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M. Jiménez Carrizosa1, G. Bergna2, A. Arzandé3, G. Damm4, P. Alou5,
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Abstract
This paper presents the modelling and control of a DC/DC bidirectional converter with 3 termi-

nals based on Modular Multilevel Converter (MMC) suitable for high voltage and power applications
in multi-terminals high voltage direct current (MT-HVDC) grids. A proof is given in order to guar-
antee the global stability of the system by means of Lyapunov theory and switching control theory.
In addition, a study on how to improve the generated harmonics is shown.

1 Introduction.

In recent years the use of DC grids has grown significantly mainly due to several factors: current AC
networks are reaching their limits and they are becoming overloaded, besides DC grids favour the in-
tegration of renewable energy sources, especially wind offshore. These facts together with the recent
development of power electronics, and more specifically the development of converters for high volt-
age and high power applications, have generated a suitable framework for the development and study of
MT-HVDC grids [1]. In this context it should be highlighted voltage source converters (VSC) [1, 2] and
more recently the MMC [3](both for AC/DC conversion).

Nowadays the option of using MMC over VSC is prevailing. The advantages of using MMC tech-
nology with respect to VSC technology are several: the resulting waveform has a very small harmonic
content and it has reduced transient voltage stresses and hence lower high frequency noise appears [4].
Also it has the ability to continue its operation in unbalance conditions [5].

However one of the more vital elements for the development of MT-HVDC grids is the bidirectional
DC/DC converter, the equivalent to the transformer for AC grids, which principal mission is to link
networks with different DC voltages. Besides the DC/DC converter can provide other benefits, such as
the use of itself as DC circuit-breaker and also to regulate the power flow in the grid [6].

One line of research for the DC / DC bidirectional converters for MT-HVDC is based on the well-
known topology Dual Active Bridge (DAB) [7, 8]. Nevertheless, and although it has optimal perfor-
mances and advantages over other topologies,it uses an internal transformer at high frequency [9], which
increases significantly the cost of this device. Other authors suggest to link two MMC by the alternative
side in order to connect two networks with different DC voltages, as proposed [10]. This structure pro-
vides the advantage that the internal transformer is avoided, and also it offers all the advantages given by
the use of MMC technology explained above.



The main idea proposed in this paper is to implement a DC/DC bidirectional converter which operates
with three terminals using MMC converters (2 phases) as shows figure 1. Consequently the DC/DC
converter explain here could address the function of the hub (or common connection point) which carries
out the union between several grids with different voltages[11].

Figure 1: Three terminals DC/DC converter with 2 phases based on MMC.

This work is outlined as follows: Section II presents the modelling of a DC/DC multi-terminal
converter based on MMC. In Section III the system stability is studied and the control philosophy is
shown. In Section IV the simulations are carried out. Finally, in Section V the conclusions are explained.

2 DC/DC multi-terminal converter based on MMC

2.1 MMC model.

Each MMC phase is divided in two arms, the upper and the lower. Each arm is composed by N sub-
modules (hundreds in HVDC applications) which usually could have two different forms (see [10]): the
half bridge, constituted by two switches (IGBT and diode), or the full bridge, formed by four switches
as shows the figure 1. The use of full bridges is specially interesting when a fault appears, because
controlling them, we can impose the appropriate polarity of voltage during fault events in order to block
the fault current [12]. However, for the purpose of this paper is sufficient with consider half bridges.
On the other hand, it is important to point out that it is necessary an inductance in the arm in order to
compensate the voltages imbalances between the upper and lower arms and the DC voltage. Finally,
resistances Rt, j shown in figure 1 links the arms with the earth in order to guarantee that each set of sub-
modules achieve the voltage of the corresponding DC grid, and also they establish the required currents
for the DC/DC conversion process [12].

