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Abstract— In this paper, we discuss the dependency between
the kernel choice and the model class it represents. This is
typically an undesired relationship, forcing the user to accept
a trade-off between an acceptable variance characteristic and
flexibility in the underlying function.

Hence, a method is proposed in this paper that explicitly
constrains the smoothness of the model, by regularizing over
the derivative of the function. This not only broadens the
available model class, but also simplifies the selection of any
hyperparameters.

We look at nonparametric models of nonlinear systems, and
formulate the problem in the Reproducing Kernel Hilbert Space
(RKHS). The proposed method is compared with an equivalent,
established scheme by means of a simple example. It is shown
that derivative-based regularization can help to extract useful
structural information about an underlying system.

Keywords: Nonlinear System Identification; Nonparametric
Modeling; RKHS; Regularization; Derivatives; Gradient Reg-
ularization.

I. INTRODUCTION

Many real systems are nonlinear, or exhibit some nonlinear
behavior. As such, nonlinear identification represents a well-
studied and important area of system identification [2], [8].
However, attempting to estimate nonlinear models can be
very challenging, posing many problems of which the user
must be aware [15].

One problem is that nonlinear models represent a vast
range of functions. Defining a model class that encompasses
the true behavior of a system can be extremely difficult. In
the absence of sufficient prior knowledge about the system,
how can any useful statements about these nonlinearities be
made?

A way of dealing with this is to consider a nonpara-
metric representation of the system. Here, the number of
parameters describing a model depends on the amount of
data available, offering a very flexible way of describing
nonlinear systems. However, this flexible over-parameterized
approach has certain drawbacks. For a model of this form, its
estimated parameters will typically have unacceptably high
variance, and be a very poor predictor of future outputs. This
is commonly dealt with using regularization.

Regularization is an established statistical technique [3],
[14], [16], allowing the incorporation of some prior intuition

of how the true system may behave into the model. It is
typically used as a way of controlling the bias-variance
trade-off in a model, in variable selection, or as a way of
enforcing some desired properties upon the estimator (such
as smoothness [4] or sparsity [12]).

An elegant way of constructing a nonparametric identifi-
cation problem is to use the theory of Reproducing Kernel
Hilbert Spaces (RKHS). It should be mentioned that there
is an equivalence between RKHS methods and several other
branches of kernel methods, notably the Gaussian Process
and Least-Squares Support Vector Machine approaches in
machine learning. This framework is applicable to many
different model classes, and allows their implicit definition
through an associated kernel function.

Whilst the regularization and its associated hyperparam-
eters are often discussed, the choice of a suitable kernel
is frequently overlooked. As the kernel defines the RKHS,
it also implicitly defines the model class - and hence the
capacity of the model to capture the true nonlinearity and
the smoothness of the true function.

In this paper, we will investigate if, by constraining the
smoothness of the estimated function through the regular-
ization, it is possible to integrate the kernel selection into
the optimization criterion, instead of relying on an a priori
choice of kernel.

This paper will be structured as follows. In section II,
the identification problem will be formulated. Section III
discusses the smoothness-flexibility trade-off, and the impact
this has on the identification problem. In section IV, a
potential solution to this problem is proposed, along with
some results regarding derivatives in the RKHS. Finally, in
section V, a simulation example will be given, providing an
indication of the performance of the proposed scheme and
hopefully illustrating its potential advantages.

II. PROBLEM DESCRIPTION

A. The Data-Generating System

We will now introduce the identification setup. Assuming
we have N observations of a data-generating system So:

DN = {(u1, y1), (u2, y2), · · · , (uN , yN )} . (1)



In System Identification, often a variable xk ∈ Rna+nb+1

is introduced. Typically, xk is the regressor vector, composed
of the past and present inputs and outputs of the system, u
and y:

xk = [yk−1 · · · yk−na
uk · · · uk−nb

]> (2)

where na and nb are the orders of the output and input
respectively.

