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CLASSIFICATION OF RANDOM TIMES AND APPLICATIONS

ANNA AKSAMIT, TAHIR CHOULLI AND MONIQUE JEANBLANC

Abstract. The paper gathers together ideas related to thin random time, i.e., random

time whose graph is contained in a thin set. The concept naturally completes the studies of

random times and progressive enlargement of filtrations. We develop classification and (∗)-
decomposition of random times, which is analogous to the decomposition of a stopping time

into totally inaccessible and accessible parts, and we show applications to the hypothesis

(H′), honest times and informational drift via entropy.

1. Introduction

The paper develops ideas related to thin random times. The concept naturally fits and

completes the studies of random times and progressive enlargement of filtrations. A random

time defined on a filtered probability space (Ω,G,F,P) is simply a random variable with

values in [0,∞]. In the literature of enlargement of filtration, it is common to assume that a

given random time τ avoids all F-stopping times, i.e., P(τ = T < ∞) = 0 for any F-stopping

time T . Here, we take a closer look at this condition and make it a starting point to define

two classes of random times. We come up with strict random times which basically satisfy

avoidance condition and thin random times which satisfy counter property, i.e., they are

fully built of F-stopping times. The notion of thin random time was mentioned, but not

developed, for the first time in Dellacherie and Meyer [10] under the name variable aléatoire

arlequine referring to the costume of the Harlequin which is made of patches of different

colors.

We begin, in Section 2, with defining and studying (∗)-decomposition of a random time

into strict and thin parts. The (∗)-decomposition is congruent with the decomposition of a

stopping time into totally inaccessible and accessible parts. Our study strongly relies on the

notion of dual optional projection, we make use of other processes linked to general theory

of stochastic processes, in particular, to enlargement of filtration theory. The main result,

stated in Theorem 2.4, says that any random time can be (∗)-decomposed and gives strict

and thin random time characterisations in terms of its dual optional projection.
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2 A. AKSAMIT, T. CHOULLI AND M. JEANBLANC

In Section 3 we relate to progressive enlargement of filtration and the hypothesis (H′).

For a random time τ , Fτ is the filtration F progressively enlarged with τ , i.e.,

(1.1) F τ
t :=

⋂

s>t

(Fs ∨ σ(τ ∧ s)) for any t.

The hypothesis (H′) holds for (F,Fτ) if any F-martingale is an Fτ -semimartingale. The main

result here is Theorem 3.1 where we establish the hypothesis (H′) for thin random times.

It extends previous results by Jeulin [17] which deal with countably valued random times.

Instead of countably many real values we chose countably many F-stopping times which

are already captured in reference filtration F. We may see Theorem 3.1 as an alternative

direction of development of the result by Jacod (see [17, Theorem 3,2] and [21]) on the

hypothesis (H′) in initial enlargement with atomic σ-field to the direction based on density

hypothesis in progressive setting (initial times from [15]).

Honest times are important and a well studied class of random times; roughly speaking

they are last passage times and we refer to them in Section 4. Adopting the notion of

jumping filtration from Jacod and Skorokhod [14] we show in Theorem 4.8 that such a

filtration can only support honest times which are thin. That includes compound Poisson

process filtration. In [14] the link between jumping filtration and finite variation martingales

is established; problems related to purely discontinuous martingale filtrations are treated in

Hannig [12]. In Section 4 we also exploit two examples of thin honest times: last passage

time at a barrier a of a Compound Poisson process and an example based on Brownian

motion local time approximation. Some auxiliary results on honest times are collected in

Appendix B.

The additional information carried by enlarged filtration and its measurement was stud-

ied by several authors. Already in Meyer [21] and Yor [25], the question on stability of

martingale spaces with respect to initial enlargement with atomic σ-field was asked. From

more recent studies, generalizing and applying previous results in different contexts, we refer

the reader to [3, 4, 5, 6]. Here we define the entropy of a thin random time by (5.2) and we

prove in Theorem 5.2 that its finiteness is enough for stability of some martingale spaces in

progressive setting. Theorem 5.2 reveals that the notion of the entropy of thin random time

is a correct one and is an answer to the question asked in [21] about additional knowledge

associated with a partition and disclosed in progressive manner:

Un problème voisin, mais plus intéressant peut-être, consiste à mesurer le bouleversement

produit, sur un système probabiliste, non pas en forçant des connaissances à l’instant 0,

mais en les forçant progressivement dans le système.1

In Section 6 we collect in Theorems 6.2 and 6.3 the results concerning the hypothesis (H′)

and entropy for more general progressive enlargement of filtration. In contrary to previous

results, adding several members of a partition at the same time is allowed in this case.

1For the reader’s convenience we provide an English translation:

A similar problem, but perhaps of more interest, consists in measuring the resulting perturbation, in a

probabilistic system, not by requiring knowledge at the instant 0, but by adding them progressively to the

system.
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For any càdlàg process X we will denote by X− the left-continuous version of X , by ∆X

the jump of X and by X∞ the limit limt→∞Xt if it exists. The process X is said to be

increasing if for almost all ω it satisfies Xt(ω) ≥ Xs(ω) for all t ≥ s. The random variable

is said to be positive if it has values in [0,∞).

2. The (∗)-decomposition

Let (Ω,G,F,P) be a filtered probability space, where F := (Ft)t≥0 denotes a filtration

satisfying the usual conditions, and such that F∞ ⊂ G. Consider a random time τ , i.e.,

a random variable with values in [0,∞]. Note that a random time τ is not necessarily

F∞-measurable. For a random time τ we denote by [[τ ]] its graph.

The following definition contains the leading idea of the paper. It discriminates two classes

of random times using a criterion based on F-stopping times.

Definition 2.1. A random time τ is called

(a) a strict random time if [[τ ]] ∩ [[T ]] = ∅ for any F-stopping time T , i.e., if it avoids all

F-stopping times.

(b) a thin random time if its graph [[τ ]] is contained in a thin set, i.e., if there exists a

sequence of F-stopping times (Tn)
∞
n=1 with disjoint graphs such that [[τ ]] ⊂ ⋃

n[[Tn]]. We say

that such a sequence (Tn)n exhausts the thin random time τ or that (Tn)n is an exhausting

sequence of the thin random time τ .

Note that a thin random time τ is built of F-stopping times, i.e., τ = ∞11C0
+

∑
n Tn11Cn

where (Tn)n is an exhausting sequence for τ , and

(2.1) C0 := {τ = ∞} and Cn := {τ = Tn < ∞} for n ≥ 1.

We denote by zn the càdlàg F-martingale with terminal value P(Cn|F∞), namely

(2.2) znt := P(Cn|Ft).

