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1 Introduction

Validated numerical integration is an appealing approach to produce rigorous results on Initial Value Problem of
Ordinary Differential Equations (ODE). An IVP-ODE is defined by{

ẏ = f(t,y)

y(0) ∈ Y0 ⊆ Rn, t ∈ [0, tend] .
(1)

The set Y0 of initial conditions is used to model some (bounded) uncertainties. For a given initial condition y0, the
solution when it exists is denoted y(t;y0). The goal of validated (or rigorous) numerical integration methods is to
compute the set of solution, or an over-approximation, of the solutions of (1), i.e., {y(t;y0) : ∀y0 ∈ Y0,∀t ∈ [0, tend]}.

Most of the rigorous techniques defined so far, since Ramon Moore’s seminal work [1], are based on Taylor series
approach, see for example [2, 3, 4, 5] and the references therein. Nervertheless, it is unlikely that only one kind of
methods is adapted to all various classes of ODE. So, more recent work [6, 7, 8, 9, 10] deals with the adaptation of
Runge-Kutta methods to be validated methods in order to try to benefit the good properties such as A-stability. A
generic s-step Runge Kutta method for IVP-ODE is defined by

yn+1 = yn + h

s∑
i=1

biki (2)

with

ki = f(tn + cih,yn +

s∑
j=1

aijkj), i = 1, . . . , s . (3)

The real coefficients ci, ai,j and bi fully characterize a Runge-Kutta methods, see [11].
The challenge to make a Runge-Kutta validated is to bound the local truncation error (LTE), i.e., the distance

between the true solution y(tn;yn−1) at time tn with yn−1 as intial conditions and the numerical solution yn starting
from the same initial condition so to bound y(tn;yn−1)− yn.

Following the order condition, see [12], a Runge-Kutta method is of order p if the p first terms of the Taylor form
associated to the numerical solution yn are equal to the terms of the exact solution of (1) that is y(t; yn−1) assuming
the same initial condition. In this case the LTE corresponds to the difference of the two Taylor remainders. Now, the
challenge is to compute these Taylor remainders.

In this paper, we propose a novel approach to bound the LTE based on the order condition which is usable for
explicit and implicit Runge-Kutta methods. More precisely, our approach is an instance of the algorithm defined in
[13] and applied in the context of validated numerical integration methods based on Runge-Kutta methods.

2 Bounding the local truncation error

One of the great ideas of John Butcher in [12] is to express on the same basis of elementary differentials the Taylor
expansion of the exact solution of (1) and those of the numerical solution. Those elementary differential are made of
sums of partial derivatives of f with respect to the components of y. An other great idea of John Butcher in [12] is to
relate these partial derivatives of order q to a combinatorial problem to enumerate all the trees τ with exactly q nodes.
From the structure of a tree τ one can map a particular partial derivative, see [12] for more details. In consequence,
one has the three following theorems which are used to express the order condition of Runge-Kutta methods. In
theorems 2.1 and 2.2, τ is a rooted tree, F (τ) is the elementary differential associated to τ , r(τ) is the order of τ (the
number of vertices it contains), γ(τ) is the density, α(τ) is the number of equivalent trees and ψ(τ) the elementary
weight of τ based on the coefficients ci, aij and bi defining a Runge-Kutta method.
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Theorem 2.1. The q-th derivative w.r.t. time of the exact solution is given by

y(q) =
∑
r(τ)=q

α(τ)F (τ)(y0) .

Theorem 2.2. The q-th derivative w.r.t. time of the numerical solution is given by

y
(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(y0) .

Theorem 2.3 (Order condition). A Runge-Kutta method has order p iff

φ(τ) =
1

γ(τ)
∀τ, r(τ) 6 p .

In consequence of Theorem 2.3, the LTE of a Runge-Kutta method is defined by

y(tj ; tj−1)− yj =
hp+1

(p+ 1)!

∑
r(τ)=p+1

α(τ)
[
1− γ(τ)ψ(τ)

]
F (τ)(y(ξ)) ξ ∈]tj−1, tj [ . (4)

Based on (4), validated numerical Runge-Kutta methods were successfully developped in [14] mainly using a
symbolic generation of the elementaty differentials. The limitation of the symbolic computation approach is that the
number of partial derivatives of f increases exponentially with the order q and the syntactic expression may increase
also exponentially so this approach does not scale up. During our investigation to overcome these limitations the
work [13] was published. It defines an algorithm to compute B-series, i.e., sums of elementary differentials, only as an
abstract mathematical object without targeting a particular use. Our contribution is then to instanciate the algorithm
defined in [13] to fit our purpose to make validated Runge-Kutta methods. This algorithm will scale up as it is based
on automatic differention techniques, more precisely, the techniques defined in [15]. It is also based on a particular
factorization of the elementary differential in order to reduce the computation of the same sub-expressions appearing
in different elementary differentials.

Note that in (4), the value of y(ξ) is bounded following classical approach in validated numerical integration
methods. More precisely, a variant of the Picard operator, see [2], is used in combination with interval arithmetic.
Hence, it is possible to bound the value of the (4) in order to make any explicit and implicit Runge-Kutta validated.

3 Conclusion

In this paper, the computation of a guaranteed outer approximation of the local truncation error of a Runge Kutta
method is presented. Combining the computation of the LTE with the classical two step integration method that is the
use of the Picard-Lindelöf operator to enclose all the solutions on one step, and the computation of the approximated
solution makes possible the validated simulation of an ordinary differential equation with any Runge-Kutta method
(implicit or explicit). This new method benefits from the previous work on the computation of B-series from Bartha
et alii.
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