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SEQUENTIAL DESIGN OF EXPERIMENTS FOR ESTIMATING

PERCENTILES OF BLACK-BOX FUNCTIONS

T. LABOPIN-RICHARD AND V. PICHENY

Abstract. Estimating percentiles of black-box deterministic functions with random
inputs is a challenging task when the number of function evaluations is severely re-
stricted, which is typical for computer experiments. This article proposes two new
sequential Bayesian methods for percentile estimation based on the Gaussian Process
metamodel. Both rely on the Stepwise Uncertainty Reduction paradigm, hence aim
at providing a sequence of function evaluations that reduces an uncertainty measure
associated with the percentile estimator. The proposed strategies are tested on several
numerical examples, showing that accurate estimators can be obtained using only a
small number of functions evaluations.

1. Introduction

In the last decades, the question of designing experiments for the efficient exploration
and analysis of numerical black-box models has received a wide interest, and metamodel-
based strategies have been shown to offer efficient alternatives in many contexts, such as
optimization or uncertainty quantification. We consider here the question of estimating
percentiles of the output of a black-box model, with the help of Gaussian Process (GP)
metamodels and sequential sampling. More precisely, let g : X ⊂ Rd → R denote the
output of interest of the model, the inputs of which can vary within X. We assume here
that the multivariate input X is modelled as a random vector; then, our objective is to
estimate a percentile of g(X):

(1) qα(g(X)) = qα(Y ) = F−1Y (α),

for a fixed level α ∈]0, 1[, where F−1U := inf{x : FU (x) ≥ u} denotes the generalized
inverse of the cumulative distribution function of a random variable U . We consider
here only random vectors X and functions g regular enough to have FY

(
F−1Y (α)

)
= α

(that is, FY is continuous). Since the level α is fixed, we omit the index in the sequel.
A natural idea to estimate a percentile consists in using its empirical estimator: having

at hand a sample (Xi)i=1,...,n of the input law X, we run it through the computer model
to obtain a sample (Yi)i=1,...,n of the output Y . Then, denoted Y(k) the k-th order
statistic of the previous sample, the estimator

(2) qn := Y(bnαc+1),

is consistent and asymptotically Gaussian under weak assumptions on the model (see
[6] for more details). However, for computationally expensive models, the sample size
is drastically limited, which makes the estimator (2) impractical. In that case, one
may replace the sample (Xi)i by a sequence of well-chosen points that provide a useful
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information for the percentile estimation. Besides, if the points Xi are not sampled with
the distribution of X, the empirical percentile (2) is biased, so another estimator must
be used.

In [3], the authors proposed an estimator based on the variance reduction or on
the controlled stratification and give asymptotic results. Nevertheless, the most usual
approach of this problem is a Bayesian method which consists in assuming that g is the
realization of a well-chosen Gaussian process. In this context, [16] propose a two-step
strategy: first, generate an initial set of observations to train a GP model and obtain
a first estimator of the percentile, then increase the set of observations by a second
set likely to improve the estimator. In [12], the authors proposed a sequential method
(called GPQE and GPQE+ algorithms), based on the GP-UCB algorithm of [8], that
is, making use of the confidence bounds provided by the Gaussian Process model.

In this paper we propose two new algorithms based on Stepwise Uncertainty Reduction
(SUR), a framework that has been successfully applied to closely related problem such
as optimization [17], or the dual problem of percentile estimation, the estimation of a
probability of exceedance [2, 4]. A first strategy has been proposed for the percentile
case in [1] and [11] that rely on expensive simulation procedures. Nevertheless, finding a
statistically sound algorithm with a reasonable cost of computation, in particular when
the problem dimension increases, is still an open problem.

The rest of the paper is organized as follow. In Section 2, we introduce the basics
of Gaussian Process modelling, our percentile estimator and the Stepwise Uncertainty
Reduction framework. Section 3 describes our two algorithms to estimate a percentile.
Some numerical simulations to test the two methods are presented in Section 4, followed
by concluding comments in Section 5. Most of the proofs are deferred to the Appendix.

2. Gaussian Process model

2.1. Model definition
We consider here the classical Gaussian Process framework in computer experiments

[20, 21, 18]: we suppose that g is the realization of a GP denoted by G(.) with known
mean µ and covariance function c.

Given an observed sample An = {(x1, g1), (x2, g2), . . . (xn, gn)} with all xi ∈ X and
gi = g(xi), the distribution of G|An is entirely known:

L (G|An) = GP (mn(.), kn(., .)) ,

with, ∀x ∈ X,

mn(x) = E(G(x)|An) = cn(x)TC−1n gn,

kn(x,x′) = Cov
(
G(x), G(x′)|An

)
= c(x,x′)− cn(x)TC−1n cn(x′),

where we denote cn(x) = [c(x1,x), . . . , c(xn,x)]T , Cn = [c(xi,xj)]1≤i,j≤n and gn =
[g1, . . . , gn]. In the sequel, we also denote s2n(x) = kn(x,x).