Let us also remark that an exhausting sequence (Tn)n of a thin random time is not unique.

The straightforward observation that the two classes of random times have trivial inter-

section is stated in the following lemma.

Lemma 2.2. A random time τ belongs to the class of strict random times and to the class

of thin random times if and only if τ = ∞.

The main concept of this section, the (∗)-decomposition, is presented in the next defi-

nition. It is followed by the result stating the existence of such a decomposition for any

random time and some equivalent characterisations of two classes of random times.

Definition 2.3. Consider a random time τ . A pair of random times (τ1, τ2) is called a

(∗)-decomposition of τ if τ1 is a strict random time, τ2 is a thin random time, and

τ = τ1 ∧ τ2 τ1 ∨ τ2 = ∞.
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Before presenting Theorem 2.4 let us recall, following [17], some useful processes associated

with τ . For the process A := 11[[τ,∞[[, we denote by Ap its F-dual predictable projection and

by Ao its F-dual optional projection (see Appendix A). By the abuse of language, Ao is

also called the dual optional projection of the random time τ . We also define two F-

supermartingales Z and Z̃ as optional projections of process 1−A− and 1−A respectively,

i.e.,

Zt :=
o
[
11[[0,τ ]]

]
t
= P(τ > t|Ft) and Z̃t :=

o
[
11[[0,τ [[

]
t
= P(τ ≥ t|Ft).

Since the dual optional projection Ao will play a crucial role in the paper, we recall two

equalities where it appears:

(2.3) Ao = m− Z and ∆Ao = Z̃ − Z ,

where m is a BMO F-martingale. Furthermore, Z̃ = Z− +∆m.

Theorem 2.4. (a) Any random time τ has a (∗)-decomposition (τ1, τ2) which is unique on

the set {τ < ∞}.
(b) A random time is a strict random time if and only if its dual optional projection is a

continuous process.

(c) A random time is a thin random time if and only if its dual optional projection is a pure

jump process.

Proof. (a) It is enough to take τ1 and τ2 of the following form τ1 = τ{∆Ao
τ=0} and τ2 =

τ{∆Ao
τ>0}, where τC is the restriction of the random time τ to the set C, defined as τC =

τ11C+∞11Cc. Properties of dual optional projection ensure that τ1 and τ2 satisfy the required

conditions. More precisely, the time τ1 is a strict random time as, for any F-stopping time

T ,

P(τ1 = T < ∞) = E
[
11{τ=T}∩{∆Ao

τ=0}11(T<∞)

]

= E

[∫ ∞

0

11{u=T}∩{∆Ao
u=0}dA

o
u

]
= 0.

and the time τ2 is a thin random time as

[[τ2]] = [[τ ]] ∩ {∆Ao > 0} = [[τ ]] ∩
⋃

n

[[Tn]] ⊂
⋃

n

[[Tn]],

where the sequence (Tn)n exhausts the jumps of the càdlàg process Ao, i.e., {∆Ao > 0} =⋃
n[[Tn]].

(b) Let T be an F-stopping time. Since E(∆Ao
T11{T<∞}) = P(τ = T < ∞) and Ao is an

increasing process we deduce that

P(τ = T < ∞) = 0 if and only if ∆Ao
T11{T<∞} = 0 P-a.s..

Since {∆Ao > 0} is an optional set, optional section theorem [13, Theorem 4.7] implies

that {∆Ao > 0} is exhausted by disjoint graphs of F-stopping times. Thus, we conclude
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that τ is a strict random time if and only if Ao is continuous.

(c) For (Tn)n a sequence of F-stopping times with disjoint graphs, we have
∑

n

P(τ = Tn < ∞) =
∑

n

E(∆Ao
Tn
11{Tn<∞}).

Since E(Ao
∞) = P(τ < ∞), by definition of the dual optional projection and using the

fact that Ao is an increasing process, we conclude that the sequence (Tn)n satisfies the

condition
∑

n P(τ = Tn < ∞) = P(τ < ∞) if and only if it satisfies the condition E(Ao
∞) =∑

n E(∆Ao
Tn
11{Tn<∞}). In other words, τ is a thin random time if and only if Ao is a pure

jump process. �

For i ∈ {1, 2}, corresponding to the two (∗)-parts of a random time, i.e., τ1 and τ2, we

define Ai := 11[[τi,∞[[. Then Ai,p and Ai,o are respectively the F-dual predictable projection

and the F-dual optional projection of Ai. Let us denote by Z i and Z̃ i the supermartingales

associated with τi. Then, the following relations hold.

Lemma 2.5. Let τ be a random time and (τ1, τ2) its (∗)-decomposition. Then, the super-

martingales Z and Z̃ can be decomposed in terms of the supermartingales Z1, Z2 and Z̃1,

Z̃2 as:

Z = Z1 + Z2 − 1 and Z̃ = Z̃1 + Z̃2 − 1.

Proof. The result follows from the property that τ1 ∨ τ2 = ∞. �

The next result gives the supermartingales Z and Z̃ of a thin random time and their de-

compositions into F-martingale m and finite variation process Ao in terms of the exhausting

sequence of τ and of the associated F-martingales defined in (2.2).

Lemma 2.6. Let τ be a thin random time with exhausting sequence (Tn)n≥1 and (zn)n≥1 be

the family of F-martingales associated with τ through (2.2). Then

(a) zn > 0 and zn− > 0 a.s. on Cn for each n,

(b) 1− Zτ > 0 a.s. on {τ < ∞},
(c) Z̃t =

∑
n 11{t≤Tn}z

n
t , Zt =

∑
n 11{t<Tn}z

n
t , A

o
t =

∑
n 11{t≥Tn}z

n
Tn

and mt =
∑

n z
n
t∧Tn

.

Proof. (a) Define the F-stopping time

(2.4) Rn := inf{t ≥ 0 : znt = 0}.

As zn is a positive càdlàg martingale, by [23, Proposition (3.4) p.70], it vanishes on [[Rn,∞[[.

Since zn is bounded zn∞ exists and:

{Rn < ∞} = {inf
t
znt = 0} = {zn∞ = 0}.

Moreover, the equality 0 = E(zn∞11{zn
∞
=0}) = E(11Cn11{zn∞=0}) implies that Cn∩{zn∞ = 0} = ∅,

so as well Cn ∩ {inft znt = 0} = ∅. We obtain that zn > 0 and zn− > 0 a.s. on Cn.

