [START_REF] Berthou | FastCast: a Throughput-and Latencyefficient Total Order Broadcast Protocol[END_REF], with a better throughput.

Cason et al. present the importance of latency variability in nowadays applications [START_REF] Cason | Chasing the tail of atomic broadcast protocols[END_REF]. We need a full implementation of BBOBB to measure this variability.

VI. CONCLUSION AND PERSPECTIVES

This paper presents BBOBB, a new total order broadcast algorithm. BBOBB offers simultaneously a low latency and a high throughput, especially for small application messages. We are currently implementing BBOBB to study experimentally its performance and in particular its latency variability.

Fig. 1 .

 1 Fig. 1. Message sequence chart of a wave executed by participating processes E, F , G and H

fsend() is a primitive for sending messages reliably and in FIFO order. TCP is an example of a protocol providing Fsend().