We use here the standard Universal Kriging framework, where the covariance function
depends on unknown parameters that are inferred from An, using maximum likelihood
estimates for instance. Usually, the estimates are used as face value, but updated when
new observations are added to the model.

In the sequel, we will need the following property of the kriging model (see [5]).
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Proposition 2.1. Moments at step n + 1 are linked to the moments at step n by the
one-step update formula:

mn+1(x) = mn(x) +
kn(xn+1,x)

s2n(xn+1)
(gn+1 −mn(xn+1))

s2n+1(x) = s2n(x)− k2n(xn+1,x)

s2n(xn+1)

kn+1(x,x
′) = kn(x,x′)− kn(xn+1,x)kn(xn+1,x

′)

sn(xn+1)2

,

where (xn+1, gn+1) is a new observational event.

2.2 Percentile estimation
Since each call to the code g is expensive, the sequence of inputs to evaluate, {x1, . . . ,xn},

must be chosen carefully to make our estimator as accurate as possible. The general
scheme based on GP modelling is of the following form:

• For an initial budget N0, we build an initialisation sample (xi0, g(xi0))i=1...N0 , typ-
ically using a space-filling strategy, and compute the estimator of the percentile
qN0 .
• At each step n + 1 ≥ N0 + 1 and until the budget N of evaluations is reached:

knowing the current set of observations An and estimator qn, we choose the next
point to evaluate x∗n+1, based on a so-called infill criterion. We evaluate g(x∗n+1)
and update the observations An+1 and the estimator qn+1.
• qN is the estimator of the percentile to return.

In the following, we describe first the estimator we choose, then the sequential strategy
adapted to the estimator.
Percentile estimator. First, from a GP model we extract a percentile estimator.
Considering that, conditionally on An, the best approximation of G(x) is mn(x), an
intuitive estimator is simply the percentile of the GP mean:

(3) qn := q(mn(X)) = q (E [G(X)|An]) .

This is the estimator chosen for instance in [16].
Another natural idea can be to consider the estimator that minimizes the mean square

error E
(
(q − qn)2

)
among all An-measurable estimator:

(4) qn = E (q(G(X))|An) .

This estimator is used for instance in [12]. Despite its theoretical qualities, this estimator
suffers from a major drawback, as it cannot be expressed in a computationally tractable
form, and must be estimated using simulation techniques, by drawing several trajectories
of G(.), computing the percentile of each trajectory and averaging.

Hence, in the sequel, we focus on the estimator (3), which allows us to derive closed-
form expressions of its update when new observations are obtained, as we show in the
next section.
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Remark 2.1. In the case of the dual problem of the probability of failure estimation
u(g) = P(g(X) > u), this later estimator is easier to compute. Indeed, is shown in [2]:

E (u(G)|An) = E
(∫

X
1G>udPX

)
=

∫
X
pndPX ,

where pn(x) = Φ
(
mn(x)−u
sn(x)

)
, for Φ the cumulative distribution function of the standard

Gaussian distribution. This compact form is due to the possibility to swap the integral
and expectation, which is not feasible for the percentile case.

Sequential sampling and Stepwise Uncertainty Reduction. We focus here on
methods based on the sequential maximization of an infill criterion, that is, of the form:

(5) x∗n+1 = argmax
xn+1∈X

Jn(xn+1),

where Jn is a function that depends on An (through the GP conditional distribution)
and qn.

Intuitively, an efficient strategy would explore X enough to obtain a GP model rea-
sonably accurate everywhere, but also exploit previous results to identify the area with
response values close to the percentile and sample more densely there.

To this end, the concept of Stepwise Uncertainty Reduction (SUR) has been proposed
originally in [9] as a trade-off between exploitation and exploration, and has been suc-
cessfully adapted to optimization [23, 17] or probability of failure estimation frameworks
[2, 4]. The general principle of SUR strategies is to define an uncertainty measure related
to the objective pursued, and add sequentially the observation that will reduce the most
this uncertainty. The main difficulty of such an approach is to evaluate the potential
impact of a candidate point xn+1 without having access to g(xn+1) = gn+1 (that would
require running the computer code).

In the percentile estimation context, [11] and [1] proposed to choose the next point
to evaluate as the minimizer of the conditional variance of the percentile estimator (4).
This strategy showed promising results, as it substantially outperforms pure exploration,
and, in small dimension, manages to identify the percentile area (that is, where f is close
to its percentile) and choose the majority of the points in it. Nevertheless, computing
Vn(x) in [11] or [1] is very costly, as it requires drawing many GP realizations, which
hinders its use in practice for dimensions larger than two.

In next section, we propose other functions J that also quantify the uncertainty as-
sociated with our estimator, but which have closed forms and then are less expensive
to compute. To do so, we first exhibit the formula to update the current estimator qn
(build on An) to qn+1(xn+1) the estimator at step n+ 1 if we had chosen x∗n+1 = xn+1.