(b) We have Zτ11{τ<∞} =
∑

n 11CnZTn and, on {Tn < ∞}, we have

1− ZTn = P(τ ≤ Tn|FTn) ≥ P(τ = Tn|FTn) = znTn
.
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From part (a), this implies that 1− Zτ > 0 a.s. on {τ < ∞}.
We omit the proof of (c) as it is straightforward. �

The following result describes how, after a thin random time, the conditional expectations

with respect to elements of Fτ can be expressed in terms of the conditional expectations

with respect to elements of F.

Lemma 2.7. Let τ be a thin random time with exhausting sequence (Tn)n≥1 and (zn)n≥1

be the family of F-martingales associated with τ through (2.2). Then, for any G-measurable

integrable random variable X and s ≤ t we have

E [X|F τ
t ] 11{s≥Tn}∩Cn = 11{s≥Tn}∩Cn

E [X11Cn|Ft]

znt
.

Proof. Note that

F τ
t =

⋂

u>t

Fu ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ u, n ∈ N).

Thus, by Monotone Class Theorem, for each G ∈ F τ
t there exists F ∈ Ft such that

(2.5) G ∩ {Tn ≤ s} ∩ Cn = F ∩ {Tn ≤ s} ∩ Cn.

Then, we have to show that

E
[
X11{s≥Tn}∩Cnz

n
t |F τ

t

]
= 11{s≥Tn}∩CnE

[
X11{s≥Tn}∩Cn |Ft

]
.

For any G ∈ F τ
t , we choose F ∈ Ft satisfying (2.5), and we obtain

E
[
X11{s≥Tn}∩Cn∩G znt

]
= E

[
X11{s≥Tn}∩Cn∩F E [11Cn |Ft]

]

= E
[
11{s≥Tn}∩F E [11Cn|Ft]E [X11Cn|Ft]

]

= E
[
11{s≥Tn}∩Cn∩F E [X11Cn|Ft]

]

= E
[
11{s≥Tn}∩Cn∩G E [X11Cn|Ft]

]

which ends the proof. �

We end this subsection with a remark on the (∗)-decomposition of a random time τ as

an Fτ -stopping time, where Fτ is the filtration F progressively enlarged with τ as in (1.1).

Remark 2.8. We can also decompose the random time τ2 into accessible and totally inac-

cessible parts. Then, we consider a decomposition of τ onto three parts as:

τ1 = τ{∆Ao
τ=0}, τ i2 = τ{∆Ao

τ>0, ∆Ap
τ=0} and τa2 = τ{∆Ao

τ>0, ∆Ap
τ>0}.

Then τ1 ∧ τ i2 is an Fτ -totally inaccessible part and τa2 is an Fτ -accessible part of the Fτ -

stopping time τ . These types of results were already shown in [17, p.65] and [9]. We note

that τ is an Fτ -predictable stopping time if and only if τ is an F-predictable stopping time.

Moreover, a filtration Fτ such that τa2 the accessible thin part of τ is not an F-stopping

time is not quasi-left continuous. The last observation provides a systemic way to construct

examples of non quasi-left continuous filtrations.
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3. The hypothesis (H′)

We exploit here the hypothesis (H′) in progressive enlargement in the connection to the

(∗)-decomposition of a random time. Let us first recall that hypothesis (H′) holds for (F,Fτ)

if any F-martingale is an Fτ -semimartingale. First, in subsection 3.1, we examine the case

of thin random times. Then, in subsection 3.2, we work with general random times.

3.1. Thin random time. Before formulating the result of this subsection we must recall

a vital result by Jacod (see [17, Theorem 3,2] and [21]) on the hypothesis (H′) in initial

enlargement with atomic σ-field.

Let F C denote the initial enlargement of the filtration F with the atomic σ-field C :=

σ(Cn, n ≥ 0) with Cn defined in (2.1), i.e.,

(3.1) FC
t :=

⋂

s>t

Fs ∨ σ(Cn, n ≥ 0).

In this case of enlargement, Jacod’s result says that the hypothesis (H′) holds for (F,F C)

and the decomposition of any F-martingale X as an F C-semimartingale is

(3.2) Xt = X̂t +
∑

n

11Cn

∫ t

0

1

zns−
d〈X, zn〉s,

where X̂ is an F C-local martingale and zn are given in (2.2).

Theorem 3.1. Let τ be a thin random time. Then F ⊂ Fτ ⊂ F C and the hypothesis

(H′) is satisfied for (F,Fτ). Moreover, for each Fτ -predictable and bounded process G and

each F-local martingale Y the integral X := G · Y is an Fτ -semimartingale with canonical

decomposition

(3.3) Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s +

∑

n

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s

where X̂ is an Fτ -local martingale.

Proof. The first part follows from Jacod’s result (3.2) and Stricker’s Theorem [22, Theorem

4, Chapter II] since Fτ ⊂ F C. Let H be an Fτ -predictable bounded process. Then, [17,

Lemma (4,4)] implies that

Ht = 11{t≤τ}Jt + 11{τ<t}Kt(τ) t ≥ 0

where J is an F-predictable bounded process and K : R+ × Ω × R+ → R is P ⊗ B(R+)-

measurable and bounded. Note that, since {t ≤ τ} ⊂ {Zt− > 0}, J can be chosen to satisfy

Jt = Jt11{Zt−>0}. Since τ is a thin random time, we can rewrite the process H as

Ht = Jt11{t≤τ} +
∑

n

11{Tn<t}Kt(Tn)11Cn

with Cn = {τ = Tn}. Note that each process Kn
t := 11{Tn<t}Kt(Tn) is F-predictable and

bounded and, since Cn ⊂ {znt− > 0}, Kn can be chosen to satisfy Kn
t = Kn

t 11{znt−>0}.
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Let X be an H1 F-martingale. Then stochastic integrals J ·X and Kn ·X are well defined

and each of them is H1 F-martingale. For each n and for each bounded F-martingale N , by

integration by parts, we have that

(3.4) E [11CnN∞] = E [[zn, N ]∞] = E [〈zn, N〉∞] .

Since N → E(11CnN∞) is a linear form, by the duality (H1, BMO) implies that (3.4) holds

for any H1 F-martingale N . Similarly, by [2, Proposition 1.32], for any H1 F-martingale N ,

the process 〈N,m〉 exists and we have

E(Nτ ) = E([N,m]∞) = E(〈N,m〉∞)

where m is given in (2.3). Therefore

E

[∫ ∞

0

HsdXs

]
=E

[∫ τ

0

JsdXs

]
+
∑

n

E

[
11Cn

∫ ∞

0

Kn
s dXs

]

=E

[∫ ∞

0

Jsd〈m,X〉s
]
+
∑

n

E

[∫ ∞

0

Kn
s d〈zn, X〉s

]

Then, since for any predictable finite variation process V , E[
∫∞

0
hsdVs] = E[

∫∞

0
phsdVs], we

deduce

E

[∫ ∞

0

HsdXs

]
= E

[∫ ∞

0

Zs−

Zs−

11{Zs−>0}Jsd〈m,X〉s
]

+
∑

n

E

[∫ ∞

0

zns−
zns−

11{zns−>0}K
n
s d〈zn, X〉s

]

=E

[∫ τ

0

1

Zs−
Jsd〈m,X〉s

]
+
∑

n

E

[
11Cn

∫ ∞

0

1

zns−
Kn

s d〈zn, X〉s
]
.