2.2 DC/DC multi-terminal converter model based on MMC.

In figure 1 a DC/DC converter with 3 terminals and 2 phases based on MMC is shown. With the aim of
build the model, we write the system equations. Regarding figure 1, it is true that:

VDC1 = Ru1,1 · iu1,1 +Lu1,1 · ˙iu1,1 + vu1,1 +Rt1,1 · it1,1 +Lt1,1 · ˙it1,1
VDC1 = Rl1,1 · il1,1 +Ll1,1 · ˙il1,1 + vl1,1−Rt1,1 · it1,1−Lt1,1 · ˙it1,1

...
VDC3 = Rlk,3 · ilk,3 +Llk,3 · ˙ilk,3 + vlk,3−Rtk,3 · itk,3−Ltk,3 · ˙itk,3

(1)


Rt1,1 · it1,1 +Lt1,1 · ˙it1,1 = Rp1,1 · ip1,1 +Lp1,1 · ˙ip1,1−Rp1,2 · ip1,2 +Lp1,2 · ˙ip1,2 +Rt1,2 · it1,2 +Lt1,2 · ˙it1,2

...
Rt2,2 · it2,2 +Lt2,2 · ˙it2,2 = Rp2,2 · ip2,2 +Lp2,2 · ˙ip2,2−Rp2,3 · ip2,3 +Lp2,3 · ˙ip2,3 +Rt2,3 · it2,3 +Lt2,3 · ˙it2,3

(2)



In each middle point of the arms (points C and C’) and in points M and M’, in the figure 1, it is also
true by means of Kirchhoff’s law, prespectively that:

iu1,1 = il1,1 + ip1,1 + it1,1
iu2,1 = il2,1 + ip2,1 + it2,1

...
iu2,3 = il2,3 + ip2,3 + it2,3

{
ip1,1 + ip1,2 + ip1,3 = 0
ip2,1 + ip2,2 + ip2,3 = 0 (3)

From equations (3), it is clear that the order of state variable will be reduced. At this point, we
will use as state variables all the currents in the upper and lower arms, in total 12 variables, and 4 state
variables for the currents in each AC phase.

In concordance with [13], and considering the total energy stored in the arms, the dynamics of vm,ui, j

could be expressed as v̇mui, j =
Nui, j·nui, j

Cui, j
· iui, j, where nu j,s and nl j,s are the index number for the upper and

lower arm respectively, Cu j,s and Cl j,s are the total module capacitance for the upper and lower arms, and
Nu j,s and Nl j,s are the number of sub-modules for the upper and lower in the jth leg of the sth terminal.
In order to achieve an optimal performance all modules must have the same number of sub-modules. In
this conditions, and for the proper operation of the converter, the sum of the sum-modules in state on
between the upper and lower arms in each leg must be always constant. Consequently, the sum of the
upper ans lower index number must be always equals to one for all legs.

Therefore the multi-terminal converter dynamics with 2 phases and 3 terminals could be expressed,
in the first instance, by the following non linear system.

Λẋ = Γ(u)x+B


x = [

12︷ ︸︸ ︷
..,vmui, j,vmli, j, ..,

12︷ ︸︸ ︷
.., iui, j, ili, j, ..,

4︷ ︸︸ ︷
ip1,1, ip2,1, ip1,2, ip2,2]

T

B = [

12︷ ︸︸ ︷
..,0, ..,

12︷ ︸︸ ︷
..,VDCi,VDCi, ..,

4︷ ︸︸ ︷
..,0, ..]T

u = [nu1,1,nl1,1, ...,nu2,3,nl2,3]
T

(4)

where x,B ∈ R28, and in u ∈ R12 are the control variables (which are always positive and bounded).
The matrix Λ ∈ R28×28 has the following form:

Λ =

[
Λ11 Λ12
Λ21 Λ22

]
=

[
I12 0
0 Λ22

]
; Λ22 =

[
Λa

22 Λb
22

(Λb
22)