3. Main results

3.1. Update formula for the percentile estimator
In this section, we express the estimator qn+1(xn+1) as a function of the past obser-

vations An, the past percentile estimator qn, a candidate point xn+1 and its evaluation
gn+1.

We focus on the estimator (3), which is at step n the percentile of the random vec-
tor mn(X). Since no closed-form expression is available, we approach it by using the



SEQUENTIAL DESIGN OF EXPERIMENTS FOR ESTIMATING PERCENTILES OF BLACK-BOX FUNCTIONS5

empirical percentile. Let XMC = (x1
MC, . . . ,x

l
MC) be an independent sample of size l,

distributed as X. We compute mn(XMC) and order this vector by denoting mn(XMC)(i)
the i-th coordinate. Then we choose

(6) qn = mn(XMC)(blαc+1).

Remark 3.1. Since the observation points (x1, . . . ,xn) do not follow the distribution of
X, they cannot be used to estimate the percentile. Hence, a different set (XMC) must be
used.

In the sequel, we denote by xqn the point of XMC such that

qn = mn(xqn).

This point is referred to as percentile point.
Now, let us consider that a new observation gn+1 = g(xn+1) is added to An. The key

of SUR strategies is to measure the impact of this observation on our estimator qn, that
is, express qn+1 = mn+1(x

q
n+1) as a function of gn+1 and xn+1.

First, by Proposition 2.1, we have:

(7) mn+1(XMC) = mn(XMC) +
kn(XMC,xn+1)

sn(xn+1)2
(gn+1 −mn(xn+1)) .

We see directly that once xn+1 is fixed, all the vector mn+1(XMC) is determined by the
value of gn+1. Our problem is then to find, for any gn+1 in R, which point of XMC is
the percentile point, that is, which point satisfies

(8) mn+1(XMC)blαc+1 = mn+1

(
xqn+1

)
.

Let us denote b = mn(XMC) and a = kn(XMC,xn+1), which are vectors of Rl, and

z = gn+1−mn(xn+1)
s2n(xn+1)

, so that the updated mean simply writes as a linear function of z,

b+az. Our problem can then be interpreted graphically: each coordinate of mn+1(XMC)
is represented by a straight line of equation:

(9) bi + aiz, i ∈ {1, . . . l},

and the task of finding xqn+1 for any value of gn+1 amounts to finding the blαc+1 lowest
line for any value of z.

We can first notice that the lines order changes only when two lines intersect each

other. There are at most L = l(l−1)
2 intersection points, which we denote I1, . . . IL,

in increasing order. We set I0 = −∞ and IL+1 = +∞, and introduce (Bi)0≤i≤L, the
sequence of intervals between intersection points:

(10) Bi = [Ii, Ii+1] for i ∈ [0, L]

For any z ∈ Bi, the order of (bi + aiz) is fixed.
Denoting ji the index of the blαc+ 1 lowest line, we have:

(11) xqn+1 = xjiMC, z ∈ Bi,

the percentile point when z ∈ Bi, which we henceforth denote xqn+1(Bi).
Finally, we have shown that
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Proposition 3.1. Under previous notations, at step n (when we know An, qn), for the
candidate point xn+1 we get

qn+1(xn+1, gn+1) =
L∑
i=0

mn+1(x
q
n+1(Bi))1z∈Bi .

Intuitively, the updated percentile is equal to the updated GP mean at one of the
XMC points, that depends on which interval gn+1 (or equivalently, z) falls.

Figure 1 provides an illustrative example of this proposition for l = 5, and α = 40%.
The values of a and b are given by a GP model, which allows us to draw the straight
lines (black) as a function of z. Each line corresponds to a point xiMC. The intersections
for which the percentile point changes are shown by the vertical lines. For each interval,
the segment corresponding to the percentile point (second lowest line) is shown in bold.
We see that depending on the value of z (that is, the value of gn+1), the percentile point
changes. On the example, ji takes successively as values 2, 3, 1, 4, 3 and 5.

−2 0 2 4

−
1

0
1

2

z

d

Figure 1. Evolution of the percentile point as a function of the value of
z. Each plain line represents a point of XMC, and the vertical lines the
relevant intersections Ii. The second lowest line is shown in bold.

Remark 3.2. Although the number of intersections grows quadratically with the MC
sample size, finding the set of percentile points can be done very efficiently, based on two
important elements: first, the number of distinct percentile points is much smaller than
the number of intersections (five and ten, respectively, on Figure 1, but this difference
increases rapidly with l); second, the order of the straight lines remains the same ex-
cept for two elements for two adjacent intervals. This later feature allows us to avoid
numerous calls to sorting functions.

In the following, the notations Bi and L denote the effective intervals and number of
intervals, respectively, that is, the intervals for which the percentile points are different.