For any H1 F-martingale Y and Fτ -predictable process G ≡ 1 the assertion of the theorem

follows as for any s ≤ t and F ∈ F τ
s the process H = 11(s,t]11F is clearly Fτ -predictable. To

end the proof we recall that any local martingale is locally in H1. �

Remark 3.2. [17, Lemma (4,11)] is a special case of Theorem 3.1 where the random time

with countably many values is considered. It corresponds to the situation of thin random

time whose graph is included in countable union of constant sections, i.e, [[τ ]] ⊂ ⋃
n[[tn]] with

[[tn]] = {(ω, tn) : ω ∈ Ω}. Our proof is similar to the proof of [17, Lemma (4,11)].

We end this section with a result linking processes in Fτ and F C. It can be used as an

alternative approach to show the decomposition in Theorem 3.1 using (3.2). It is related to

the ideas in [8].

Proposition 3.3. Let τ be a thin random time and X be a process such that X = 11]]τ,∞[[ ·X.

Then

(a) The process X is an F C-(super-, sub-) martingale if and only if the process X is an

Fτ -(super-, sub-) martingale.

(b) Let ϑ be an F C-stopping time. Then ϑ ∨ τ is an Fτ -stopping time.
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(c) The process X is an F C-local martingale if and only if the process X is an Fτ -local

martingale.

Proof. (a) Note that the filtrations Fτ and F C are equal after τ , i.e., for each t and for each

set G ∈ FC
t there exists a set F ∈ F τ

t such that

(3.5) {τ ≤ t} ∩G = {τ ≤ t} ∩ F.

To show (3.5), by Monotone Class Theorem, it is enough to consider G = Cn and to take

F = Cn ∩ {τ ≤ t} which belongs to F τ
t as Cn ∈ F τ

τ by [13, Corollary 3.5]. That implies

that the process 11]]τ,∞[[ ·X is Fτ -adapted if and only if it is F C-adapted. The equivalence of

(super-, sub-) martingale property comes from (3.5).

(b) For each t we have {ϑ ∨ τ ≤ t} = {ϑ ≤ t} ∩ {τ ≤ t} ∈ F τ
t by (3.5).

(c) We combine the two previous points. �

3.2. General random time. In this section we work with the (∗)-decomposition (τ1, τ2)

of the random time τ . We define three enlarged filtrations Fτ1 := (F τ1
t )t≥0, F

τ2 := (F τ2
t )t≥0

and Fτ1,τ2 := (F τ1,τ2
t )t≥0 as

F τi
t : =

⋂

s>t

Fs ∨ σ(τi ∧ s) for i = 1, 2

F τ1,τ2
t : =

⋂

s>t

Fs ∨ σ(τ1 ∧ s) ∨ σ(τ2 ∧ s).

Obviously, F ⊂ Fτi ⊂ Fτ1,τ2 for i = 1, 2.

Theorem 3.4. Let τ be a random time and (τ1, τ2) its (∗)-decomposition. Then, the hy-

pothesis (H′) is satisfied for (F,Fτ ) if and only if the hypothesis (H′) is satisfied for (F,Fτ1).

Proof. In the first step, we show the following inclusions of filtrations for i = 1, 2:

F ⊂ Fτi ⊂ Fτ1,τ2 = Fτ .

Let Ao be an F-dual optional projection of τ . Note that

11[[τ1,∞[[ = 11[[τ,∞[[11{∆Ao
τ=0} and 11[[τ2,∞[[ = 11[[τ,∞[[11{∆Ao

τ>0},

thus, since ∆Ao
τ ∈ F τ

τ , the processes 11[[τ1,∞[[ and 11[[τ2,∞[[ are Fτ -adapted which implies that

Fτ1,τ2 ⊂ Fτ . On the other hand we have

11[[τ1,∞[[ + 11[[τ2,∞[[ = 11[[τ,∞[[

which implies that Fτ1,τ2 ⊃ Fτ .

In the second step, note that if an F-martingale is an Fτ -semimartingale, by Stricker’s

Theorem [22, Theorem 4, Ch II, p. 53], it is as well an Fτ1-semimartingale. Thus the

necessary condition follows. Since τ2 is a thin random time, the previous step and Theorem

3.1 imply that the hypothesis (H′) is satisfied for (Fτ1 ,Fτ ). Thus the sufficient condition

follows. �

In the next proposition we see that τ1 and τ2 are in some sense orthogonal (in terms of

semimartingale decomposition and associated supermartingales, which is due to τ1∨τ2 = ∞).
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Proposition 3.5. The F-supermartingale Z2 of a thin random time τ2 coincides with the

Fτ1-supermartingale Z2,Fτ1 of τ2, i.e., P(τ2 > t|Ft) = P(τ2 > t|F τ1
t ).

Proof. Let T be an F-stopping time. For each A ∈ F τ1
t , there exists B ∈ Ft such that

A ∩ {τ = T} = B ∩ {τ = T}, so P(τ = T |Ft) = P(τ = T |F τ1
t ) which ends the proof. �

4. Thin honest times

Here we restrict our attention to a special class of random times, namely to honest times.

We recall its definition below (see [17, p. 73]) and some alternative characterizations in

Appendix B.

Definition 4.1. A random time τ is an F-honest time if for every t > 0 there exists an

Ft-measurable random variable τt such that τ = τt on {τ < t}. Then, it is always possible

to choose τt such that τt ≤ t.

We refer to the Appendix B for further helpful results on honest times.

4.1. Fundamental properties. Let us start with some characterisation and properties of

(thin) honest times.

Proposition 4.2. (a) Let τ be an honest time and denote by (τ1, τ2) its (∗)-decomposition.

Then, the times τ1 and τ2 are honest times.

(b) A random time τ is a strict honest time if and only if Zτ = 1 a.s. on {τ < ∞}.
(c) Let τ be an honest time with (∗)-decomposition (τ1, τ2). Then, Zτ = 1 on {τ = τ1 < ∞}
and Zτ < 1 on {τ = τ2 < ∞}.

