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Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature

states of matter, such as the ones observed in spin ices. Here we report the imaging of the

magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a

spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic

degree of freedom into two channels and is evidenced in both real and reciprocal space.

Furthermore, the internal organization of both channels is interpreted within the framework of

a hybrid spin–charge model that directly emerges from the parent spin model of the kagome

dipolar spin ice. Our experimental and theoretical results provide insights into the physics

of frustrated magnets and deepen our understanding of emergent fields through the use of

tailor-made magnetism.
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F
rustration refers to the inability of a complex system to
satisfy all its constraints simultaneously1. Geometrical
frustration arises when these constraints are driven by

the topology of an underlying lattice2. Examples of such systems
can be found in a wide class of magnetic materials3 and
artificial magnetic architectures4–7 known as geometrically
frustrated magnets. In some cases, these systems are
characterized by highly fluctuating ground-state manifolds,
often referred to as spin liquids, and can exhibit unusual
magnetic excitations such as fractional quasi-particles8.

The frustrated kagome Ising antiferromagnet is one of the
first studied classical spin liquids, that is, a strongly correlated
magnetic model exhibiting only short-range spin–spin
correlations down to the lowest temperatures9,10.
This short-range antiferromagnetic model can be mapped, one
to one, onto a short-range ferromagnetic model, where
geometrical frustration is provided by multiaxial Ising-like
anisotropies11. The thermodynamics of both models is
described by two temperature regimes: a high-temperature
paramagnet and a low-temperature cooperative paramagnet, in
which every triangular unit cell of the kagome lattice obeys the
so-called (kagome) ice rule, meaning that two spins are pointing
in or out of each triangle of the kagome lattice. This ice-like
constraint on a triangle is akin to the original vertex water–ice
rule12 (hence their name, spin ices), which lies at the heart of the
low-energy properties of square13 and pyrochlore14 spin ices.

Adding long-range dipolar interactions to the short-range
frustrated multiaxial ferromagnet drastically modifies its
low-temperature behaviour15. The first spin-ice manifold (SI1)
survives over a finite temperature range and is then followed, at
lower temperatures, by a second spin-ice manifold (SI2), in
which spin-loop fluctuations coexist with an effective magnetic
charge crystal. Eventually, a Néel-like ordering (long-range
order—LRO) occurs at the lowest temperatures. In both the SI1
and SI2 phases, the kagome ice rule is obeyed. However, the
magnetic charges, associated with the fractionalization of each
spin into opposite pole pairs, are in a paramagnetic state in the
SI1 phase, while they crystallize in the SI2 phase15,16. Although
more constrained, the SI2 phase remains macroscopically
degenerated, as shown by its finite entropy.

The puzzling aspect of the SI2 phase is the emergence of the
magnetic charge crystallization, which is a priori not encoded
in the underlying dipolar spin-ice (DSI) model15,16. Experimental
evidences of charge crystallites in artificial kagome spin ices
have been also reported17–22 and interpreted with the use
of a phenomenological spin–charge model21. Here we provide
a theoretical framework that allows us to reveal the microscopic
origin of this emerging charge organization. Besides, in the
particular case of the kagome DSI, the formation of an
antiferromagnetic charge crystal is a direct consequence of the
recent proposal of spin fragmentation23. Furthermore, using
thermally active kagome arrays of nanomagnets18–22,24–25, we
evidence experimental signatures of this fragmentation of
magnetism.