Using these definitions, we will attempt to reconstruct a
general nonlinear model of the unknown true system So
describing its behavior:

yk = fo(xk) + eo,k (3)

Here, fo : Rna+nb+1 → R is an unknown nonlinear
function and eo,k is an additive noise term at the output
at each state k. To simplify the analysis, here So is assumed
to be a single-input single-output (SISO) system, but the
extension to the multivariate case is straightforward.

It will also be assumed that eo is white Gaussian noise
(see [6] for a discussion of the effect of colored noise in
identification).

B. Hilbert Spaces

The function f(·) is stated to be part of the Hilbert space
H (f ∈ H : X → R). A Hilbert space represents all possible
realizations of some particular class of functions, for example
all functions of continuity degree Ck. Moreover, a Hilbert
space is a vector space such that any function f ∈ H must
have a nonnegative norm, ‖f‖H > 0 (for f 6= 0). f must
be also equipped with an inner-product in H. For example,
for real-valued functions f, g ∈ L2, the inner-product would
have the familiar form:

〈f(x), g(x)〉 =

∫
X
f(x)g(x) dx. (4)

The properties of Hilbert spaces have been explored in
great detail throughout the literature. For the interested
reader, it is recommended to refer to one of the many texts
discussing the subject, such as [19].

C. Reproducing Kernels

An extremely useful property of Hilbert Spaces is their
equivalence with an associated kernel function [1]. This
equivalence allows us the simple definition of a kernel,
instead of fully defining the associated vector space. More
formally, if a Hilbert space H is a Reproducing Kernel
Hilbert Space (RKHS), it will have a unique kernel, K :
X × X → R, spanning the space H.

To simplify the analysis, it will be assumed that xk =
uk, and therefore our observations of the system are now
{xi}Ni=1 ∈ RN .

Importantly, any function in H can be represented as a
infinite weighted linear sum of this kernel evaluated over
the space H, as:

f(·) = 〈f(x), kx(·)〉H

=

∞∑
i=1

αikxi(·)
(5)

where {αi}∞i=1 ∈ R∞ are the parameters of the model. This
relationship is known as the Reproducing Property and kxi

is known as the kernel slice.
One of the most useful properties of a kernel in the RKHS

is that:

〈kxi
, kxj
〉 = kxi

(xj) = kxj
(xi)

= K(xi, xj)
(6)

that is, the dot-product of a reproducing kernel with itself
is itself the kernel. This result is commonly known as the
kernel trick, and allows us to write the inner-product as a
tractable function which implicitly defines a higher (or even
infinite) dimensional space.

For K to be a valid kernel in the RKHS, it must be a
Mercer kernel [13].

D. The Representer Theorem

In reality any estimation problem will deal only with
finite data. But since f is represented by infinitely many
parameters, a regularized cost function is commonly used in
the form:
V(e, f) = c((x1, y1, f(x1)), · · · , (xN , yN , f(xN )))

+

g(‖f‖H).

(7)

For example, c(·) is often a loss-function in L2, such that

c (x,y, f(x))) =

N∑
k=1

(yk − f(xk))2 (8)

where x = [x1 · · ·xN ]> and y = [y1 · · · yN ]>. g(·) is an
additional global constraint on the function, independent of
the observations. This term is the regularization term. Often,
g(·) is taken as a constant:

g (‖f‖H) = λ‖f‖H (9)

Here λ is the regularization hyperparameter - which can be
considered as controlling the bias-variance trade-off.

If f is in H, (7) permits a truncated form of the expression
given in (5). This means the infinite expansion given in (5)
reduces to a finite summation around the observations alone.
This is The Representer Theorem, for which a proof can be
found in [13]. For V(e, f) given above, f can be written as

f(·) =

N∑
i=1

αikxi(·), i = 1, 2, . . . , N αi ∈ R (10)

Using this expression, the norm ‖f‖H, can now be defined
as

‖f‖H = 〈f, f〉H

=

N∑
i=1

N∑
j=1

αiαjK(xi, xj)

= α>Kα (11)

where K is the N × N Gram Matrix, {K}i,j = K(xi, xj)
and α = [α1 · · ·αN ]> is the parameter vector.