Proof. (a) On the set {τ < ∞}, τ is equal to γ, the end of the optional set Γ (Theorem

B.2). Then, as {τ1 < ∞} ⊂ {τ < ∞}, on the set {τ1 < ∞}, one has τ1 = γ, so τ1 is an

honest time. Same argument for τ2.

(b) Assume that τ is a strict honest time. Then, the honest time property presented in

Theorem B.2 (c) implies that Z̃τ = 1 and the strict time property implies, by Theorem 2.4

(b), the continuity of Ao. Therefore, the equality Z̃ = Z + ∆Ao leads to equality Zτ = 1

a.s. on {τ < ∞}.
Assume now that Zτ = 1 on the set {τ < ∞}. Then, on {τ < ∞} we have 1 = Zτ ≤ Z̃τ ≤ 1,

so Z̃τ = 1 and τ is an honest time. Furthermore, as ∆Ao
τ = Z̃τ −Zτ = 0, for each F-stopping

time T we have

P(τ = T < ∞) = E(11{τ=T}11{∆Ao
τ=0}11(T<∞))

= E(

∫ ∞

0

11{u=T}11{∆Ao
u=0}dA

o
u) = 0.

So τ is a strict random time.

(c) From the honest time property of τ and Lemma 2.5, on the set {τ < ∞}

1 = Z̃τ = Z̃1
τ + Z̃2

τ − 1.
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On the set {τ = τ1 < ∞}, we have

1 = Z̃1
τ1
+ Z̃2

τ1
− 1 = Z̃2

τ1
,

where the second equality comes from (c) in Theorem B.2. Now let us compute Z2
τ1

Z2
τ1 = Z̃2

τ1 −∆A2 ,o
τ1 = Z̃2

τ1 = 1,

where we have used the strict random time property of τ1, i.e., {∆A2 ,o > 0} =
⋃

n[[Tn]]

(with (Tn) being an exhausting sequence of τ2) and P(τ1 = Tn < ∞) = 0. Finally, on

{τ = τ1 < ∞}
Zτ = Z1

τ1 + Z2
τ1 − 1 = 1.

On the set {τ = τ2 < ∞},

Zτ = Z1
τ2
+ Z2

τ2
− 1 ≤ Z2

τ2
< 1,

where the last inequality is due to Lemma 2.6 (b). �

Remark 4.3. We would like to remark that the condition that Zτ < 1 for an honest time τ

– which, by Proposition 4.2 (c), is equivalent to the condition that τ is a thin honest time –

is an essential assumption in [1].

Lemma 4.4. Let τ be a thin honest time and τt be associated with τ as in Definition 4.1.

Then, for each n:

(a) on {Tn = τt} = {Tn = τt ≤ t} we have znt = 1− Zt, A
o
t = znTn

and 1−mt = znt − znTn
;

(b) on {Tn < t} we have znt = 11{τt=Tn}(1− Z̃t) and znt− = 11{τt=Tn}(1− Zt−); in particular

1− Z̃t =
∑

n

11{τt=Tn<t}(1− Z̃t) and 1− Zt− =
∑

n

11{τt=Tn<t}(1− Zt−).

Proof. (a) Using properties of τt we deduce that

11{Tn=τt}z
n
t = P(Tn = τt ≤ t, τ = Tn < ∞|Ft)

= P(τ ≤ t, Tn = τt = τ |Ft)

= P(τ ≤ t, Tn = τt|Ft)

= 11{Tn=τt}(1− Zt)

where the first equality is due to τt ≤ t, the third one follows by τt = τ on {τ ≤ t} and the

last one is true since Tn ∧ t and τt are two Ft-measurable random variable and

{Tn = τt} = {Tn = τt < t} ∪ {Tn = τt = t}
=

{
{Tn ∧ t = τt} ∩ {τt < t}

}
∪
{
{Tn = t} ∩ {τt = t}

}
.

The dual optional projection of a thin random time satisfies

11{Tn=τt}A
o
t =

∑

k

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}z
n
Tn
,

where the second equality is due to the fact that for n 6= k we have

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}E(11{τ=Tk≤t}|Tk)



12 A. AKSAMIT, T. CHOULLI AND M. JEANBLANC

= 11{Tn=τt=Tk}E(11{τ=Tk≤t}|Tk) = 0

since Tn and Tk have disjoint graphs and τ is an honest time. Combining the two previous

points, we conclude that 1−mt = 1− Zt − Ao
t = znt − znTn

on the set {Tn = τt}.
(b) Again using properties of random variable τt we derive

11{Tn<t}z
n
t = P(τ = Tn = τt < t|Ft) = 11{Tn=τt<t}(1− Z̃t),

11{Tn<t}z
n
t− = P(τ = Tn = τt < t|Ft−) = 11{Tn=τt<t}(1− Zt−).

Then, Lemma 2.6 (c) completes the proof. �

For progressive enlargement with an honest time, the hypothesis (H′) is satisfied (not

only for F-local martingales stopped at τ), and the following decomposition is given in [17,

Theorem (5,10)]. Let M be an F-local martingale. Then, there exists an Fτ -local martingale

M̂ such that:

(4.1) Mt = M̂t +

∫ t∧τ

0

1

Zs−
d〈M,m〉s −

∫ t

0

11{s>τ}
1

1− Zs−
d〈M,m〉s.

Remark 4.5. For a thin honest time τ , the two decomposition formulas, first given in

Theorem 3.1 and second given in (4.1), coincide. It is enough to show that
∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∑

n

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.

This is a simple consequence of the set inclusion {τ < s} ∩ {τ = Tn} ⊂ {Tn = τs ≤ s} and

Lemma 4.4 (a):
∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∑

n

∫ t

0

11{s>τ}∩{τ=Tn}
1

1− Zs−
d〈X, 1−m〉s

=
∑

n

∫ t

0

11{s>τ}∩{τ=Tn}
1

zns−
d〈X, zn〉s

=
∑

n

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.

4.2. Jumping filtration. In this section we develop the relationship between jumping

filtration and thin honest times. Let us first recall the definition of a jumping filtration and

the main result obtained in Jacod and Skorokhod [14].

Definition 4.6. A filtration F is called a jumping filtration if there exists a localizing se-

quence (θn)n, i.e., a sequence of stopping times increasing a.s. to ∞, with θ0 = 0 and such

that for all n and t > 0 the σ-fields Ft and Fθn coincide up to null sets on {θn ≤ t < θn+1}.
The sequence (θn)n is then called a jumping sequence.

There exists an important alternative characterization of jumping filtration in terms of

martingale’s variation ([14, Theorem 1]).

