
HAL Id: hal-01316507
https://hal.science/hal-01316507

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Scalable and Dependable Privacy-Preserving
Publish/Subscribe Services

Emanuel Onica, Pascal Felber, Hugues Mercier, Etienne Rivière

To cite this version:
Emanuel Onica, Pascal Felber, Hugues Mercier, Etienne Rivière. Towards Scalable and Dependable
Privacy-Preserving Publish/Subscribe Services. Fast Abstract in the 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, Jun 2016, Toulouse, France. �hal-01316507�

https://hal.science/hal-01316507
https://hal.archives-ouvertes.fr


Towards Scalable and Dependable
Privacy-Preserving Publish/Subscribe Services

Emanuel Onica
Alexandru Ioan Cuza University of Iaşi, Romania

Email: eonica@info.uaic.ro

Pascal Felber, Hugues Mercier and Etienne Rivière
University of Neuchâtel, Switzerland

Email: first.last@unine.ch

Abstract—Security guarantees are required features for cloud
services. Among these, the preservation of user data privacy
is critical. However, the necessity to perform computation over
user data by the service providers makes this guarantee hard to
provide. This necessity often becomes a requirement for services
that depend on the nature of the data, such as publish/subscribe
(pub/sub) routing solutions. Most of proposed solutions for
privacy-preserving pub/sub fail to satisfactorily address scala-
bility and dependability along privacy issues. In this paper, we
define a set of requirements that should be met by a scalable and
dependable privacy-preserving pub/sub solution.

I. INTRODUCTION

Preserving data privacy is a critical security requirement for
cloud based services that handle user data. Publish/subscribe
(pub/sub) [1] is an information dissemination model that
matches well the needs of complex and multi-party cloud
computation. Pub/sub decouples data publishers form con-
sumers in a simple and intuitive fashion. A publication data
stream contains information of interest to users who register
subscriptions to the cloud service. The service uses dedicated
machines, referred as brokers, to store the subscriptions, per-
form the matching of incoming publications and notify the
users matching accordingly. Users are increasingly concerned
by the unauthorized access to their private data. The content
of subscriptions and publications unfortunately reveals such
private data. Various solutions have been proposed that permit
encrypting subscriptions and publications so that the untrusted
cloud service can still perform the matching. Most of these so-
lutions require a complementary secure key exchange between
the subscribers and the publisher of the data stream. This key
exchange is typically not defined or disregards the scalability
and dependability aspects.

II. SERVICE ARCHITECTURE REQUIREMENTS

We define a set of key requirements for a scalable and de-
pendable privacy-preserving pub/sub service. We focus specif-
ically on missing features in existing solutions.

Core privacy requirement: possibility to perform comprehen-
sive encrypted matching for the cloud service provider.

We consider as core requirement the capability by the cloud
service to match an encrypted publication over encrypted sub-
scriptions, which we name encrypted matching. Many privacy-
preserving solutions do not offer this feature (e.g., [2], [3]) and
typically rely on end-to-end encryption of sensitive data and
access control separation. In this setting the pub/sub service
is not able to perform matching over the encrypted data, but
only on the non-encrypted part, which severely limits areas of
application (e.g., one cannot use subscription fields for routing,

and sensitive publications are simply not routable). An extra
desirable characteristic is the possibility to perform encrypted
matching over ranged subscription constraints (e.g., determin-
ing if a stock value is higher than a certain threshold). This is a
limitation of some of the current solutions (e.g., [4], [5]) which
only allow matching over equality constraints, preventing their
application to full-fledged content-based pub/sub services.

Requirement 1: grouping hosts in security domains for indi-
vidual subscribers, publishers and pub/sub service brokers.

