Satoshi Fukumoto

Mamoru Ohara
email: ohara.mamoru@iri-tokyo.jp

A Fundamental Study on Software Rejuvenation in Time Warp Simulation

Recently, benefits of software rejuvenation in highperformance computing (HPC) areas have been remarked. In time warp-based parallel discrete event simulation (PDES) systems, it is important for improving performance to equalize simulation progress in processes. In this article, we consider the simplest scheme to avoid the imbalance load introduced by rejuvenation. We also implemented time warp-based simulators and present some numerical examples obtained by running the simulators.

I. INTRODUCTION

Software rejuvenation is a technique to prevent the aging of running software [START_REF] Huang | Software Rejuvenation: Analysis, Module and Applications[END_REF]. Unlike hardware, software does not degrade due to mechanical deterioration, however, software was also found to be subject to age-related degradation. In software rejuvenation techniques, we can refresh software by periodically terminating and restarting the software itself or the system running the software, including physical or virtual hardwares. Comprehensive studies have been reported about software rejuvenation mainly in always-on server systems [START_REF] Cotroneo | A Survey of Software Aging and Rejuvenation Studies[END_REF], [START_REF] Dohi | Statistical Nonparametric Algorithms to Estimate the Optimal Software Rejuvenation Schedule[END_REF].

Recently, benefits of software rejuvenation in highperformance computing (HPC) areas are also remarked [START_REF] Cotroneo | A Survey of Software Aging and Rejuvenation Studies[END_REF], [START_REF] Naksinehaboon | Benefits of Software Rejuvenation on HPC Systems[END_REF]. In this article, we consider one of the simplest rejuvenation schemes for time warp technique, which is an implementation technique for parallel discrete event simulation (PDES). Firstly, we briefly present some introduction to time warp technique and a simple rejuvenation scheme. We further implemented experimental time warp-based simulators using Message Passing Interface (MPI). In this article, we also present numerical examples obtained by running the simulators.

II. REJUVENATION IN TIME WARP SIMULATION

Time warp is an optimistic synchronization technique mainly used in PDES [START_REF] Jefferson | Virtual Time[END_REF]. In a discrete event simulation, a series of events is processed in a predefined causal order. In optimistic approaches, no explicit synchronization for ensuring the event execution order is employed during normal processing. Without synchronization, a process may sometimes handle events in an incorrect order. When a process detects an error caused by a wrong-ordered event execution, it rolls back to an earlier point in time at which the process can handle the event in the correct order, and it re-executes the event.

Preparing for rollbacks, processes have to hold information about their earlier states. In order to discard such information for saving memory, processes need to know the upper limit of rollback distances. Global virtual time (GVT) naturally gives the upper limit in time warp. GVT is defined as the earliest time value among local clocks of all processes and time stamps of in-flight messages. While GVT is a spontaneously-occurring clock in time warp, processes cannot know GVT for free. They need to calculate the GVT value by exchanging messages.

In time warp-based PDES, a process may generate events based on an incorrect state and send them to other processes, i.e., a process in an incorrect state can infect other processes. For canceling the infection, a process detecting a causal error sends special messages, called anti messages. A process which receives an anti message needs to return to the time point before it processed the corresponding event. Thus the effect of a causal error in a process can spread overall system and lower the total simulation performance.

Because in time warp simulations, straggler messsages sent by slower processes lead rollbacks and that may decrease simulation performance, it is preferable that rejuvenation does not incur interruption of simulation in a part of processes. Therefore we can assume that rejuvenation in time warp simulation should be performed in a fully or partially coordinated manner because it is quite difficult with a fully distributed manner to manage processes' progress equally.

Previously, we proposed a number of rejuvenation schemes which can avoid wide variability in simulation progress in processes [START_REF] Fukumoto | Software Rejuvenation Schemes for Time Warp-based PDES[END_REF]. In this article, we discuss one of the simplest schemes, "Stop the world". With that scheme, all processes periodically perform rejuvenation in a coordinated manner. That is, rejuvenation is invoked every k th calculations of GVT in time warp. At the beginning of rejuvenation, all processes stop simulation and generate checkpoints, and then they reboot. They wait for all processes' reboot and resume simulation at the same time.