Theorem 4.7. The two following conditions are equivalent:

(a) a filtration F is a jumping filtration;

(b) all martingales in the filtration F are a.s. of locally finite variation.
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In the remaining part of this subsection we investigate relationship between jumping

filtration and honest times. We show that there does not exist strict honest time in a jumping

filtration and that there exists a strict honest time in a filtration which admits a non-constant

continuous martingale (in particular such a filtration is not a jumping filtration).

Theorem 4.8. The following assertions hold.

(a) If F is a jumping filtration, then all F-honest times are thin.

(b) If all F-honest times are thin, then all non-constant F-local martingales are purely dis-

continuous.

Proof. (a) Let τ be an honest time. Then, take the same process α as in the proof of

Proposition B.1, i.e., α is an increasing, càdlàg, adapted process such that αt = τ on

{τ ≤ t} and τ = sup{t : αt = t}. Let us define the partition (Cn)
∞
n=0 such that

Cn = {θn−1 ≤ τ < θn}
for n ≥ 1 and C0 = {τ = ∞} with (θn)n being a jumping sequence for the jumping filtration

F. On each Cn with n ≥ 1 we have

τ = Tn := inf{t ≥ θn−1 : t = αθn−}.
From the jumping filtration property, we know that αθn− is Fθn−1

-measurable so each Tn is

a stopping time and [[τ ]] ⊂ ⋃∞
n=1[[Tn]] which shows that the honest time τ is a thin random

time.

(b) The proof by contradiction is based on [23, Exercise (1.26) p.235]. Assume that M

is a non-constant continuous F-local martingale with M0 = 0. Define the F-stopping time

S1 = inf{t > 0 : 〈M〉t = 1}. Then, define the F-honest time

τ := sup {t ≤ S1 : Mt = 0} .
Since M is continuous, τ is not equal to infinity with strictly positive probability. We now

show that τ is an F-strict honest time. Let us denote Z(ω) := {t : Mt(ω) = 0}. The set

Z(ω) is closed and Zc(ω) is the union of countably many open intervals. We call G(ω) the

set of left ends of these open intervals. In what follows we show that for any F-stopping

time T we have P(T ∈ G) = 0. Define the F-stopping time

DT := inf{t > T : Mt = 0}
and note that

{T ∈ G} = {MT = 0} ∩ {T < DT} ∈ FT .

Assume P(T ∈ G) = p > 0. Then the process

Yt = 11{T∈G}|MT+t|11{0≤t≤DT−T}

is an (FT+t)t≥0-martingale. Indeed for s ≤ t we have

E(Yt|FT+s) = 11{T∈G}sgn(MT+t)E(MT+t11{t≤DT−T}|FT+s)

=11{T∈G}sgn(MT+t)
[
MT+s11{s≤DT−T} − E(11{s≤DT−T}11{t>DT−T}E(MT+t|FDT

)|FT+s)
]
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=Ys − 11{T∈G}sgn(MT+t)E(11{s≤DT−T}11{t>DT−T}MDT
|FT+s)

=Ys

where we have used the martingale property of M and MDT
= 0. Moreover Y0 = 0 and

there exists ε > 0 such that

P(MT = 0, DT − T > ε) ≥ p

2
> 0.

Since Yε = 11{MT=0}11{DT−T≥ε}|MT+ε| ≥ 0 and P(Yε > 0) > 0, we have E(Yε) > 0 = Y0. So,

P(T ∈ G) = 0. Finally, as τ ∈ G a.s. we conclude that τ is a strict honest time. �

Finally we give two examples of strict honest times originating from purely discontinuous

semimartingales of infinite variation. In the first Example 4.9, we study the case of Azéma’s

martingale (see [22, IV.8 p.232-237]). In the second Example 4.10, we recall the example 2.1

from [18] on Maximum of downwards drifting spectrally negative Lévy processes with paths

of infinite variation.

Example 4.9. Let B be a Brownian motion and F its natural filtration. Define the process

gt := sup{s ≤ t : Bs = 0}.

The process

µt := sgn(Bt)
√
t− gt

is a martingale with respect to the filtration G := (Fgt+)t≥0 and is called the Azéma martin-

gale. Then, the random time

τ := sup{t ≤ 1 : µt = 0}

is clearly a G-honest time. Note that τ = τB := sup{t ≤ 1 : Bt = 0} and τB is an F-

strict honest time (see in [20, Table 1α 1), p.32] that τB has continuous F-dual optional

projection). Thus, since G ⊂ F, τ is a G-strict honest time .

Example 4.10. Let X be a Lévy process with characteristic triplet (α, σ2 = 0, ν) satisfying

ν((0,∞)) = 0, α +
∫ −1

−∞
xν(dx) < 0 and

∫ 0

−1
|x|ν(dx) = ∞. Then, ρ = sup{t : Xt− = X∗

t−}
with X∗

t = sups≤tXs is a strict honest time as shown in [18, Section 2.1].

4.3. Examples of thin honest times.

4.3.1. Compound Poisson process: last passage time at a barrier a. Let us consider the

filtration F generated by a Compound Poisson Process (CCP) X , defined as

Xt =

Nt∑

n=1

Yn,

where N is a Poisson process with parameter η and sequence of jump times (θn)
∞
n=1, and

(Yn)
∞
n=1 are i.i.d. strictly positive integrable random variables, independent from N , with

cumulative distribution function F . We will study a thin honest time in the filtration of X

which is not a stopping time. In a progressive enlargement framework, in order to study
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the Fτ -semimartingale decomposition of F-martingales before τ , one needs to compute the

martingale m = Z + Ao. Therefore, we shall present the computations of Ao (hence m).

Define a random time τ as

(4.2) τ := sup{t : µt−Xt ≤ a}

with a > 0 and a constant µ. From now on we assume that µ > ηE(Y1). Under this

condition, the random time τ is finite a.s.. Since τ is a last passage time, it is an honest

time in the filtration F. Furthermore, since the process µt − Xt has only negative jumps,

one has µτ −Xτ = a. The random time τ is thin as we shall see below.

Lemma 4.11. The honest time τ is a thin random time with exhausting sequence (Tn)n≥1

given by

T1 := inf{t > 0 : µt−Xt = a} and(4.3)

Tn := inf{t > Tn−1 : µt−Xt = a} for n > 1.

Each Tn is a predictable stopping time. Furthermore Zτ < 1.

Proof. Random time τ is honest since on {τ < t} it is equal to τt := {s ≤ t : µs−Xs ≤ a}.
The sets (Cn)

∞
n=0 with Cn = {τ = Tn} form a partition of Ω. Then, τ =

∑∞
n=0 Tn11Cn. Thus

τ is a thin random time Note that τ is not an F-stopping time as Cn /∈ FTn for any n.