T Λc
22

]
∈ R16×16; Λ

c
22 =

[
Σ1 S
S Σ2

]
∈ R4×4 (5)

where Σs = diag(σs
1, ..,σ

s
k) ∈ R2×2 , ∀s ∈ {1,2}, with σs

i = Lti,s +Lpi,s +Lti,n +Lpi,n ∀i ∈ {1,2,3}, and
the index n refers to the terminal n. The terms S are defined as S = diag(..,Lti,n+Lpi,n, ..) ∈R2×2 Matrix
Λa

22 is:

Λ
a
22 =


Lu1,1 +Lt1,1 −Lt1,1 .. 0 0
−Lt1,1 Ll1,1 +Lt1,1 .. 0 0

...
...

. . .
...

...
0 0 .. Lu2,3 +Lt2,3 −Lt2,3
0 0 .. −Lt2,3 Ll2,3 +Lt2,3

 ∈ R12×12 (6)

Matrix (Λb
22)

T ∈ R4×12 is shown in equation (7).

(Λb
22)

T =

−Lt1,1 Lt1,1 0 0 0 0 0 0 Lt1,3 Lt1,3 0 0
0 0 −Lt2,1 Lt2,1 0 0 0 0 0 0 Lt2,3 Lt2,3
0 0 0 0 −Lt1,2 Lt1,2 0 0 Lt1,3 Lt1,3 0 0
0 0 0 0 0 0 −Lt2,2 Lt2,2 0 0 Lt2,3 Lt2,3

 (7)

On the other hand, the matrix Γ(u) ∈ R28×28 has the following form:

Γ(u) =
[

012×12 Γ12(u)
Γ21 Γ22

]
; Γ21 =

[
−I12×12

04×12

]
∈ R16×12; Γ12(u) =−U(u) ·C−1 ·ΓT

21 ∈ R12×16 (8)

where U(u) ∈ R12×12 is a diagonal matrix which includes the control variables, and C ∈ R12×12 is a
diagonal matrix which includes the capacitance of each sub-module, see (9).

U(u) = diag [Nu1,1 ·nu1,1,Nl1,1 ·nl1,1, ..,Nl2,3 ·nl2,3] ; C = diag [Cu1,1,Cl1,1, ..,Cl2,3] (9)



And finally, matrix Γ22 ∈ Rk(3n−1)×k(3n−1) is equal to −Λ22 by changing only the coefficients of the
inductances by the respective resistances. As matrix Λ is invertible, then is possible to write the system
(4) in the following classic form:

ẋ = A(u)x+B; A(u) = Λ
−1 ·Γ(u) =

[
0 Γ12(u)

Λ
−1
22 ·Γ21 Λ

−1
22 ·Γ22

]
=
[

0 A12(u)
A21 A22

]
; B = Λ

−1 ·B ∈ R28) (10)

At this point, it is important to realize that the system is not linear, since the input u is multiplied by
the state x, but if we apply the theory of switching systems [14], we can transform the same problem in
another which will be composed of a finite number of linear systems, as many as possible combinations
between the control variables could appear. From equation (10), we can note as all of these possible linear
system, which appear variating the input u, have always the same equilibrium point. This fact should not
surprise us, moreover from the point of view of physics is consistent. Basically, the change in the control
variables is the same as if we change the total capacity of each module. Due the structure of the system,
where inductances are placed in series with the capacitors in the upper and lower arms, in steady state the
current through these arms will be zero whatever the combination of control variables u, and therefore
the voltage drop in the capacitor will always be the same. From the point of view of switched control
theory the fact that all systems have the same equilibrium point, is very important in order to prove the
global stability of the system and to find a global Lyapunov function, as will be explained in section 2.3.

Another important remark is that, in this study we have not used the commonly called circulating
current, which is habitually used in the literature for MMC applications [12, 13]. Operation with this
virtual variable, which is the supposed current that is passing through the mesh which includes upper and
lower arm of the same leg. This fact is only true if the resistances and inductances are exactly the same,
and it is very difficult to be true in real applications.