In order for the pub/sub service to perform encrypted match-
ing, publishers and subscribers must use a common or corre-
lated encryption key. The decoupled nature of pub/sub commu-
nication is a problem in this context: since there is no knowl-
edge on the publisher side about the receiving subscribers,
the pub/sub system ignores to which publisher/subscriber pairs
the key must be distributed. Although it seems difficult to
overcome this obstacle without losing the benefits offered by
the pub/sub paradigm, for many applications there are relations
between the security domains of publishers and subscribers.
This permits creating groups of hosts with the same level of
trust that can exchange common keys. Consider as an example
a user in a financial company that registers a subscription for
stock exchange information. This subscriber does not know the
exact host that emits publications, but the financial company
does know from which stock exchange it wants to obtain the
publication data. Likewise, the stock exchange might charge
fees for providing the data stream to all of the subscribers from
a given financial company.

Requirement 2: support for subscription re-encryption in the
pub/sub service by the encrypted matching scheme.

The key used to encrypt the pub/sub traffic must be periodically
updated. A trigger for this is the eviction of a corrupted
subscriber sharing a group key with remaining subscribers.
Another reason is to counteract brute force attacks meant to
guess the current key in use. A problem that appears when the
encryption key is updated is the invalidation of subscriptions
stored by the untrusted pub/sub service. These subscriptions
remain encrypted with the old invalid key, and since publishers
will use the new key the pub/sub service will no longer be
able to perform the encrypted matching. A naive way to solve
this problem is to notify users to re-encrypt and re-register
their former subscriptions using the new key, however this
approach has major performance and dependability drawbacks.
First, while the subscriptions are re-encrypted and re-registered
the pub/sub service will fail to deliver matching publications.
Second, if the service provides reliable storage guarantees to
users for their subscriptions, these guarantees are moot because



users must locally store a copy of their subscriptions in order to
re-encrypt them. Third, a scalability issue can also appear due
to high demand in network usage (all subscriptions encrypted
with the former key by all users must be re-registered at once).

We have noticed and addressed these issues for the first time
in [6], where we extended an encrypted matching scheme [7]
to allow the untrusted pub/sub service to directly re-encrypt the
stored subscriptions when a new key is exchanged. This is done
by giving a secure token to the untrusted pub/sub service. In
the following we generically formalize this feature. We believe
this can be used for defining subscription re-encryption support
for other schemes (e.g., [8]) allowing encrypted matching. Let
us consider EK(S), the ciphertext obtained by encrypting sub-
scription S with key K using an encrypted matching algorithm
E. The support for subscription re-encryption implies that for
two keys K1 and K2, a function KR = f(K1,K2) can be
defined, such that for an encrypted subscription EK1(S) there
exists a transformation τ(EK1(S),KR) = EK2(S). KR is
then the token that is given to the untrusted pub/sub service to
perform the in-place re-encryption. Making KR available in an
untrusted domain must not disclose any information about the
encryption keys K1 and K2 nor the subscription plaintext S.

Requirement 3: a scalable secure group communication key
exchange protocol adapted to the pub/sub domain grouping.

A protocol is required to disseminate common encryption
keys to different security domains, where hosts reside. This
preserves a partial decoupling of the individual hosts, keeping
only a loose coupling at the domain level. Hosts used by
the pub/sub service are typically part of an untrusted security
domain, where keys must not be distributed. However, the pro-
tocol should support disseminating key update tokens defined
in Requirement 3 to the pub/sub service domain.

Some solutions [5] ignore pub/sub decoupling and require
subscribers to exchange key material directly with publishers
for every subscription. Such designs have serious scalability
issues. The idea of adapting a partially decoupled group key
exchange protocol for pub/sub systems was proposed in [2]
with OFT [9]. However, the work did not consider encrypted
matching and dissemination of key update tokens to the
pub/sub service. In [10] the authors suggest ELK [11] as a
potential solution but do not develop the idea.

In [6] we included a simple hierarchical key exchange ar-
chitecture for the single purpose of testing the subscription
re-encryption. This proved scalable as we did not observe
any significant increase in the key distribution time when
increasing the number of brokers from 5 to 15. However,
since the purpose of our work was not to test key exchange
communication, we did not evaluate our protocol for large
groups of subscriber hosts and we considered only three
security domains.