Taking (8) and (9) yields the following cost-function:

V(e, f) = ‖y − f(x)‖22 + λ‖f‖H. (12)

A closed-form solution can now be obtained for α:

⇒ α = (K + λI)
−1

y. (13)

This solution will likely be familiar to the reader, as it is
widely used in inverse problems. Note that this solution will
depend on the hyperparameter λ and the choice of kernel K.
Typically, determination of hyperparameters is a non-trivial
problem, requiring the implementation of methods such as
cross-validation or marginal likelihood [9], [10].

III. MODEL CLASS SELECTION

A. The Kernel Selection Dilemma

Whilst the choice of λ is often discussed in the literature,
the choice of the kernel K is usually left somewhat open.
But in fact, this is a very important part of the identification
process. Selecting a kernel usually requires some statement
about the nature of the system in question to be made.

A range of kernel functions are available to the user, for
example step, linear, polynomial and spline functions. A
popular choice of kernel for continuous functions, which we
will consider here, is the Gaussian RBF kernel:

kxi(x) = exp

{
−‖x− xi‖

2

σ2

}
. (14)

which represents the C∞ class of functions. Henceforth, the
discussion will be continued solely considering RBF kernels.
The results developed will nonetheless be valid independent
of the choice of kernel.

In the RBF case, the hyperparameter σ defines the width
of K, and hence the smoothness of the estimated function.
Increasing σ can be considered as smoothing f by progres-
sively filtering out higher-frequencies. As σ characterizes K,
and K defines H, σ also influences H. Hence, σ is somehow
related to the model class selection. However, the choice of
σ will also be influenced by the noise. We will now introduce
an example to illustrate this paradox.

B. A Simple Example

A one-dimensional static switching function is corrupted
by white noise at the output. A signal-to-noise ratio of SNR
= 10dB is used in this example, defined by the ratio of the
noise-free output to the noise level: SNR = 20 log

(
σẙ/σe

)
.

No other information about the function, such as the switch-
ing points, is provided.

The unknown system So is described by the following
equation:

yk = fo(xk) + eo,k,

where xk ∼ U(−1, 1) is a uniformly distributed input-signal
and eo,k ∼ N(0, σ2

N ) is white Gaussian noise. The function
fo is a non-zero mean, non-smooth function:

fo(x) =

{
15, x ≤ −0.5, or 0 < x ≤ 0.5
−5, 0.5 < x ≤ 0, or 0.5 < x

In Figure 1, each image shows the function reconstructed
for different values of σ and λ.
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Fig. 1. Estimation of 1D switching signal for different hyperparameter
values. The mean value of each function over 1000 Monte-Carlo trials is
plotted against the true function, with ± the variance marked on either side.

As mentioned, an RBF kernel was used, as given in (14).
Clearly, the discontinuous fo ∈ C−1 lies outside the Hilbert
space of the RBF kernel - as it would require an infinite
range of frequencies to fully reconstruct the function. Using
such a function allows us to examine the effect of σ and λ
on the limits of the available model class.

The kernel width needs to be sufficiently small not to
make any assumptions on the smoothness of f , allowing a
large model class. In the top-left figure, it can be seen that
choosing such a σ allows the dynamics of the true function to
be captured by the estimated function - but it is unacceptably
sensitive to noise.

In the bottom-left figure, we see that increasing σ does
improve the variance characteristics of the estimate, but at
the cost of placing a strong assumption on the smoothness of
the function. The effect of reducing the size of the available
model class means we have failed to capture the dynamics
of the system.

From (9), it is possible to introduce a regularization term
to improve the characteristics of the estimator. But, as can
be seen in the top-right and bottom-right figures, even when
an excessively high λ is used to reduce the variance, such
that an undesired bias is introduced, the function is still not
smooth.

Optimal values for the hyperparameters can be found, but
this does not change that, in practice, we are forced to choose
between the flexibility of our model and the smoothness.

Hence, when selecting a kernel, how can we choose the
widest class possible in order to avoid making assumptions
on fo, whilst still having a reliable estimator, capable of
reproducing any given data and predicting future outputs?

In the following section, we will propose a method to
directly enforce smoothness independently of the model
class selection by constraining the gradient of the estimated
function.