3.2. Infill criterion based on probability of exceedance
The proposition 3.1 allows us to express the percentile estimator at step n + 1 as a

function of the candidate point xn+1 and corresponding value gn+1. In this section, we



SEQUENTIAL DESIGN OF EXPERIMENTS FOR ESTIMATING PERCENTILES OF BLACK-BOX FUNCTIONS7

use this formulation to define a SUR criterion, that is, an uncertainty measure related
to our estimator that can be minimized by a proper choice of xn+1.

This criterion is inspired from related work in probability of failure estimation [2] and
multi-objective optimization [17], that take advantage of the closed-form expressions of
probabilities of exceeding thresholds in the GP framework.

By definition, the percentile is related to the probability of exceedance by

(12) P(G(X) ≥ q(G(X))) = 1− α.

Our idea is the following. The probability P(G(x) ≥ qn|An), available for any x ∈ X,
is in the ideal case (G is exactly known) either zero or one, and, if qn = q(G(X)), the
proportion of ones is exactly equal to 1− α. At step n, a measure of error is then:

(13) Jprob
n =

∣∣∣∣∫
X
P(G(x) ≥ qn|An)dx− (1− α)

∣∣∣∣ = |Γn − (1− α)| ,

with Γn =
∫
X P (G(x) ≥ qn|An) dx.

Following the SUR paradigm, the point we would want to add at step n + 1 is the
point x∗n+1 satisfying

(14) x∗n+1 = argmin
xn+1∈X

Jprob
n+1 (xn+1).

As seen in proposition 3.1, qn+1, and consequently Jprob
n+1 (xn+1), depend on the candidate

evaluation gn+1, which makes it computable only by evaluating g. To circumvent this
problem, we replace gn+1 by its distribution conditional on An. We can then choose the
following criterion to minimize (indexed by xn+1 to make the dependency explicit):

(15) Jprob
n (xn+1) =

∣∣EGn+1 (Γn+1(x+ 1))− (1− α)
∣∣

where now,

(16) Γn+1(xn+1) =

∫
X
P (G(x) ≥ qn+1|An+1) dx,

with An+1 = An+1 ∪ (xn+1, Gn+1) and Gn+1 is still in its random form.
We show that

Proposition 3.2. Using previous notations and under our first strategy,

Jprob
n (xn+1) =∣∣∣∣∣
∫
X

L−1∑
i=1

[
Φrni

(
ein(xn+1; x), f in(xn+1, Ii+1)

)
− Φrni (xn+1,x)

(
ein(xn+1; x), fn(xn+1, Ii)

)
+ Φrni

(
(ein(xn+1; x), f in(xn+1, I1)

)
+ Φ−rni

(
ein(xn+1; x),−f in ((xn+1, IL)

) ]
dx− (1− α)

∣∣∣∣∣
where

ein(xn+1; x; xqn+1(Bi)) =
mn(x)−mn(xqn+1(Bi))

σW
, f in(xn+1; Ii) = Iisn(xn+1),
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σW = sn(x)2 +
kn(xqn+1(Bi),xn+1)

2

sn(xn+1)2
− 2

kn(xqn+1(Bi),xn+1)kn(x,xn+1)

sn(xn+1)2

and Φrin
is the cumulative distribution function (CDF) of the centered Gaussian law

of covariance matrix

K =

(
1 rin
rin 1

)
with

rin =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)√

sn(x)2 +
kn(x

q
n+1(Bi),xn+1)2

sn(xn+1)2
− 2

kn(x
q
n+1(Bi),xn+1)kn(x,xn+1)

sn(xn+1)2
sn(xn+1)

.

The proof is deferred to the Appendix.
Despite its apparent complexity, this criterion takes a favourable form, since it writes

as a function of GP quantities at step n (mn, sn and kn), which can be computed very
quickly once the model is established. Besides, it does not require conditional simulations
(as the criterion in [12]), which is a decisive advantage both in terms of computational
cost and evaluation precision.

Let us stress here, however, that evaluating this criterion requires a substantial compu-
tational effort, as it takes the form of an integral over X, which must be done numerically.
An obvious choice here is to use the set XMC as integration points. Also, it relies on
the bivariate Gaussian CDF, which also must be computed numerically. Very efficient
programs can be found, such as the R package pbivnorm [13], which makes this task
relatively inexpensive.
3.3. Infill criterion based on the percentile variance

Accounting for the fact that, although not relying on conditional simulations, Jprob

is still expensive to compute, we propose here an alternative, that does not require
numerical integration over X.

Since we want qn to converge to the quantile, it is important that this estimator be-
comes increasingly stable. The variance of qn+1|An+1 is a good indicator of this stability,
as it gives the fluctuation range of qn+1 as a function of the different possible values of
gn+1. However, choosing the point that minimizes at each step n this variance has no
sense here, as choosing xn+1 ∈ {x1, . . . ,xn} (that is, duplicating an existing observation)
would result in Var(qn+1|An+1) = 0.