2.3 Stability.

Firstly, it is straightforward to verify that matrix Λ shown in (5) is invertible. Moreover we are going to
prove that it is positive definite. We proceed as follows, equation (5) could be rewritten as:

Λ =

[
I2nk×2nk 0

0 Λ2,2

]
=

I2nk×2nk 0 0
0 Λa

2,2 Λb
2,2

0 (Λb
2,2)

T Λc
2,2

 (11)

therefore, it is clear that if, and only if Λ2,2 , defined in equation (6), is positive definite then matrix Λ is
positive definite also. The next Lemma 1 and Lemma 2 will give us sufficient conditions for achieve that
matrix Λ22 will be positive definite.

Lemma 1 Let n, l ∈ N∗, A11 ∈ Rn×n, A12 ∈ Rn×l , A21 ∈ Rl×n, A22 ∈ Rl×l and

A =

[
A11 A12
A21 A22

]
∈ R(n+l)×(n+l), (12)

A is positive definite if, and only if, A22−A21 ·A−1
11 ·A12 is positive definite and A11 is positive definite (or

equivalently, if, and only if A22 is positive definite and A11−A12 ·A−1
22 ·A21 is positive definite).

Lemma 2 Let n,k ∈ N∗, let A ∈ R(nk)×(nk) be a matrix defined as follows:

A =


A1 B .. B
B A2 .. B
...

...
. . .

...
B B .. An

 (13)

where Ai ∈Rk×k is defined as Ai = diag(α1
i , ..,α

k
i ) ∀ i∈{1, ..n} and B∈Rk×k equals to B= diag(β1, ..,βk).

If ∀i ∈ {1, ..n}, and ∀ j ∈ {1, ..k}, α
j
i > β j ≥ 0 then A is positive definite.



2.3.1 Equilibrium points.

Now we study the form of the equilibrium points, and we will see for any different input u all the systems
have the same equilibrium point, as discussed before.

In the equilibrium (x∗), if we define:

x∗ = [

12︷ ︸︸ ︷
..,v∗ui, j,v

∗
li, j, ..,

12︷ ︸︸ ︷
.., i∗ui, j, i

∗
li, j, ..,

4)︷ ︸︸ ︷
i∗p1.1, .., i

∗
pk,1, .., i

∗
pk,n−1]

T = [

12︷︸︸︷
x∗v ,

12︷︸︸︷
x∗i ,

4︷︸︸︷
x∗ip ]T

from systems (4) and (10), and for any bounded input u 6= 0, it is clear that:−Λ
−1
22 ·Γ22

[
x∗i
x∗ip

]
+Λ

−1
22 ·
[

I
0

]
· x∗v−Λ

−1
22 ·
[
V
0

]
= 0

U(u) ·C−1 · x∗i = 0
(14)

where V = [..,VDCi,VDCi, ..]
T ∈R2nk in concordance with equation (4). From (14) as ∃(U(u)))−1 if u 6= 0,

then x∗i = 0, and consequently:

−Γ22

[
0

x∗ip

]
+

[
x∗v
0

]
=

[
V
0

]
;as Γ22 =

[
Γa

22 Γb
22

(Γb
22)

T Γc
22

]
⇒ Γ

c
22 · x∗ip = 0⇒ x∗ip = 0⇒ x∗v =V (15)

Summarizing, for the system (4) and for any input u all the equilibrium points have always the form:
x∗v =V , x∗i = 0 and x∗ip = 0

2.3.2 Stability.

The follow theorem 1 summarizes the stability proposed for of this MMC converter for a general case
with k phases and n terminals.

Theorem 1 The converter described by (4) is globally exponentially stable for any bounded control
variable defined in (4).