Results
Ab initio coding of emergence. In this section, we discuss
how the magnetic charge at the vertices is encoded into the
Hamiltonian of the dipolar kagome spin-ice model and we reveal
why these charges crystallize at low temperature. To do so, we
consider the dipolar Hamiltonian

Hdip ¼
D
2
�
X
i;jð Þ

Si � Sj
r3ij

� 3 � Si � rij
� �

� Sj � rij
� �

r5ij

" #
ð1Þ

where D is the dipolar constant, rij the distance between sites i

and j, and Si¼siei an Ising-like spin residing on site i and
pointing along its local anisotropy axis (Fig. 1a). Once this model
is brought to low temperatures, ice rules are unanimously fulfilled
or, equivalently, the total magnetic charge at each vertex of the
honeycomb lattice is ±1 (Fig. 1b). Since the vertex charges are
defined as local sum of the individual magnetic poles of the
fractionalized spins, it is this spin/charge correspondence,
together with the particular structure of the dipolar interactions
in this lattice, which allow the rewriting of the microscopic spin
model. The Hamiltonian then becomes a hybrid spin–charge
model with only Ising-like variables,

Hdip ¼ �~J
X
i;jh i

Si:Sj � ~k
X
u;vh i

Qu:Qv þO 1=r3
� �

r�2rnn
ð2Þ

where the first term is a short-range spin-ice kagome ferromagnet
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Figure 1 | Thermodynamics of the kagome dipolar spin ice. (a) The three

possible anisotropy directions in the kagome lattice are denoted by the

ei unit vectors, which allow the description of the Ising-like spins as si scalar
variables. (b) Three examples of magnetic configurations belonging to the

spin ice 2 (SI2), spin ice 1 (SI1) and paramagnetic regimes. Each spin at the

vertex of the kagome lattice can be seen as a magnetic dipole and

fractionalized into an opposite pole pair. By conventionally taking the head

of the arrow to be a þ 1 magnetic charge and the tail as a � 1 magnetic

charge, a total magnetic charge can be attributed to each triangle, that is, to

each vertex of the kagome lattice, by summing the three elementary

charges of the fractionalized spins. A total Q¼ þ 1/� 1 is depicted by a

light red/blue triangle, respectively. The paramagnetic phase also features
±3 charges, as indicated for instance by a dark-red triangle. As soon as the

system enters its spin-ice manifolds, ice rules are unanimously obeyed,

which translates into the presence of only unitary charges. While these

charges are disordered within the SI1 phase, they eventually crystallize

antiferromagnetically in the SI2 phase, as depicted by the alternation of

red–blue triangles. (c) The simulated temperature dependencies of the

entropy and the specific heat of the kagome dipolar spin-ice model.

Magnetic structure factor [S(q)] maps associated to each phase are

provided and their corresponding normalized temperatures T/Jnn are 5.815

(paramagnetic), 0.131 (SI1), 0.051 (deep SI1), 0.020 (SI2) and 0.006

(LRO), where Jnn is the effective nearest-neighbour interaction.
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(that is, an Ising spin liquid), while the second term corresponds
to an antiferromagnet of magnetic charges Q on an hexagonal
lattice (see the Methods section). The remaining terms
correspond to the longer-range part of the dipolar spin model.
The sum of these last terms is, algebraically speaking, absolutely
convergent and they do not interfere with the physics driven by
the first two contributions, except at very low temperatures where
they lead to the Néel ordering (LRO).

This exact mapping of equation (1) onto equation (2) explains
why charge crystallization is observed in the SI2 phase. As
~J
�� ��4 ~kj j, the first term ensures that kagome ice rules are
fulfilled when the temperature is lowered, and the model
fluctuates within the first spin-ice manifold, SI1. Because the
Ising charge–charge interaction is unfrustrated and is fully
compatible with the SI1 constraint, it leads to charge crystal-
lization when the temperature is further reduced, that is, it selects
a sub-manifold of the SI1 set, the SI2 manifold. We emphasize
that this exact algebraic mapping of the original spin model onto
a hybrid spin–charge Hamiltonian is one of the very few
examples of ab initio coding of emergence: the collective
organization of magnetic charges is directly related to the original
microscopic spin degree of freedom.