To show that each Tn is predictable, let us define the stopping times Jd and Ju as

Jd = inf{t > 0 : µt−Xt− = a, µt−Xt < a}
Ju = inf{t > 0 : µt−Xt− > a, µt−Xt = a}.

First observe that [[Jd]] ⊂
⋃

n[[θn]] and [[Ju]] ⊂
⋃

n[[θn]]. For each n, we have P(Jd = θn) = 0

as

P(Jd = θn) = E
[
P
[
Jd = θn|Fθn−1

]]

= E
[
11{Jd>θn−1}P

[
µθn −Xθn−1

= a|Fθn−1

]]

≤ E

[
P

[
θn − θn−1 =

a− µθn−1 +Xθn−1

µ
|Fθn−1

]]
= 0,

so we conclude that Jd = ∞ a.s. For each n, we have P(Ju = θn) = 0 as

P(Ju = θn) = E
[
P
[
Ju = θn|Fθn−1

∨ σ(Yn)
]]

= E
[
11{Ju>θn−1}P

[
µθn −Xθn = a|Fθn−1

∨ σ(Yn)
]]

≤ E

[
P

[
θn − θn−1 =

a− µθn−1 +Xθn−1
+ Yn

µ
|Fθn−1

∨ σ(Yn)

]]

= 0,

so we conclude that Ju = ∞ a.s.. Now, for each n ≥ 1, we simply define an announcing

sequence (Tn,m)m≥1 for Tn as

Tn,m = inf{t > Tn−1 : µt−Xt ≥ a− 1

m
}
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with T0 = 0. We see that Jd = ∞ and Ju = ∞ a.s. ensure that each sequence (Tn,m)m is

indeed an announcing sequence of Tn. �

Let us remark that in fact the random time τ (defined in (4.2)) can be seen as the end of

the optional set Γ =
⋃

n[[Tn]] as

τ(ω) = sup{t : (ω, t) ∈ Γ}.

Proposition 4.12. The supermartingales Z and Z̃ associated with the honest time τ are

given by

(4.4) Zt = Ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a},

(4.5) Z̃t = Ψ(µt−Xt − a)11{µt−Xt>a} + 11{µt−Xt≤a},

where Ψ(x) is the ruin probability associated with the process µt−Xt, i.e., for every x ≥ 0

(4.6) Ψ(x) := P(tx < ∞) with tx := inf{t : x+ µt−Xt < 0}.

The function Ψ satisfies the following properties:

(a) for x < 0 we have Ψ(x) = 1;

(b) the function Ψ is continuous and decreasing on (0,∞);

(c) for x = 0, we have Ψ(0) = ηE(Y1)
µ

< 1.

In particular, Zτ = 1
1+κ

where κ =
µ

ηE(Y1)
− 1.

The supermartingale Z admits the decomposition Z = m− Ao where

mt = (1−Ψ(0))
∑

n

11(t≥Tn) +Ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a}

Ao
t = (1−Ψ(0))

∑

n

11{t≥Tn}.

The F-dual optional projection and the F-dual predictable projection of 11[[τ,∞[[ are equal, i.e.

Ao = Ap.

Proof. The form of Z follows from the stationary and independent increments property of

µt−Xt

P(τ > t|Ft) = P(inf
s≥t

(µs−Xs) < a|Ft)

= P(inf
s≥t

(µ(s− t)− (Xs −Xt)) < a− µt+Xt|Ft)

= Ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a}.

Let us now compute the dual optional projection Ao of the process 11[[τ,∞[[. For any bounded

optional process X we have

E [Xτ ] =
∑

n

E
[
11{τ=Tn}XTn

]
=

∑

n

E
[
XTnE

[
11{τ=Tn}|FTn

]]

which implies that

Ao =
∑

n

P(τ = Tn|FTn)11[[Tn,∞[[.
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To compute P(τ = Tn|FTn) let us define, for any x and T , the stopping time ST
x = inf{t >

T : x+ µt−Xt < 0} and notice that

P(τ = Tn|FTn) = E(STn
−a = ∞|FTn) = E(S0

0 = ∞) = 1−Ψ(0).

Then, Ao = (1 − Ψ(0))
∑

n 11[[Tn,∞[[. This is also the dual predictable projection as, by

previous lemma, Tn are predictable stopping times. The martingale m = Z + Ao equals

then

mt = E

[
(1−Ψ(0))

∑

n

11{Tn<∞}|Ft

]

= (1−Ψ(0))
∑

n

11{t≥Tn} +Ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a}.

Finally, from the general relation Z̃ = Z +∆Ao, we conclude the form of Z̃. �

4.3.2. Brownian motion: local time approximation. We give an example related to an ap-

proximation result for the local time. Let B be a Brownian motion. For ε > 0, define a

double sequence of stopping times by

Uε
0 = 0, V ε

0 = 0

Uε
n = inf{t ≥ V ε

n−1 : Bt = ε}, V ε
n = inf{t ≥ Uε

n : Bt = 0}.

We consider the random time

(4.7) τ ε := sup{V ε
n : V ε

n ≤ T1}

with T1 = inf{t : Bt = 1}. From the definition we easily see that it is an honest thin random

time.

Let us introduce the processes Xε, Y ε and Jε

Xε
t := sup{s ≤ t ∧ T1 : Bs = ε}

Y ε
t := sup{s ≤ t ∧ T1 : Bs = 0}
Jε
t := 11{Xε

t>Y ε
t }

and the function ζ

ζ(x) := Px(T0 < T1) = 1− x, for x ∈ [0, 1].

The supermartingale Zε associated with τ ε is equal to

Zε
t = Jε

t ζ(Bt∧T1
) + (1− Jε

t )ζ(ε)

= Jε
t (1− Bt∧T1

) + (1− Jε
t )(1− ε)

= 1− Jε
tBt∧T1

− (1− Jε
t )ε .

Let us define the process Dε
t = max{n : V ε

n ≤ t} which is equal to the number of down-

crossings of Brownian motion from level ε to level 0 before time t. By integration by parts

we obtain

BtJ
ε
t + ε(1− Jε

t ) =

∫ t

0

Jε
s dBs +

∫ t

0

Bs dJ
ε
s + ε(1− Jε

t )
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=

∫ t

0

Jε
s dBs + εDε

t + ε .

The dual optional projection of τ ε equals

Ao,ε
t = (11{t≥τε})

p = εDε
t∧T1

+ ε

and we easily see that it is a pure jump process with the property

{∆Ao,ε > 0} = [[0, T1]] ∩
∞⋃

n=0

[[V ε
n ]].