Requirement 4: continuity of service during a key update.

The stored subscription invalidation is a problem that oc-
curs when a key is updated whether or not subscription re-
encryption is supported by the pub/sub service (the effects
are of course minimized when the encrypted matching scheme
supports the re-encryption). For a short duration, the publica-
tion stream matching may be stopped by the incompatibility
between encryption keys, and it is critical to prevent this

to happen. In [6] we used a transitional state keeping old
subscriptions active for a custom defined period of time. We
believe that a more thorough investigation could be done to
address this requirement.

Requirement 5: key exchange reliability in case of failures.

Since the communication in the pub/sub system is depen-
dent on the key exchange, it is imperative to extend the
dependability guarantees to its implementation. It is useless to
tolerate failures at the pub/sub service level if the unhandled
crash of one of the key exchange dedicated hosts disables the
service. We are not aware of any dedicated solution to this
problem. An approach is to rely on third party solutions such as
ZooKeeper’s [12] fault tolerance support when implementing
the key exchange.

III. CONCLUSION

To the best of our knowledge, no privacy-preserving
pub/sub solution considers all the requirements defined in this
article. We consider that these requirements should be used as
guidelines for future practical solutions. Our attempt towards
scalable and dependable privacy-preserving pub/sub [6] fulfills
the Core privacy requirement as well as Requirements 1 and 2.
We also made steps to address at a basic level the other three
requirements, on which we intend to focus our future work.

ACKNOWLEDGMENT

This work is partly funded from the European Union's Horizon
2020 research and innovation programme under grant agree-
ment No 692178.

REFERENCES

[1] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Computing Survey, vol. 35, no. 2,
2003.

[2] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch, “Access control in
publish/subscribe systems,” in DEBS 2008: 2nd International Confer-
ence on Distributed Event-Based Systems.

[3] Y. Zhao and D. Sturman, “Dynamic access control in a content-based
publish/subscribe system with delivery guarantees,” in ICDCS 2006:
26th IEEE Intl. Conf. on Distributed Computing Systems.

[4] P. Pal, G. Lauer, J. Khoury, N. Hoff, and J. Loyall, “P3S: a privacy
preserving publish-subscribe middleware,” in 13th ACM International
Middleware Conference 2012.

[5] G. Crescenzo, J. Burns, B. Coan, J. Schultz, J. Stanton, S. Tsang, and
R. N. Wright, “Efficient and private three-party publish/subscribe,” in
NSS 2013: : 7th Intl. Conference on Network and System Security.

[6] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Efficient key up-
dates through subscription re-encryption for privacy-preserving pub-
lish/subscribe,” in 16th ACM Intl. Middleware Conference 2015.

[7] S. Choi, G. Ghinita, and E. Bertino, “A privacy-enhancing content-based
publish/subscribe system using scalar product preserving transforma-
tions,” in DEXA 2010: Database and Expert Systems Applications.

[8] H. Xu, S. Guo, and K. Chen, “Building confidential and efficient query
services in the cloud with RASP data perturbation,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 2, 2014.

[9] A. T. Sherman and D. A. McGrew, “Key establishment in large dynamic
groups using one-way function trees,” IEEE Transactions on Software
Engineering, vol. 29, no. 5, 2003.

[10] J. Li, C. Lu, and W. Shi, “An efficient scheme for preserving confiden-
tiality in content-based publish/subscribe systems,” Georgia Institute of
Technology, Tech. Rep. GIT-CC-04-01, 2004.

[11] A. Perrig, D. Song, and J. D. Tygar, “ELK, a new protocol for efficient
large-group key distribution,” in SP 2001: IEEE Symposium on Security
and Privacy.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for internet-scale systems,” in ATC 2010: USENIX Annual
Technical Conference.