Inversing the SUR paradigm, we propose to choose the point that maximizes this
variance. By doing so, we will obtain the sequence of points which evaluations have a
large impact on the estimator value, hence reducing sequentially the instability of our
estimator:

(17) JVar
n (xn+1) = VarGn+1(qn+1|An+1)

where once again An+1 denotes the conditioning on An ∪ (xn+1, Gn+1), with Gn+1 ran-
dom. We can show that:
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Proposition 3.3. Using the previous notations, conditionally on An and on the choice
of xn+1:

JVar
n (xn+1) =

L∑
i=1

[
kn(xqn+1(Bi),xn+1)

]2
V (sn(xn+1), Ii+1, Ii)Pi

+
L∑
i=1

[
mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ii+1, Ii)

]2
(1− Pi)Pi

− 2

L∑
i=2

i−1∑
j=1

[
mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ii+1, Ii)

]
Pi[

mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ij+1, Ij)
]
Pj ,

where:
Pi = Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii),

E(sn(xn+1), Ii+1, Ii) =
1

sn(xn+1)

(
φ(sn(xn+1)Ii+1)− φ(sn(xn+1)Ii)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

)
,

and

V (sn(xn+1), Ii+1, Ii) =

1

sn(xn+1)2

[
1 +

sn(xn+1)φ(Ii+1)− sn(xn+1)φ(Ii)

Φ(Ii+1)− Φ(Ii)
−
(
φ(Ii+1)− φ(Ii)

Φ(Ii+1)− Φ(Ii)

)2
]
,

for Φ and φ respectively the cumulative distribution function and density function of
the standard Gaussian law.

The proof is deferred to Appendix.
Again, this criterion writes only as a function of GP quantities at step n (mn, sn and

kn). As it does not require numerical integration nor the bivariate CDF, it is considerably
cheaper to compute than the previous one.

Figure 2 provides an illustration of the concepts behind this criterion, by showing
how different values of gn+1 affect the estimator. Here, one updated mean is drawn for
each interval Bi (that is, with z taking its value in the middle of the interval). The
corresponding 90% percentiles, as well as the percentile points xqn+1 vary substantially,
depending on gn+1, which results in a large variance Var(qn+1|An+1). Hence, the point
xn+1 = 0.9 can be considered as highly informative for our estimator.

4. Numerical simulations

4.1. Two-dimensional example
As an illustrating example, we use here the classical Branin test function (see [7]

Equation 19 in Appendix). On [0, 1]2, the range of this function is approximately [0, 305].
We take: X1, X2 ∼ U [0, 1], and search for the 85% percentile. The initial set of

experiments consists of seven observations generated using Latin Hypercube Sampling
(LHS), and 11 observations are added sequentially using both SUR strategies. The GP
models learning, prediction and update is performed using the R package DiceKriging

[19]. The covariance is chosen as Matérn 3/2 and the mean as a linear trend.
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Figure 2. Illustration of the JVar criterion. Left: GP model (black bold
line and grey area) and updated GP mean (other lines) depending on the
value of gnew (circles) for xn+1 = 0.9. The corresponding 90% percentiles
qn+1 are shown with the triangles. Right: percentile values only, indexed
by the corresponding percentile points.

For XMC, we used a 1000-point uniform sample on [0, 1]2. For simplicity purpose, the
search of xn+1 is performed on XMC, although a continuous optimizer algorithm could
have been used here. The actual percentile is computed using a 105-point sample.

Figure 4 reports the final set of experiments, along with contour lines of the GP model
mean, and Figure 5 the evolution of the estimators. In addition, Figure 3 shows three
intermediate stages of the JVar

n run.
Figure 3 reveals the dynamic of our strategy: from the initial design of experiments,

the top right corner of the domain is identified as the region containing the highest 15%
values. Several observations are added in that region until the kriging approximation
becomes accurate, then a new region (bottom left corner) is explored (square point,
Figure 3 right).

The two strategies lead to relatively similar observation sets (Figure 4), that mostly
consist of values close to the contour line corresponding to the 85th percentile (exploita-
tion points), and a couple of space-filling points (exploration points). With 18 obser-
vations, both estimators are close to the actual value (in particular with respect to the
range of the function), yet additional observations may be required to achieve conver-
gence (Figure 5).
4.2. Four and six dimensional examples

We consider now two more difficult test functions, with four and six dimensions,
respectively (hartman and ackley functions, see Equations 20 and 21 in Appendix).
Both are widely used to test optimization strategies [7], and are bowl-shaped, multi-
modal functions.



SEQUENTIAL DESIGN OF EXPERIMENTS FOR ESTIMATING PERCENTILES OF BLACK-BOX FUNCTIONS11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Initial

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 iteration 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 iteration 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Final

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Initial

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 iteration 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 iteration 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Final

Figure 3. Contour lines of the GP mean and experimental set at three
different n values (7, 8, and 15) with the JVar

n criterion. The initial
observations are shown with white circles, the observations added by the
sequential strategy with blue circles, and the next point to evaluate with
violet squares. The line shows the contour corresponding to the percentile
estimate.
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Figure 4. Comparison of observation sets obtained using Jprob
n (left)

and JVar
n (right).