Fragmentation of magnetism in the SI2 phase. Once this model
is brought into the SI2 phase, magnetic charges at each vertex are
constrained to Q¼±1. As noted by Brooks-Bartlett et al.23, a
formal analogy with electrostatics can be made and this
distribution of unitary magnetic charges can be related to the
divergence of the local magnetization, which is proportional to
the sum of the spins pointing inwards and outwards of the
corresponding triangle of the kagome lattice. This means that

r:
X
i2v

Si

 !
/ Qv; ð3Þ

where Si is one of the three spins participating to the vertex v
and Qv the associated unitary charge. Applying a lattice
Helmholtz–Hodge decomposition on the vector field
{
P

iAv Si}v, results in a splitting into a curl-free and a
divergence-free contribution,X

i2v
Si ¼ r fvð Þþr�Cv; ð4Þ

where f is a scalar field and C a vector field. From this
decomposition, it is clear that only the scalar field f carries
information on the magnetic charge as

r:
X
i2v

Si

 !
¼ Dfv / Qv: ð5Þ

It is worth noting that such a decomposition is simply an
algebraic rewriting and can be applied to any vector field defined
on a lattice.

The remarkable property of this model is the decoupling of the
divergence-free and divergence full channels at low temperatures.
Within the SI2 region, the scalar field f orders because of the
Qu.Qv term in the Hamiltonian, which leads to the charge
crystallization. On the other hand, the first two terms of the
hybrid spin–charge Hamiltonian do not impact the vector field C,
leaving it free to fluctuate. This last property, associated with its
natural divergence-free nature, defines a so-called Coulomb
phase26. This exotic state of matter, within which order and
disorder coexist, is very unusual, as both aspects of magnetic
organization are carried by the same degree of freedom, hence the
name fragmentation.

Looking for signatures of spin fragmentation. This theoretical
framework provides insights into how fingerprints of this
fragmentation process can potentially be revealed in experiments.
While Fig. 2 details the fragmentation process in real space, a
more straightforward way to visualize it is by plotting the
magnetic structure factor S(q), that is, the Fourier transform of
spin–spin correlations. In reciprocal space, the static divergence-
full channel is revealed through magnetic Bragg peaks, while the
divergence-free channel appears as a structured diffuse signal27. It
is the coexistence of both types of signal which demonstrates
spin fragmentation23. The temperature dependence of the
two-dimensional (2D) magnetic structure factor for the DSI
model has been computed using Monte Carlo simulations
(see the Methods section) and is reported in Fig. 1c along with
the temperature dependence of the entropy and specific heat. In
the following analysis of our measurements, it is this coexistence
of Bragg peaks and structured diffuse background signal that we
use to evidence the spin fragmentation process experimentally.
Note that charge crystallization corresponds to a rather
counter–intuitive phenomenon. The magnetic charge crystal is
the emerging description of an antiferromagnetic all-in/all-out
fragmented spin ordering, as depicted in Fig. 2, in a nevertheless
ferromagnetic spin model. Real-space imaging of artificial spin-
ice systems allows direct visualization of this counter–intuitive
phenomenon.

Experimental evidence of spin fragmentation. Evidencing the
spin fragmentation process in artificial kagome spin ice is
challenging, mainly because of the experimental difficulty to
bring such systems into their low-energy manifolds, where
collective phenomena emerge. In the following, we show,
however, that this can be done in thermally active, kagome arrays
of connected Gd0.3Co0.7 nanomagnets (see the Methods section;
Supplementary Note 1; Supplementary Fig. 1), which have been
studied using X-ray magnetic circular dichroism-photoemission
electron microscopy (XMCD-PEEM) magnetic imaging
(see the Methods section). A typical magnetic image is reported in
Fig. 3a. Black and white contrasts allow the determination of the
magnetization direction within each single nanomagnet. Hence,
the overall spin configuration of the array is deduced together
with the distribution of the associated magnetic charges at the
vertex sites.