Proof.- With the same reasoning as for Λ, we can prove that Γ(u) is always negative definite for any
u bounded, since the elements of Γ22 have opposite sign than the Λ22 ones.

All possible systems that can exist, which are derived from all possible combinations for the control
variables u, have the same point of equilibrium as has been shown above. Consequently, if we find a
global Lyapunov function for all of them, the theorem will be prove.

The matrix A(u) of the system (4) could be rewritten as:

A(u) = Λ
−1 ·Γ(u) =

[
0 −C−1 ·U(u) ·ΓT

21
Λ
−1
22 ·Γ21 Λ

−1
22 ·Γ22

]
; Λ
−1
22 =

[
M a M b

(M b)T M c

]
(16)

where M a and M c are symmetric and positive definite matrices.
If we suppose that the equilibrium point of system (4) could be rewritten as: x∗ =−A(u)−1 ·B , and

if we define, x̃ = x− x∗, then the system (4) becomes to: ˙̃x = A(u) · x̃.
If we consider the Lyapunov function shown in (17), is clearly a positive definite function since P is

positive definite by means of Lemma 1 and Lemma 2.

Ṽ = x̃T Px̃; P =

U−1 ·C εI 0
εI Λa

22 Λb
22

0 (Λb
22)

T Λc
22

 (17)

Therefore, Ṽ is always positive ∀ x̃ 6= 0. The parameter ε is chosen as ε2 < λ0C0/um, where we have
taken into account that λ0 = min(σ(Λ22))

1, C0 is the minimum value of sub-module capacitors, and um

is the maximum value of the control variable u.
1σ(A) is the spectrum of A.



On the other hand:

PA+AT P =

 −2 · ε ·M a ε · [M a M b] ·Γ22

ε ·Γ22 ·
[

M a

(M b)T

]
2 ·
(

Γ22 + ε ·
[
U ·C−1 0

0 0

]) (18)

and applying Lemma 1 it holds that ∃δ > 0 such that if 0 < ε < δ the matrix AP+PT A shown in (18)
is negative definite, and consequently the time derivate of Lyapunov function defined in (17) is always
negative. Consequently, for any control variable u, the Lypaunov function defined in (17) is positive
definite and its time derivate is always negative definite. This means that the the system defined in (4) is
asymptotically stable.

2.4 Sinusoidal signal generation

If we connect gradually the capacitors in sequence, a sinusoidal voltage will appear between two phases
as shows figure 2. It is considered that the signals for the first arm are used as reference for the other
arms of the same terminal. In figure 2 appears the parameter m, which is defined as the phase difference
between the pulse control signals of the capacitors in one arm (it is noteworthy that duty cycle in each
signal is always 50 %). This value depends on the number of sub-modules per arm. On the other way,
the parameter µ is the phase difference between the control signal for different arms and it depends on
the number of arms in each terminal.

In this way, and from the viewpoint of control, only one insertion index value is required by terminal
in order to govern the converter. In equations (19) both parameters are defined, where T is the period
of the sinusoidal signals, N is the number of sub-modules per arm, and k is is the number of phases per
terminal.

Figure 2: Sinusoidal signal generation.

m ∈ R, 0≤ m≤ T
2

s.t m =
T/4
N

; µ ∈ R, 0≤ µ≤ T
2

s.t µ =
T
k

(19)

If we want to obtain a phase voltage (Vab) with an amplitude equal to N− i, where i ∈ N, then we
have to advance the pulse signal for the corresponding arm i intervals of length m with respect to value
µ, which corresponds for a phase voltage (Vab) with an amplitude equals to N, as figure 2 shows. In this
way, we have achieved that all capacitors are always used the same amount of time. Also, we can remark
that in the phase voltage appears a landing whose length is equal to (i+ 1)m, but the value for the first



harmonic of this signal is always displaced the value µ with respect to the reference. In consequence, the
obtained phase voltages at each terminal are uniformly separated according to the number of arms that
there exists, as shown equation (20):

Vab = n j ·VDC, j · sin(ω · t + 2π

k
) (20)

where n j is the insertion index and VDC, j is the DC voltage of the grid j.
The reached voltage has not a pure sinusoidal form, but if we consider sufficient sub-modules, it can

be approximated by a sine. When the number of sub-modules is not big enough, it is interesting to study
the harmonics of the created signals, in order to improve the behaviour of the converter. In subsection
2.6 a discussion in order to improve the harmonics is presented.