We take on both cases: X ∼ N
(
1
2 ,Σ

)
, with Σ a symmetric matrix with diagonal

elements equal to 0.1 and other elements equal to 0.05. The initial set of observations
is taken as a 30-point LHS, and 60 observations are added sequentially. A 3000-point
sample from the distribution of X is used for XMC (renewed at each iteration), and the
actual percentile is computed using a 105-point sample. Again, the GP covariance is
chosen as Matérn 3/2 and the mean as a linear trend.

The criteria are optimized as follow: a (large) set of 105 candidates is generated from
the distribution of X, out of which a shorter set of 300 “promising” points is extracted.

Those points are drawn randomly from the large set with weights equal to φ
(
qn−mn(x)
sn(x)

)
.

Hence, higher weights are given to points either close to the current estimate and/or
with high uncertainty. The criterion is evaluated on this subset of points and the best is
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Figure 5. Evolution of the percentile estimates using Jprob
n (left) and

JVar
n (right) for the 2D problem. The horizontal line shows the actual

85th percentile.

chosen as the next infill point. In addition, for JVar
n a local optimization is performed,

starting from the best point of the subset (using the BFGS algorithm, see [15]). Due

to computational constraints, this step is not applied to Jprob
n , which is more costly.

However, preliminary experiments have shown that only a limited gain is achieved by
this step.

As an baseline strategy for comparison purpose, we also include a “random search”,
that is, the xn+1 are sampled randomly from the distribution of X.

Several percentile levels are considered in order to cover a variety of situations: 5%
and 97% for the 4D problem and 15% and 97% for the 6D problem. Due to the bowl-
shape of the functions, low levels are defined by small regions close to the center of the
support of X, while high levels correspond to the edges of the support of X. Besides, it
is reasonable to assume that levels farther away from 50% are more difficult to estimate.

As an error metric ε, we consider the absolute difference between the percentile esti-
mator and its actual value. We show this error as a percentage of the variation range of
the test function. Since X is not bounded, the range is defined as the difference between
the 0.5 and 99.5 percentiles of g(X).

To assess the robustness of our approach, the experiments are run ten times for each
case, starting with a different initial set of observations. The evolution of the estimators
(average, lowest and highest error metric values over the ten runs) is given in Figures 6.

First of all, we see that except on one case (4D, α = 0.97 and Jprob
n ), on average both

strategies provide estimates with less than 2% error after approximately 30 iterations
(for a total of 60 function evaluations), which plainly justifies the use of GP models and
sequential strategies in a constrained budget context.

For d = 4, α = 0.05, both methods seem to converge to the actual percentile, Jprob
n

being slightly better, in particular in terms of consistency and for the latest steps.
For d = 4, α = 0.97, JVar

n reaches very quickly for all runs a good estimate (less
that 1% error), yet seems to converge then slowly to the exact solution. This might be

explained by the relative mismatch between the GP model and the test function. Jprob
n
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Figure 6. Evolution of the percentile estimates using Jprob
n (dashed

line), JVar
n (plain line) or random search (RS, dotted line) for the 4D

and 6D problems and several percentile levels. The lines show the aver-
age error and the shaded areas the 10% and 90% quantile errors over the
runs.

performs surprisingly poorly; we conjecture that a more exploratory behavior compared
to JVar

n hinders its performance here.
For d = 6, α = 0.15, both approaches reach consistently less than 1% error. However,

they outperform only moderately the random search strategy here. This might indicate
that for central percentile values, less gain can be achieved by sequential strategies, as
a large region of the design space needs to be learned to characterize the percentile,
making space-filling strategies for instance competitive.
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Finally, for d = 6, α = 0.97, both approaches largely outperform random search, yet
after a first few very efficient steps seem to converge only slowly to the actual percentile.

In general, those experiments show the ability of our approach to handle multi-modal
black-box functions, with input space dimensions typical of GP-based approaches. Our
results seem to indicate a better efficiency of the JVar

n criterion, yet the better convergence

with Jprob
n for d = 4, α = 0.05 might call for hybrid strategies, with early steps performed

with JVar
n and late steps with Jprob

n .

5. Concluding comments

We have proposed two efficient sequential Bayesian strategies for percentile estimation.
Both approaches rely on the analytical update formula for the GP-based estimator, which
has been obtained thanks to the particular form of the GP equations and the introduction
of the quantile point concept. Two criteria have then been proposed based either on
probability of exceedance or on variance, for which closed-form expression have been
derived, hence avoiding the use of computationally intensive conditional simulations.
Numerical experiments in dimensions two to six have demonstrated the potential of
both approaches.