= +

Figure 2 | Illustration of the spin fragmentation process. Spins are

represented by black arrows, while the associated magnetic charges at the

kagome vertices are represented by a red/blue triangle, corresponding to a

þ 1/� 1 charge state, respectively. By applying a Helmholtz–Hodge

decomposition over the entire network, each spin of the lattice fragments

into two channels, such that the magnetic configuration decomposes into a

divergence-full and a divergence-free field. Note that, for the two fields,

both the spin direction and the spin length change. To better visualize the

fragmentation process, fragmented spins are represented by purple circles

of diameters 1/3, 2/3 and 4/3, according to the moment of the fragmented

part. This type of decomposition can be performed on any spin

configuration belonging to the SI2 phase, for which the divergence-full

channel is always the same and independent of the initial spin

configuration, while the divergence-free channel can fluctuate, ensuring the

magnetic equivalent of a Kirchhoff law.
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Using the spin configuration of the whole lattice obtained from
our XMCD-PEEM measurements, we can compute the magnetic
structure factor and compare it with the one predicted by Monte
Carlo simulations at a similar effective temperature (the effective
temperature of our array is estimated by comparing the measured
spin–spin correlation coefficients to their thermodynamic
values17,18,28, see the Methods section). The result is reported
in Fig. 4. At first sight, there is a fairly good qualitative agreement
between the experimental (Fig. 4a, top) and theoretical (Fig. 4a,
bottom) 2D maps of the magnetic structure factor. The most
striking feature of the experimental map consists in the clear
fingerprints of a spin fragmentation process that are twofold:
appearance of Bragg peaks (see black circles) and a structured
diffuse background signal accounting for the disordered phase of
the divergence-free component (see yellow regions in the 2D
maps). We emphasize again that it is this coexistence that
demonstrates spin fragmentation. The sole presence of charge
ordering is not sufficient to evidence spin fragmentation, as the
key aspect of this phenomenon is the emergent decoupling of the
divergence-free and divergence-full spin channels. For example,
the LRO ground state or a saturated magnetic configuration
would directly relate charge crystallization to spin ordering
(that is, there is no fragmentation of magnetism through the
decoupling of the two channels).

This qualitative agreement between the experimental and
theoretical maps can be made more quantitative. Figure 4b
provides a comparison between the experimental and the
theoretical magnetic structure factors along a q-scan through
the reciprocal space, passing through the fragmentation peak
(black circle in Fig. 4a). Because the experimental statistics is low,
we have reported the theoretical Monte Carlo signal along the
q-scan with its s.d. to quantify the likelihood of the DSI model to

describe our measurements. It appears that the DSI model
captures quantitatively the fragmentation process. The
experimental image also displays several regions of alternating
þ 1 and � 1 magnetic charges, pointing to incipient
charge-ordered crystallites. This sample has therefore not reached
the thermodynamic SI2 phase, within which a unique crystallite
would be expected, but is consistent with the effective
temperature T/Jnn¼ 0.051 deduced for the spin–spin correlator
analysis, that places the array deep into the SI1 phase. Thanks to
the real-space imaging of this artificial magnet, the lattice
Helmholtz–Hodge decomposition can be performed for each
crystallite. One of these crystallites is highlighted by an
orange hexagon and better illustrated in Fig. 3b. Along with the
black arrows that indicate the local spin directions, we use again
the red/blue colour code for each kagome triangle to represent the
vertex charge state. In this selected region, there is no spin order,
although the magnetic charge has crystallized18–21 and is
embodied in a fragmented all-in/all-out antiferromagnetic spin
ordering (see Fig. 3c). The array has thus been brought, locally,
into the SI2 phase.

Finally, we emphasize that our observation of a spin
fragmentation process is not limited to the case of our thermally
active GdCo alloy spin-ice system. Very similar results have been
obtained with more conventional, athermal, permalloy-based
kagome arrays that we demagnetized using a field protocol before
their imaging in a magnetic force microscope. In such samples,
we also observed the coexistence of Bragg peaks and a structured
diffuse background signal in the 2D maps of the magnetic

a b

c

Figure 3 | Real space evidence of spin fragmentation. (a) XMCD-PEEM

(10� 11 mm2) image of an artificial kagome array. The black and white

contrasts give the local direction of the magnetization within each individual

nanomagnet. The white arrow indicates the direction of the incident X-ray

beam. The orange hexagon highlights a region of the array where perfect

charge ordering is observed. (b) The local spin configuration within the

orange hexagon deduced from the XMCD-PEEM image. Spins are

represented by black arrows, while the associated magnetic charges at the

kagome vertices are represented by a red/blue triangle, corresponding to a

þ 1/� 1 charge state, respectively. (c) Helmholtz–Hodge decomposition

performed on the local spin configuration shown in the orange hexagon.