We also constructed an analytical model for evaluating the reliability of "Stop the world" [START_REF] Ohara | A Note on Rejuvenation in Time Warpbased Distributed Systems[END_REF]. We derived the unavailability of a distributed system:

ĀV = γ kT 0 FN (x)dx-γkT FN (kT)+c 1 F N (kT)+c 2 (1+γ) kT 0 FN (x)dx-γkT FN (kT)+c 1 F N (kT)+c 2 , (1
)
where the notations are summarized in Tab. I.

III. EXPERIMENTAL IMPLEMENTATION

We implemented experimental simulators based on WARPED2 simulation kernel, which is developed by the authors of [START_REF] Martin | WARPED: A Time Warp Simulation Kernel for Analysis and Application Development[END_REF]. WARPED2 can calculate GVT in both synchronous and asynchronous manners. We used the synchronous calculation method for implementing "Stop the world" and set T = 1 (sec). In addition we extended WARPED2 in order to add features of saving/loading checkpoints and time measurements.

Running the simulators, we measured some parameters in Eq. (1). Measurement results are presented in Tables II andIII. In Table II, we examined two simulation models distributed with WARPED2: airport and traffic. In both models we have 10,000 objects (airports or intersections arranged in x-y grids) in simulations. Table II presents the event commit rate in normal execution α nml , expected number of additional events caused by a rollback β, and simulation wall time in seconds. In both models, simulation efficiency is decreased when we use too many processes.

Table III shows rejuvenation costs of the airport model, where C denotes the average size of checkpoint files in mega bytes; c rjv and c acc are mean time taken for rejuvenation and loading checkpoint data in seconds. In the experimental implementation, rejuvenation is performed in the following procedure:

1) A simulation driver launches processes using MPI.

2) Just after completion of a synchronous GVT calculation, a process saves its state (including a simulation configuration, messages sent and received, a local event queue, states of simulated objects, states history, and statistics, and so on) into a file.

3) The simulation program exits after checkpointing with non-zero return code. 4) Upon detecting the completion of the simulation program with non-zero return code, the simulation driver re-executes the simulation program with instruction that it shall resume simulation by loading the checkpoint file. 5) When no rejuvenation or error occurs, the simulation program exits with code 0, and the simulation driver then finishes.

While Checkpoint size C and c acc do not necessarily grow with k; c rjv seems to increase with increase in k.

IV. CONCLUDING REMARKS

In this article, we reported an ongoing work about the simplest rejuvenation scheme "Stop the world" and presented measurement results of a number of parameters using an experimental implementation. Currently we have not yet obtained parameters concerning failures, e.g., α rcv and c dtc . We will inject failures in the simulator and measure such parameters in our future work.

TABLE I .

 I NOTATIONS.

	Name	Description
	T	GVT synchronization interval
	k	Rejuvenation interval
	crjv	Rejuvenation cost
	cacc	Cost for loading checkpoint data
	N	Number of processes
	XN	Random variable between the latest rejuvenation (checkpoint) and the earliest failure of N processes
	c dtc	Failure detection cost
	α nml	Event commit rate in normal execution
	αrcv	Event commit rate in recovery from a failure
	β	Expected number of additional events for a rollback
	γ	{α nml + (1 -α nml)β} / {αrcv + (1 -αrcv)β}
	c1	crjv + cacc + c dtc
	c2	cacc + c dtc

TABLE III .

 III REJUVENATION COSTS (AIRPORT).

		(a) N = 8			(b) N = 16	
	k	C	cacc	crjv	k	C	cacc	crjv
	10	8.4	1.03	1.08	10	6.7	0.91	1.20
	20	11.2	1.39	1.11	20	10.5	1.39	1.22
	30	14.5	1.85	1.44	30	9.7	1.30	1.41
	40	11.8	1.48	1.63	40	10.6	1.40	1.60

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number 26730044.