There are of course some limitations of the proposed method, that call for future
improvements. Both strategies rely on the set XMC, which size is in practice limited by
the computational resources to a couple of thousands at most. This may hinders the use
of our method for extreme percentile estimation, or for highly multi-modal functions.
Combining adaptive sampling strategies or subset selection methods with our approaches
may prove useful in this context.

Accounting for the GP model error (due to an inaccurate estimation of its hyper-
parameters or a poor choice of kernel) is also an important task, that may improve
greatly the efficiency and robustness of the approach. Embrassing a fully Bayesian
approach (as for instance in [14, 10]) may help address this issue, yet at the price of
additional computational expense.
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6.1. Proof of Proposition 3.2

In the following, we denote En and Pn the expectation and the probability condition-
ally on the event An. Starting from Equation 16, we have:

EGn+1 (Γn+1(xn+1)) = EGn+1

[∫
X
P(G(x) ≥ qn+1)|An+1)dx

]
=

∫
X
EGn+1

[
En
[
1G(x)≥qn+1(xn+1)|Gn+1

]]
dx

=

∫
X
En
[
1G(x)≥qn+1(xn+1)

]
dx

=

∫
X
Pn(G(x) ≥ qn+1(xn+1))dx .
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We get then:

Jprob
n+1 (xn+1) =

∣∣∣∣∫
X
Pn(G(x) ≥ qn+1(xn+1))dx− (1− α)

∣∣∣∣ .
Now, to get an closed form of our criterion, we have to develop Pn(G(x) ≥ qn+1(xn+1)).

To do so, we use Proposition 3.1. Denoting Z = Gn+1−mn(xn+1)
sn(xn+1)2

, we have:

En
(
1G(x)≥qn+1(xn+1)

)
=

L∑
i=0

En
[
1G(x)≥mn+1(x

q
n+1(Bi)1Z∈Bi

]
=

L−1∑
i=1

(
Pn
[
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii+1

]
− Pn

[
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii

)]
)

+ Pn(G(x) ≥ mn+1(x
q
n+1(B1)) ∩ Z ≤ I1)

+ Pn(G(x) ≥ mn+1(x
q
n+1(BL)) ∩ Z ≥ IL) .

Now,

Tn : = Pn
(
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii

)
= Pn

(
mn+1(x

q
n+1(Bi))−G(x) ≤ 0 ∩ Z ≤ Ii

)
,

is the cumulative distribution function of the couple (mn+1(x
q
n+1(Bi) − G(x)), Z) :=

(W,Z) , at point (0, Ii). This random vector, conditionally on An is Gaussian. We
denote by M and R its mean vector and covariance matrix, respectively.

Thanks to Proposition 2.1, we have:

(18) mn+1(x
q
n+1(Bi)) = mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)Z ,

which gives

M =

(
mn(xqn+1(Bi))−mn(x)

0

)
, R =

(
Var(W ) Cov(W,Z)

Cov(W,Z) Var(Z)

)
,

with

Var(W ) := σW = sn(x)2 +
kn(xqn+1(Bi),xn+1)

2

sn(xn+1)2
− 2

kn(xqn+1(Bi),xn+1)kn(x,xn+1)

sn(xn+1)2
,

Cov(W,Z) =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)

sn(xn+1)2
and Var(Z) =

1

sn(xn+1)2
.

We can conclude by centering and normalizing:

Tn = Pn (W ≤ 0 ∩ Z ≤ Ii)

= P

(
W − (mn(xqn+1(Bi))−mn(x))√

V ar(W )
≤
mn(x)−mn(xqn+1(Bi))√

V ar(W )
∩ sn(xn+1)Z ≤ Iisn(xn+1)

)
:= P

(
S ≤ ein(xn+1;x; xqn+1(Bi)) ∩ T ≤ f

i
n(xn+1; Ii)

)
,
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where (S, T ) is a Gaussian random vector of law N
(

0,

(
1 rin
rin 1

) )
with

rin := rn(xn+1;x; xqn+1(Bi)) =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)√

Var(W )sn(xn+1)
.

ein(xn+1;x; xqn+1(Bi)) =
mn(x)−mn(xqn+1(Bi))√

Var(W )
,

and
f in(xn+1; Ii) = Iisn(xn+1).

Finally, we get for 1 ≤ i ≤ L,

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≤ Ii) = Φrin

(
ein(xn+1;x; xqn+1(Bi)), f

i
n(xn+1; Ii)

)
,

where we denote Φr the cumulative distribution function of the centered Gaussian ran-
dom vector of covariance matrix

Σ =

(
1 r
r 1

)
.

Similarly, for 0 ≤ i ≤ L:

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≤ Ii+1) = Φrin

(
ein(xn+1;x; xqn+1(Bi)), f

i
n(xn+1; Ii+1)

)
,

and

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≥ IL) = Φ−rin

(
ein(xn+1;x; xqn+1(Bi)),−f

i
n(xn+1; IL)

)
.