Fragmented spins are represented by purple circles of diameters 1/3, 2/3

and 4/3, according to the moment of the fragmented part.
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Figure 4 | Spin fragmentation in reciprocal space. (a) Experimental (top)

and theoretical (bottom) 2D maps of the magnetic structure factor

corresponding to the experimental XMCD-PEEM image. The positions of

the Bragg peaks corresponding to both the fragmented spin phase and to

the LRO are indicated by black and red circles, respectively. One particular

scan in the reciprocal space is indicated by a dashed black line in the two

maps. The scan starts at the origin of the reciprocal space and passes firstly

through what will be a LRO Bragg peak, and then through a fragmentation

peak. (b) Comparison between the experimental (blue) and theoretical

(orange) q-scans along the direction mentioned before. S.d. of the

theoretical fluctuations (orange) are reported to quantify the likelihood of

the dipolar spin-ice model to describe the experimental observations. The

dipolar spin-ice model captures most features of spin–spin correlations and

agrees semi-quantitatively on the amplitude, as well as on the positions, of

the correlations. Intensity is given in arbitrary units, but it must be noted

that both experimental and theoretical curves have been scaled in a similar

way, that is, there is no free parameter but the effective temperature (T/

Jnn¼0.051) of the Monte Carlo simulations.
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structure factor (Supplementary Note 2; Supplementary Table 1;
Supplementary Fig. 2), thus proving the generality of the concept
and the capability to measure it experimentally using different
materials and demagnetization protocols.

Discussion
In conclusion, we report the experimental signatures of a
magnetic-moment fragmentation process in a thermally active
artificial magnet and provide a theoretical framework to interpret
this emerging phenomenon. We emphasize that the long-range
dipolar nature of the interactions in artificial magnetic ices is at
the heart of both our experimental and theoretical results.
Achieving a complete tuning of the cooling procedure now
becomes an ultimate goal, as it would provide a statistical physics
laboratory, paving the way for engineered magnetic structures
and their use to understand, realize and control new states of
matter, be they artificial or not.

Methods
Sample fabrication. Our samples were fabricated on Si substrates from full films
grown by ultra-high vacuum sputtering (base pressure in the 10� 9mbar range). The
final stack has the following composition: Si//Ta (5 nm)/Gd0.3Co0.7 (10 nm)/Ru
(2.6 nm). The 5-nm-thick Ta layer is used as a buffer for the subsequent growth of
the magnetic GdCo film, which is finally capped with a 2.6-nm-thick Ru layer. The
capping material and its thickness have been optimized to protect the sample from
oxidation and against chemical treatments during the lithography process, while still
keeping high the magnetic contrast in imaging conditions. The Gd0.3Co0.7 material is
a ferrimagnetic alloy characterized by a Curie temperature (TC) of B475K, which
was adjusted by co-sputtering Co and Gd in d.c. mode to control the alloy
composition. Additional information on the magnetic properties of the GdCo alloy is
provided in the Supplementary Note 1. The arrays that we fabricated using electron-
beam lithography and ion-beam etching are composed of 342 nanomagnets having
typical dimensions of 500� 100� 10nm3. At room temperature, each nanomagnet
has a magnetization pointing along the long axis of the element, due to shape
anisotropy, and can thus be considered as an Ising pseudo-spin.