2.5 Balancing

Although all capacitors are connected the same amount of time, it is also important the order of the
connection in each cycle, since the instantaneous currents are not the same for each interval of each
cycle. Therefore, depending on the state of charge of each capacitor (WC), the sequence will vary in each
cycle. The less charged capacitor will be connected in the first interval, and the more charged in the
last interval of each cycle. Thanks to this procedure, we can achieve that all capacitors are kept always
charged with close values between them.

2.6 Harmonics study

The problem of the harmonics for AC systems causes many disadvantages, including lower quality of
the signal and therefore greater losses. In addition, for electronic devices, due to their discontinue nature
the problem is increased. Therefore it is interesting to study them, especially if the number of modules
is not very high.

A comparison between two control philosophies for the switches is shown. The first one considers
that the turn on of them have a constant separation (variable m defined above). In the second the turn on
is governed by a law in order to achieve that the first harmonic of the generated signal will have unity
amplitude and the amplitude of the high order harmonics will be small. The idea is as follows, if we
consider that we have N sub-modules, then we have N steps. If we define a1 as the time necessary to
achieve the value 1/N of the amplitude of the sine as shows figure 3, we can chose d1 in the form that
the area enclose by the sine function between 0 and a1 (the green area in figure 3), will be the same as
the area of rectangle with sides a1−d1 and 1/N (the hatched area in figure 3). Proceeding in analogous
form, we can obtain the general terms as show equations (21).

sin
( 2π

T a1
)
= 1

N ⇒ a1 =
T
2π

arcsin
( 1

N

)
⇒

∫ a1
0 sin

( 2π

T · t
)

dt = a1−d1
N ⇒ d1 =

T
2π
·
[
arcsin

( 1
N

)
−
(

N−
√

N2−1
)]

sin
( 2π

T a2
)
= 2

N ⇒ . . .⇒
∫ a2

a1
sin
( 2π

T t
)

dt = d2−a1
N +2 a2−d2

N ⇒ d2 =
T
2π

[
2 ·arcsin

( 2
N

)
−arcsin

( 1
N

)
−
(√

N2−1−
√

N2−4
)]

...
sin
( 2π

T aN
)
= N

N ⇒ . . .⇒ dp =
T
2π

[
p ·arcsin

( p
N

)
− (p−1)arcsin

(
p−1
N

)
−
(√

N2− (p−1)2−
√

N2− p2
)]

(21)

In table I we can observe the different harmonics of both philosophies for N = 5. Another important

Table I: Harmonic amplitudes

Harmonics order
1 3 5 7 9 11 13 15

Mode 1 0.82 0.093 0.036 0.020 0.014 0.012 0.011 0.012
Mode 2 1 0.008 0.009 0.004 0.005 0.016 0.020 0.007

consideration is that with both philosophies the duty cycle for each switch is always 50%.



Figure 3: Harmonic construction.

2.7 Power transport explanation

The power transfer between terminals could be explained as follows. Due to all voltages at each terminal
between equivalent phases are in phase and have the same frequency, then the power direction in each
terminal will depend on the amplitude of voltages, or equivalently, the insertion indices. Therefore the
power goes to the higher voltage values to lower voltages.