IV. SMOOTHNESS IN THE RKHS

The smoothness of a function f is inextricably linked
to the continuity of the space Ck within which it resides.
Therefore, a natural way of enforcing smoothness on a



function would be to place constraints on its derivatives:

df(x)

dx
,
d2f(x)

dx2
, · · · , d

kf(x)

dxk
(15)

There are several ways this could be achieved. Before
proposing a solution in section IV-C, we will briefly review
several existing methods from the literature.

A. Sobolev Spaces

One relatively well-known method of enforcing smooth-
ness involves the consideration of Sobolev Spaces. In a
Sobolev space, Sk,p of continuity Ck and norm p, a function
within the space is quantified in terms of its derivative. For
p = 2, this Sobolev Space becomes a Hilbert Space, Hk,
and we can define:

‖f‖Hk
=

k∑
i=0

∫
X

(
dif(x)

dxi

)2

dx (16)

Using this definition of the norm will naturally impose
continuity constraints on the function up to order k. Under
certain conditions, a minimal representation of f in this case
can be found based on the spline kernel, as discussed in [17].
Though this is a very effective solution, we would like to
develop a method valid for a range of kernels, rather than
enforcing the choice of kernel.

B. Identification with Observations on the Derivative

Another method discussed in the literature is based on
minimization against observations of the derivative [11]. In
certain cases it may not be feasible to obtain measurements
directly for the output, or it may be of interest to constrain
the error against the derivatives. Then, a cost function of the
form below may be used:

Vobvs(f) = ‖y − f(x)‖22 + γ1

∥∥∥∥dydx − df(x)

dx

∥∥∥∥2
2

+ · · · γm
∥∥∥∥dmydxm

− dmf(x)

dxm

∥∥∥∥2
2

+ λ ‖f‖H

(17)

where here we have considered an MSE loss. Again, this
is capable of enforcing smoothness, but it introduces m
additional hyperparameters (denoted here by γ) increasing
the complexity of the problem.

C. Regularization using Derivatives

Here, a scheme independent of kernel choice is proposed,
with the advantages of neither requiring any additional
hyperparameters nor any significant additional computational
load (compared with the solution given in (13)). By replacing
the regularization term given in (7) with one optimizing
against the derivative of the function, we have:

V∇(e, f) = ‖y − f(x)‖22 + λ‖Df‖H (18)

where Dmf =
dmf(x)

dxm
is the mth order differential op-

erator. Although not identical, there is a clear parallel with
the spline-smoothing problem mentioned in section IV-A.
Now λ controls the smoothness to be put on the function,
meaning σ is no longer critical in reducing the sensitivity of

the model to noise. By explicitly forcing the regularization
to act in this way, a greater flexibility in the model class may
be permitted.

Note that as λ tends to ∞, for a bounded input this
enforces a bounded solution, as ‖f‖H → 0 now becomes
‖Df‖H → 0, which implies that ∀x ∈ R:

⇒ lim
λ→∞

f(x) = c, where 0 ≤ c <∞ ∈ R (19)

D. The Representer Theorem for Derivative Regularization

As discussed in section II, for the cost-function given in
(7), a valid representer is f(·) =

∑N
i=1 αikxi(·). However,

this form is not necessarily valid for the case of (18).
For the proof of the generalized representer theorem given

in [13] to hold, it is required that a relationship can be defined
such that ‖Dmf‖H = g (‖f‖H) (20)

where g(·) is a strictly monotically increasing function on
the norm of f . Whilst a relationship can be defined, it will
not in general be a monotonic function of ‖f‖H. In the case
of the Gaussian RBF kernel adopted in section III-B, (20)
does not hold.

Hence, a representer of the form stated above will be
suboptimal for (18). This means that, unlike in the case
of (7), the reproducing property of (5) cannot strictly be
truncated to a finite expression evaluated solely over the
observed data.