Thermal annealing protocol. Experimentally, the arrays are first saturated using an
external magnetic field to set the initial spin configuration in a well-defined state. The
arrays are then heated up above the Curie temperature of the material by passing a
current through a W-filament underneath the sample stage. The cooling procedure
was performed as follow: when reaching the targeted temperature, the filament
current was quickly switched off to avoid the presence of an Oersted field while
cooling down the sample through TC. The typical cooling time is 30min and is
basically limited by the thermal dissipation into the sample holder. After cooling
down the sample back to room temperature, the resulting spin configurations of the
arrays are imaged using X-xay PEEM combined with XMCD. Measurements were
carried out at the nanospectroscopy beamline of the Elettra synchrotron, Trieste, Italy.

Estimation of an effective temperature. Although in a frozen magnetic state
(that is, the magnetic configuration does not evolve anymore once the
sample is at room temperature) when being imaged, an effective temperature
can be associated to the spin configuration resulting from our thermal treatment.
To do so, we proceed similarly to what we did in previous works by
employing a standard deviation analysis through the use of a ‘spread-out’ function
based on the spin–spin correlators18,28. This ‘spread-out’ function is defined as:

K T=Jnnð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

j ðC
exp
j �CMC

j T=Jnnð ÞÞ2Þ
q

, where Cexp
j represents the experimental

correlations, while CMC
j T=Jnnð Þ are the average Monte Carlo correlations at a given

temperature T/Jnn, with j ranging from 1, the nearest-neighbour correlation, up to 7
(the 7th next nearest-neighbours). For our set of experimental values, this function
can be computed over the entire range of Monte Carlo temperatures. The
minimum of K(T/Jnn) defines the effective temperature. Additional works on
artificial spin-ice systems where an effective temperature is associated to an
arrested (that is, frozen) microstate can be found for example in refs 29,30.

Monte Carlo simulations. The Monte Carlo simulations were performed on
12� 12� 3 kagome lattice sites with periodic boundary conditions. This geometry
corresponds to the periodic boundary condition cluster having the closest number
of sites to the one of the finite experimental realization, while also being compatible
with the periodicity of the long-range order expected at the lowest temperatures.
104 modified Monte Carlo steps (MMCSs) are used for thermalization and
measurements are computed over 104 MMCSs, where one MMCS involves local
spin flips as well as global loop flips, such that the analysis of the integrated
correlation time calculated on-the-fly ensures stochastic decorrelation between
measurements. We note that simulations performed for a network of 342 spins

with free boundary conditions yield very similar results. Furthermore, the same
ground-state configuration is found for this particular finite system size as in the
infinite network case. Both types of simulations ensure that all the physics at stake,
be it experimental or theoretical, does not depend on the cluster geometry or on the
boundary conditions.

Dipolar Hamiltonian. Nanomagnets interact through the magnetostatic
interaction. They possess a strong anisotropic shape (aspect ratio of B5) and are
well approximated by Ising-like variables oriented along their long axis. As shown
in ref. 17, the point dipole approximation of the magnetostatic terms is valid only
beyond nearest neighbours. For the closest elements, their shape and proximity
prevent the dipolar approximation to be valid. It appears however that
multipolar terms can actually be taken into account correctly, provided that the
nearest-neighbour dipolar term is enhanced by an extra coupling J1. The full
Hamiltonian describing this system then reads

H ¼ � J1
X
i;jh i

Si:Sj þ
D
2
�
X
i;jð Þ

Si � Sj
r3ij

� 3 � Si � rij
� �

� Sj � rij
� �

r5ij

" #
; ð6Þ

where D is the dipolar constant, rij the distance between sites i and j, and Si¼ siei
the spin residing on the site i, with si an Ising variable and ei one of the three
possible anisotropy directions of the kagome lattice. To scale the temperature, we
rely on the effective nearest-neighbour coupling Jnn¼ J1/2þ 7D/4. This coupling
quantifies the nearest-neighbour effective interaction between two nanomagnets,
that is, the absolute temperature at which the model is expected to enter the first
spin-ice manifold, SI1. Following our previous work17, J1 is chosen such that
Jnn¼ 5D, to account for the multipolar terms mentioned above.

