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Introduction

Validated numerical integration is an appealing approach to produce rigorous results on Initial Value Problem of Ordinary Differential Equations (ODE). An IVP-ODE is defined by

ẏ = f (t, y) y(0) ∈ Y 0 ⊆ R n , t ∈ [0, t end ] . (1) 
The set Y 0 of initial conditions is used to model some (bounded) uncertainties. For a given initial condition y 0 , the solution when it exists is denoted y(t; y 0 ). The goal of validated (or rigorous) numerical integration methods is to compute the set of solution, or an over-approximation, of the solutions of (1), i.e., {y(t; y 0 ) :

∀y 0 ∈ Y 0 , ∀t ∈ [0, t end ]}.
Most of the rigorous techniques defined so far, since Ramon Moore's seminal work [START_REF] Moore | Interval Analysis[END_REF], are based on Taylor series approach, see for example [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF][START_REF] Makino | COSY INFINITY version 9[END_REF][START_REF] Lin | Validated solutions of initial value problems for parametric odes[END_REF][START_REF] Dzetkulič | Rigorous integration of non-linear ordinary differential equations in Chebyshev basis[END_REF] and the references therein. Nervertheless, it is unlikely that only one kind of methods is adapted to all various classes of ODE. So, more recent work [START_REF] Gajda | Three-and four-stage implicit interval methods of Runge-Kutta type[END_REF][START_REF] Marciniak | On representations of coefficients in implicit interval methods of rungekutta type[END_REF][START_REF] Marciniak | Implicit interval methods for solving the initial value problem[END_REF][START_REF] Bouissou | GRKLib: a Guaranteed Runge Kutta Library[END_REF][START_REF] Bouissou | Enclosing temporal evolution of dynamical systems using numerical methods[END_REF] deals with the adaptation of Runge-Kutta methods to be validated methods in order to try to benefit the good properties such as A-stability. A generic s-step Runge Kutta method for IVP-ODE is defined by

y n+1 = y n + h s i=1 b i k i (2) 
with

k i = f (t n + c i h, y n + s j=1 a ij k j ), i = 1, . . . , s . (3) 
The real coefficients c i , a i,j and b i fully characterize a Runge-Kutta methods, see [START_REF] Hairer | Geometric numerical integration: structure-preserving algorithms for ordinary differential equations[END_REF].

The challenge to make a Runge-Kutta validated is to bound the local truncation error (LTE), i.e., the distance between the true solution y(t n ; y n-1 ) at time t n with y n-1 as intial conditions and the numerical solution y n starting from the same initial condition so to bound y(t n ; y n-1 ) -y n .

Following the order condition, see [START_REF] Butcher | Coefficients for the study of Runge-Kutta integration processes[END_REF], a Runge-Kutta method is of order p if the p first terms of the Taylor form associated to the numerical solution y n are equal to the terms of the exact solution of (1) that is y(t; y n-1 ) assuming the same initial condition. In this case the LTE corresponds to the difference of the two Taylor remainders. Now, the challenge is to compute these Taylor remainders.

In this paper, we propose a novel approach to bound the LTE based on the order condition which is usable for explicit and implicit Runge-Kutta methods. More precisely, our approach is an instance of the algorithm defined in [START_REF] Bartha | Computing of B-series by automatic differentiation[END_REF] and applied in the context of validated numerical integration methods based on Runge-Kutta methods.

Bounding the local truncation error

One of the great ideas of John Butcher in [START_REF] Butcher | Coefficients for the study of Runge-Kutta integration processes[END_REF] is to express on the same basis of elementary differentials the Taylor expansion of the exact solution of (1) and those of the numerical solution. Those elementary differential are made of sums of partial derivatives of f with respect to the components of y. An other great idea of John Butcher in [START_REF] Butcher | Coefficients for the study of Runge-Kutta integration processes[END_REF] is to relate these partial derivatives of order q to a combinatorial problem to enumerate all the trees τ with exactly q nodes. From the structure of a tree τ one can map a particular partial derivative, see [START_REF] Butcher | Coefficients for the study of Runge-Kutta integration processes[END_REF] for more details. In consequence, one has the three following theorems which are used to express the order condition of Runge-Kutta methods. In theorems 2.1 and 2.2, τ is a rooted tree, F (τ ) is the elementary differential associated to τ , r(τ ) is the order of τ (the number of vertices it contains), γ(τ ) is the density, α(τ ) is the number of equivalent trees and ψ(τ ) the elementary weight of τ based on the coefficients c i , a ij and b i defining a Runge-Kutta method.

Theorem 2.1. The q-th derivative w.r.t. time of the exact solution is given by

y (q) = r(τ )=q α(τ )F (τ )(y 0 ) .
Theorem 2.2. The q-th derivative w.r.t. time of the numerical solution is given by

y (q) 1 = r(τ )=q γ(τ )φ(τ )α(τ )F (τ )(y 0 ) .
Theorem 2.3 (Order condition). A Runge-Kutta method has order p iff

φ(τ ) = 1 γ(τ ) ∀τ, r(τ ) p .
In consequence of Theorem 2.3, the LTE of a Runge-Kutta method is defined by

y(t j ; t j-1 ) -y j = h p+1 (p + 1)! r(τ )=p+1 α(τ ) 1 -γ(τ )ψ(τ ) F (τ )(y(ξ)) ξ ∈]t j-1 , t j [ . (4) 
Based on (4), validated numerical Runge-Kutta methods were successfully developped in [START_REF] Chapoutot | Validated Explicit and Implicit Runge-Kutta Methods[END_REF] mainly using a symbolic generation of the elementaty differentials. The limitation of the symbolic computation approach is that the number of partial derivatives of f increases exponentially with the order q and the syntactic expression may increase also exponentially so this approach does not scale up. During our investigation to overcome these limitations the work [START_REF] Bartha | Computing of B-series by automatic differentiation[END_REF] was published. It defines an algorithm to compute B-series, i.e., sums of elementary differentials, only as an abstract mathematical object without targeting a particular use. Our contribution is then to instanciate the algorithm defined in [START_REF] Bartha | Computing of B-series by automatic differentiation[END_REF] to fit our purpose to make validated Runge-Kutta methods. This algorithm will scale up as it is based on automatic differention techniques, more precisely, the techniques defined in [START_REF] Griewank | Evaluating higher derivative tensors by forward propagation of univariate taylor series[END_REF]. It is also based on a particular factorization of the elementary differential in order to reduce the computation of the same sub-expressions appearing in different elementary differentials.

Note that in (4), the value of y(ξ) is bounded following classical approach in validated numerical integration methods. More precisely, a variant of the Picard operator, see [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF], is used in combination with interval arithmetic. Hence, it is possible to bound the value of the (4) in order to make any explicit and implicit Runge-Kutta validated.

Conclusion

In this paper, the computation of a guaranteed outer approximation of the local truncation error of a Runge Kutta method is presented. Combining the computation of the LTE with the classical two step integration method that is the use of the Picard-Lindelöf operator to enclose all the solutions on one step, and the computation of the approximated solution makes possible the validated simulation of an ordinary differential equation with any Runge-Kutta method (implicit or explicit). This new method benefits from the previous work on the computation of B-series from Bartha et alii.