However, another important explanation is required. In order to the energy can flow in all directions
for all terminals, it is very important the relation between the different values of the DC voltage in each
external network as well as the number of sub-modules. If we assume that the system is well balanced
in steady-state, the voltage in each capacitor of each sub-module will be as shown the equation (22):

uC,ul,i =
VDC,i

N
(22)

so depending on the insertion index and the values of the voltage in each capacitor, it could be possible
to transmit power in any direction, it is even possible to transmit power from networks with smaller
DC voltage to other networks with higher DC values. In fact, the relationship that must be satisfied to
transmit power from terminal ith to jth is shown in equation (23). The key issue is the amplitude of the
AC internal generated signals.

uC,ul,i ·ni =
VDC,i ·ni

N
>

VDC, j ·n j

N
(23)

Also it could be noted that the best performance is obtained when the relationship between the dif-
ferent DC voltages of each network are closer between them, because the losses are smaller.

3 Simulations

A three terminal converter with two phases based in MMC technology, shown in figure 1 is tested in
order to verify the proper operation of the control philosophy, which has been explained in section 2.3

The voltage of each DC grid are: VDC,1 = 5kV , VDC,2 = 6.25kV and VDC,3 = 7.5kV . The main values
of MMC are shown in table II.

Table II: Simulation parameter values

MMC parameters
R1 Resistance arm 1 0.1 Ω

R2 Resistance arm 2 0.1 Ω

L1 Inductance arm 1 0.01 H
L2 Inductance arm 2 0.01 H
C Total module capacitance 0.01 F
f AC signals frequency 100 Hz



Figure 4: a) AC generated signal voltage b) Voltages for strategy 1 b) Voltages for strategy 2.

We can observe in figure 4a as during interval 0 ≤ t ≤ 10, the peak value of the voltage in terminal
1 is 5 kV (n1 = 1), 3.75 kV (n2 = 0.6) in terminal 2 and 3 kV (n3 = 0.4) in terminal 3. Consequently,
terminal 1 provides energy to terminals 2 and 3. In interval 10 ≤ t ≤ 20, the first and the second one
supply the energy to terminal 3 because the voltages are 5 kV (n1 = 1), 6.25 kV (n2 = 1) and 3 kV
(n3 = 0.4) respectively for each terminal. Finally during 20 ≤ t ≤ 30, as the voltage between points M
and M’ is equals to voltage in node 2, the terminal 3 provides the energy only to the terminal 1, and the
terminal 2 does not absorb or supply energy. The voltages in this last interval are 5 kV (n1 = 1), 6.25 kV
(n2 = 1) and 7.5 kV (n3 = 1) respectively for each terminal.

In figures 4a and 4b we observe with more precision the generated voltages with both strategies
explained in 2.6. We observe as with strategy 2 the signals have a form more similar to a sine than with
strategy 1. In figures 5a and 5b the phase currents for terminal 1 are shown.

Figure 5: a) Phase currents terminal 1 b) Phase currents terminal 1. Zoom.

Finally in figure 6a, we observe as all capacitors for each terminal remains always with the same
voltage according to the strategy adopted. In accordance with equation (22) we can remark that the
voltages for each capacitor are 1 kV , 1.25 and 1.5 kV respectively for each terminal. Figure 6b shows the
state of charge of the capacitors from the upper arm in the first terminal and first phase, we can appreciate
as the balancing philosophy is applied.

Figure 6: a) Capacitors state of charge b) Capacitors of the upper arm in the first terminal and first phase.



4 Conclusions

In this paper a multi-terminal DC/DC converter with 2 phases and 3 terminals is discussed using MMC
topology. A mathematical proof is given in order to guarantee the stability of the system. Although the
proof is valid for any values of DC voltages, in a real implementation the voltage relations between DC
sides will most likely be small in order to kept small losses. Anyway, and thanks to the simulations we
can conclude that the proposed control is valid for the use of these types of converters.

In addition, a deep study on how to improve the harmonics in the generated signals is shown. Also
a philosophy of balancing is implemented in order to favour the use of capacitors in each module in a
well-adjusted way.
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