Ab initio coding of emergence. Given the fractionalization of the spins into
opposite magnetic poles, the total magnetic charge for each kagome vertex can be
written as the sum of three individual charge contributions (see Fig. 5a). Using the
scalar values (si¼±1) that define the orientation of each lattice spin (Si) with
respect to their local anisotropy axis (ei), that is, Si¼siei, the value of each vertex
charge can be expressed as the sum of these local spin scalars,

QD ¼ �
X
i2D

si and Qr ¼
X
i2r

si; ð7Þ

where QD and Qr are the values of the vertex charges of a D-shaped/r-shaped
kagome triangle, while the � sign ensures global charge neutrality. A nearest-
neighbour charge–charge term, Qu �Qv, where u and v are the indices of the
hexagonal lattice, involves the product of two QD,r charges, which can be expanded
into a summation of si � sj pairs. Furthermore, by conveniently arranging the
resulting pairs into their corresponding correlation classes (Fig. 5b), this charge–
charge term can be expressed as a linear combination of the first three pairwise spin
correlators,

Qu � Qvð Þ ¼ � 1þ 8 � Cab þ 4 � Cag � 2 � Can ð8Þ
This relation between the nearest-neighbour charge correlator and the spin
correlators is the cornerstone of the hybrid spin–charge model description, which
can be tailored out of the dipolar Hamiltonian,

Hdip ¼
D
2
�
X
i;jð Þ

Si � Sj
r3ij

� 3 � Si � rij
� �

� Sj � rij
� �

r5ij

" #
ð9Þ

where rij stands for the relative position vector between the two spins Si and Sj, and
D is the dipolar coupling constant. Note that the dipolar Hamiltonian involves all

C��

C��

C��

�0

�2

�1

�4

�3

a b

Figure 5 | Definition of the magnetic charges at the vertices and of the

spin–spin correlations. Every spin is the connection point between two

vertex charges and contributes with a þ 1 magnetic charge in one triangle

and � 1 in the other. (a) A (s0, s1, s2, s3, s4)¼ (� 1, þ 1, þ 1, � 1, þ 1)

configuration for the kagome spin ice. (b) In the general case, the vertex

charges can be found by summing up the spin scalar values per triangle

(si). The constituting spins of a charge correlation pair form ab, ag and

an pairs.
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spin–spin correlations, in particular the ones needed in equation (8). Expanding
the dipolar couplings and grouping them appropriately allows to rewrite the
Hamiltonian as:

Hdip ¼ �~J
X
i;jh i

Si � Sj � ~k
X
u;vh i

Qu � Qv þ
D
2

�
X
i;jð Þ

rij�2rnn

Si � Sj
r3ij

� 3 � Si � rij
� �

� Sj � rij
� �

r5ij

" #
; ð10Þ

which will be written, for the sake of clarity,

Hdip ¼ �~J
X
i;jh i

Si � Sj � ~k
X
u;vh i

Qu � Qv þO 1=r3
� �

r�2rnn
ð11Þ

with ~J¼2Deff 7=4þ 5
ffiffiffi
3

p
=9

� �
, ~k¼� 5Deff

ffiffiffi
3

p
=18, Deff¼D=r3nn and rnn the

nearest-neighbour distance. Since the coupling constants ~J and ~k are positive and
negative, respectively, they correspond to a ferromagnetic coupling between the
nearest-neighbouring spins and to an antiferromagnetic coupling between the
nearest-neighbouring vertex charges. As mentioned in the manuscript, the first one
ensures that ice rules are fulfilled, while the second one leads to charge
crystallization at lower temperatures, as ~J

�� ��4 ~kj j. Note also that the charge–charge
term is fully compatible with the spin–spin coupling and is not frustrated as it is
defined on an hexagonal lattice. The remaining longer-range couplings play an
important role as well, as they ultimately lead to the magnetic ordering at lowest
temperatures. This magnetic ordering does not interfere with the first two terms of
the hybrid spin–charge model: it is compatible with the kagome ice rules, the
magnetic charge crystal, and the absolute convergence of the series of the
longer-range couplings shows that this ordering takes place at temperatures lower
than ~kj j (and hence than j~J j as well).
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