Nonetheless, we will proceed using this form, whilst
acknowledging that a better-performing solution may exist.
Whilst using a suboptimal representer is not ideal, it will
allow us to preserve the mathematical simplicity and compu-
tational efficiency of the solution given in (13). Furthermore,
in addition to being able to control the smoothness of
the estimated function, for certain choices of kernels the
statistical properties of (7) are loosely preserved:

Lemma 1 (The boundedness of f(x) for (18)). For a cost-
function of the form given in (18), let the representer of the
estimated function be f(x) =

∑N
i=1 αikxi

(x). If f(x) : X →
R ∈ H is bounded such that ‖f‖H < ∞, and the kernel
K : X ×X → R spanning H decays such that kxi(x) −→ 0

||x−xi||→∞
,

f(x) is bounded as:

lim
λ→∞

f(x) = 0, ∀x ∈ R. (21)

Proof: Given that ‖f‖H < ∞ and kxi(x) → 0 as
‖x− xi‖ → ∞:

⇒ lim
‖x−xi‖→∞

f(x) = 0 (22)

where {xi}Ni=1 ∈ XN , ∀i = 1 · · ·N . Now recall from (19),
that for (18):

lim
λ→∞

f(x) = c, ∀x ∈ R (23)

where 0 ≤ c <∞ ∈ R.
Observe that (23) applies across R. Hence if ∃x ∈ R as

in (22), c must be 0. Therefore:

lim
λ→∞

f(x) = 0, ∀x ∈ R. (24)



Hence, under the above-stated conditions, f(x) is bounded
by the regularization term of (18) as in (7).

This suboptimal representer thus allows the implicit regu-
larization of ‖f‖H in (18), in addition to enforcing smooth-
ness on f(x).

E. A Closed-Form Solution

From [18], let f ∈ Hk, where k denotes the order of
continuity of the space Hk. Now, for x ∈ X where again
we consider X = R, Dmf(x) ∈ Hk provided m < k. This
allows a reproducing property to be defined for derivatives
of functions, analogous to that stated in (5):

Dmf(·) = 〈f(x), D[0 m]kx(·)〉H

=

∞∑
i=1

αiD
[0 m]kxi(·)

(25)

where the operator D[ι κ] is defined as differentiation with
respect to the first and second variables of the kernel function
as:

D[ι κ]kxi
(x) =

dι+κkxi
(x)

dxκ dxιi
. (26)

Now we can proceed to define ‖Dmf‖H. From [18],〈
D[0 m]K,D[0 m]K

〉
H = D[m m]K. In (18), m = 1, giving:

‖Df‖H = 〈Df,Df〉H

=

N∑
i=1

N∑
j=1

αiαj
d2kxi

(xj)

dxj dxi

= α>D[1 1]Kα

(27)

where D[1 1]K is the N × N matrix of derivatives

{D[1 1]K}i,j =
d2kxi

(xj)

dxj dxi
. In the RBF case, the derivative

is given by:

d2kxi
(x)

dx dxi
=

2

σ2

(
1− 2

σ2
(x− xi)2

)
exp

{
−‖x− xi‖

2

σ2

}
.

(28)
From (27), the derivation of a closed-form solution for

α∇, the optimal parameters of V∇, is trivial:

⇒ α∇ =
(
K>K + λD[1 1]K

)−1
K>y (29)

Note that this solution has a similar computational complex-
ity to the solution given in (13).

F. A Simple Example

We now demonstrate the effect of regularizing over the
gradient on the example from section III-B.

Figure 2 shows the estimation function for a small kernel
(σ = 0.01) over a range of λ values with comparable
variances in each case. The effects of the regularization term
in the two cases are drastically different. On the left-hand
side, the effect of λ on the bias-variance trade-off is clearly
visible; the variance is progressively reduced, at the cost of
an increasing bias in the model. But, the regularization does
not act on the smoothness of the function.

On the right-hand side, the variance is reduced by smooth-
ing the function. Eventually the estimated function becomes
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Fig. 2. Monte-Carlo Results: Mean Estimates ± variance for a small kernel
(σ = 0.01), with λ values given on the y-axis of each plot

biased and excessively smooth. In practice, this simply
means that λ must be tuned properly.