6.2. Proof of Proposition 3.3
We first recall the following total variance law formula:

Lemma 5.1. Let E1, . . . En be mutually exclusive and exhaustive events. Then, for a
random variable U , the following equality holds:

V ar(U) =
n∑
i=1

Var(U | Ei)P(Ei) +
n∑
i=1

E(U | Ei)2(1− P(Ei))P(Ei)

− 2

n∑
i=2

i−1∑
j=1

E(U | Ei)P(Ei)E(U | Ej)P(Ej) .

In our case, we want to compute Var(qn+1(xn+1)|An) := Varn(qn+1(xn+1)). Since the
events {Z ∈ Bi}1≤i≤L are mutually exclusive and exhaustive, we can apply Lemma 5.1:

Varn(qn+1(xn+1)) =
L∑
i=1

Varn(mn+1(x
q
n+1(Bi))|Z ∈ Bi)Pn(Z ∈ Bi)

+

L∑
i=1

En
(
mn+1(x

q
n+1(Bi))|Z ∈ Bi

)2
(1− Pn(Z ∈ Bi))Pn(Z ∈ Bi)

− 2

L∑
i=2

i−1∑
j=1

En
(
mn+1(x

q
n+1(Bi))|Z ∈ Bi

)
Pn (Z ∈ Bi)

× En
(
mn+1(x

q
n+1(Bj))|Z ∈ Bj

)
Pn (Z ∈ Bj) .
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Thanks to equation (18), we get

mn+1(x
q
n+1(Bi)) = mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)Z .

Then,

Varn(qn+1(xn+1)) =
n∑
i=1

kn(xqn+1(Bi),xn+1)
2 Varn(Z|Z ∈ Bi)Pn(Z ∈ Bi)

+

L∑
i=1

(
mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)En (Z|Z ∈ Bi)

)2
× (1− Pn(Z ∈ Bi))Pn(Z ∈ Bi)

− 2
L∑
i=2

i−1∑
j=1

(
mn(xqn+1(Bi))− kn(xqn+1(Bj),xn+1)En (Z|Z ∈ Bj)

)
Pn (Z ∈ Bi)

×
(
mn(xqn+1(Bj))− kn(xqn+1(Bj),xn+1)En (Z|Z ∈ Bj)

)
Pn (Z ∈ Bj) .

Since Z is a centered Gaussian random variable of variance sn(xn+1)
−2 we have:

Pi := Pn(Z ∈ Bi) = Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii) .

To conclude, we have now to find analytical forms for the quantities Var (Z | Ii < Z < Ii+1)
and E (Z | Ii < Z < Ii+1). To do so, let us use the following result on truncated Gaussian
random variable (see [22] for proofs):

Lemma 5.2. Let U be a real random variable such that U ∼ N (µ, σ). Let u and v be
two real numbers. We have:

E(U |u < U < v) = µ+
φ
(v−µ

σ

)
− φ

(u−µ
σ

)
Φ
(v−µ

σ

)
− Φ

(w−µ
σ

)σ ,
Var(U |u < U < v) = σ2

1 +
u−µ
σ φ

(u−µ
σ

)
− v−µ

σ φ
(v−µ

σ

)
Φ
(v−µ

σ

)
− Φ

(u−µ
σ

) −

(
φ
(u−µ

σ

)
− φ

(v−µ
σ

)
Φ
(v−µ

σ

)
− Φ

(u−µ
σ

))2
 .

We apply Lemma 5.2 for U = Z, u = Ii and v = Ii+1 and conclude that

E(sn(xn+1), Ii+1, Ii) := En(Z|Z ∈ Bi) =
φ(sn(xn+1)Ii)− φ(sn(xn+1)Ii+1)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

1

sn(xn+1)
,

V (sn(xn+1), Ii+1, Ii) : = Varn(Z|Z ∈ Bi)

=
1

sn(xn+1)2

[
1 +

Iisn(xn+1)φ(sn(xn+1)Ii)− sn(xn+1)Ii+1φ(sn(xn+1)Ii)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

−
(
φ(sn(xn+1)Ii)− φ(sn(xn+1)Ii+1)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

)2
]
.

6.3 Test functions
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Two-dimensional Branin function:

(19) g(x) =

(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos(x̄1) + 10

with: x̄1 = 15× x1 − 5, x̄2 = 15× x2.
Four-dimensional Hartman function:

g(x) =
−1

1.94

2.58 +
4∑
i=1

Ci exp

− 4∑
j=1

aji (xj − pji)2
 ,(20)

with

C =


1.0
1.2
3.0
3.2

 , a =


10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00

 ,p =


0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743

 .
Six-dimensional Ackley function:

(21) g(x) = 20 + exp(1)− 20 exp

−0.2

√√√√1

4

4∑
i=1

x2i

− exp

[
1

4

4∑
i=1

cos (2πxi)

]
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