V. SIMULATION EXAMPLE

A Monte-Carlo study based on a simulation example will
now be used to compare the two algorithms discussed in
this paper - the ‖f‖H-regularized and ‖Df‖H-regularized
approaches.

A. The Data-Generating System

Two 1-D nonlinear functions are corrupted with white
Gaussian noise at the output (SNR = 10dB). Both systems
were excited using N = 1000 uniformly distributed data-
points, xk ∼ U(−1, 1). The first system S1o , a smooth
function, is given by the following equation:

f1o (x) = 10((1− x)− 2sinc(4x)2, (30)

and the second system S2o , a non-smooth function, by:

f2o (x) =

{
10(1− x), |x| > 0.2

10 [(1− x) + 10(|x| − 0.2)] , |x| ≤ 0.2

Two approaches to the hyperparameterization were used,
with 100 Monte-Carlo trials run in each case. For both ap-
proaches, the kernel function was chosen to be the Gaussian
RBF kernel defined in section III.

1. For ‖f‖H-reg: λ and σ were optimized using cross-
validation on a separate noisy validation dataset.

2. For ‖Df‖H-reg: the kernel width was fixed a priori to
σ = 0.01 such that the smallest value capable of enforcing
smoothness is chosen (σ ∼ max(xi+1 − xi), i = 1 . . . N −
1). λ was determined by cross-validation.

B. Estimation Results

Figure 3 shows the results of the Monte Carlo simulation.
The average estimated function and the variance of the output
across the input space are plotted for both methods. As an
illustration, a sample kernel is given in each case. The central
column shows the true nonlinearity and a sample of the noisy
estimation data for both functions.



Table 1 shows the hyperparameter values obtained by
cross-validation in each case. In addition, the variance of
the estimator averaged of the input space and the mean best
fit rate against the noise-free function (BFR) over the trials

are given (where BFR = 100

(
1− ‖ŷ − y‖

2

‖y − ȳ‖2

)
).
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Fig. 3. Mean estimates of the functions, ± variance, and the kernel size
used in each case for the smooth f1 (top) and non-smooth f2 (bottom);
‖f‖H-Reg (left) and ‖Df‖H-Reg (right)

System S1o S1o S2o S2o
Method ‖f‖H ‖Df‖H ‖f‖H ‖Df‖H

Kernel Width (σ) 0.2 0.01 0.13 0.01
Reg. Strength (λ) 0.18 0.01 0.10 5.6× 10−4

Mean Fit (%) 99.81 97.98 99.65 99.22
Mean Variance 0.10 0.12 0.14 0.29

TABLE I
SUMMARIZED RESULTS

From Table 1 it can be seen that both approaches esti-
mate the function quite succesfully. However the ‖f‖H-Reg
scheme outperforms the ‖Df‖H-Reg scheme. Despite this,
analysis of Figure 3 shows several advantages of the ‖Df‖H-
Reg approach.

Firstly, using a small kernel, we can still estimate the
smooth S1o - even with large levels of noise. In the ‖f‖H-
Reg approach, a much broader kernel is required. But, as for
the ‖Df‖H-Reg a small kernel can be chosen, we are never
forced to select an overly smooth model class. As such, the
structural difference between the smooth S1o and nonsmooth
S2o is clearly apparent. For ‖f‖H-Reg, it is not.

Furthermore, the results of ‖Df‖H-Reg were achieved
without having to optimize over the kernel hyperparameter.
For X = R, this is already advantageous. As the dimen-
sionality of the input increases, this becomes increasing
attractive.

VI. CONCLUSIONS

In this paper, a derivative-based regularization method has
been proposed, attempting to divorce the dependency of the
smoothness of the estimated function from the selection of
the underlying model class. It has been shown that using

this scheme, both smooth and non-smooth functions can be
estimated by using a small kernel width and shifting the
hyperparameterization problem solely onto λ.

With λ appearing linearly in the parameters, this may
simplify the hyperparameter optimization or perhaps permit
the introduction of a varying smoothness constraint across
the input space. Consideration of the multi-dimensional
case and further investigation of the sub-optimality of the
representer are intended as future works.
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