We can interpret the sequence τ ε with ε going to zero as an approximation of the strict

honest time τ given by

(4.8) τ := sup{t < T1 : Bt = 0},

as τ ε → τ P a.s. (by time reversal at τ). The supermartingale Z associated with τ equals

Zt = 1−
∫ t∧T1

0

11{Bs>0}dBs −
1

2
L0
t∧T1

and, by [23, Chapter VI Theorem (1.10)] and the fact that E(
√
T1) < ∞, we have the

following convergence for dual optional projections

lim
ε→0

E

[
sup
t

|εDε
t∧T1

− 1

2
Lt∧T1

|
]
= 0.

In order to study the relationship between progressive enlargements with τ ε, let us recall

the definition of weak convergence of σ-fields (see Definition 1 in [19] and references therein).

Definition 4.13. A sequence of σ-fields Gn converges weakly to a σ-field G if and only if

for all G ∈ G, E(11B|Gn) converges in probability to 11G. We write Gn
w→ G.

Lemma 4.14. Let Fn be a progressive enlargement of the filtration F with random time τ 1/n

defined in (4.7) and F∞ be the progressive enlargement of the filtration F with random time

τ defined in (4.8). Then, for each t, the sequence of σ-fields (Fn
t )n converges weakly to F∞

t .

Proof. We have to check that for each F ∈ F∞
t , P(F |Fn

t ) converges in probability to 11F .

We limit our attention to the sets F belonging to the generator of F∞
t . If F ∈ Ft, the

condition is obviously satisfied. If F = {τ ≤ s} for s ≤ t, using Proposition B.3 and the

honesty of τ 1/n, we have

E(11{τ≤s}|Fn
t ) = 11{τ1/n≤s}E(11{τ≤s}|Fn

t )

= 11{τ1/n≤s}

E(11{τ≤s}|Ft)

P(τ 1/n ≤ s|Ft)
n→∞→ 11{τ≤s} a.s.

where the convergence comes from τ 1/n → τ a.s. �
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5. Entropy of a thin random time

The additional information carried by enlarged filtration and its measurement was studied

by several authors. Already in Meyer [21] and Yor [25], the question on stability of mar-

tingale spaces with respect to initial enlargement with atomic σ-field was asked. Here we

complete previous studies by giving a simple connection between progressive enlargement

with thin random time and conditional entropy of a partition associated to this time.

In the case of initial enlargement with a partition C := (Cn)n, the additional knowledge

is measured by entropy, namely

H(C) := −
∑

n

P(Cn) log P(Cn).

In the case of progressive enlargement with a thin random time τ , we suggest the measure-

ment of additional knowledge by the entropy of a thin random time defined through:

(5.1) H(τ) := −
∑

n

E
[
11Cn log z

n
Tn

]
,

where Cn and zn are defined in (2.1) and (2.2). Let us remark that the condition H(τ) < ∞
is weaker than the condition H(C) < ∞.

To state the main result of this section in Theorem 5.2, which consists of a generalisation

of [25, Theorem 2] we need to define more general object, namely

(5.2) Hγ(τ) :=
∑

n

E

[
11Cn

[
log

1

znTn

]γ]
γ > 0.

Remark 5.1. (a) If τ is an F-stopping time then Hγ(τ) = 0.

(b) If for any n the set Cn is in FTn, then we do not gain any additional information since

11Cn log z
n
Tn

= 11Cn log 11Cn = 0.

(c) As noted in Section 2, the exhausting sequence (Tn)n of a thin random time is not unique.

However Hγ(τ) is invariant under different decompositions of τ since for F-stopping times

T , T1 and T2 such that [[T1]] ∩ [[T2]] = ∅ and {τ = T} = {τ = T1} ∪ {τ = T2} we have

11{τ=T} log
γ P(τ = T |FT )

= 11{τ=T1} log
γ P(τ = T |FT ) + 11{τ=T2} log

γ P(τ = T |FT )

= 11{τ=T1} log
γ P(τ = T1|FT1

) + 11{τ=T2} log
γ P(τ = T2|FT2

).

The entropy of thin random time reveals to be an adequate notion to treat the stability

of martingale spaces with respect to progressive enlargement of filtration (with thin random

time). In this section we work under standing assumption that

(C) all F-martingales are continuous

Then we introduce some related notations. For any p ∈ [1,∞), we denote Hp and Sp

the Banach spaces consisting respectively of continuous local martingales and continuous

semimartingales equipped with the following norms:

(a) a continuous F-local martingale X belongs to Hp if

||X||Hp := ||〈X〉1/2∞ ||Lp < ∞;
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(b) a continuous F-semimartingale X , with canonical decomposition X = M + V , belongs

to Sp if

||X||Sp := ||〈M〉1/2∞ ||Lp + ||
∫ ∞

0

|dVt|||Lp < ∞.

We are ready to state the main result of this section. It is a generalisation of [25, Theorem

2] and the proof here is based on the original proof.

Theorem 5.2. Let τ be a thin random time with an exhausting sequence (Tn)n and family

of F-martingales (zn)n satisfying zn∞ = 11Cn. Assume (C) and let r ∈ [1,∞), p, γ > 0 satisfy
1
r
= 1

p
+ 1

γ
. Then the following conditions are equivalent:

(a) for each F-local martingale Y and each Fτ -predictable process G, the Fτ -semimartingale

X := G · Y satisfies:

||X||Sr(Fτ ) ≤ Cp,r||〈X〉1/2∞ ||Lp;

(b) Hγ/2(τ) < ∞.

In particular, if the conditions (a) and (b) are satisfied, then Hp(F) is continuously embedded

in Sr(Fτ ).

Proof. By Theorem 3.1, under assumption (C), each X of the form X = G · Y where Y is

an F-local martingale and G is an Fτ -predictable process, has the decomposition

(5.3) X = X̂ + 〈X, Y b〉+ 〈X, Y a〉

where Y b and Y a are Fτ -local martingales given by

Y b :=

∫ τ∧t

0

1

Zs−
dm̂s and Y a

t :=
∑

n

11Cn

∫ t

Tn

1

zns
dẑns

with X̂ , m̂ and ẑn the Fτ -local martingale parts from Doob-Meyer decomposition of cor-

responding Fτ -semimartingales X , m and zn. Since r < p and continuity of X it always

holds that ||〈X̂〉1/2||Lr = ||〈X〉1/2||Lr = ||〈X〉1/2||Lp. Thus, showing (a) ⇐⇒ (b) is equivalent

to showing that

(5.4) ||
∫ ∞

0

|d〈X, Y b〉t + 〈X, Y a〉t|||Lr ≤ Cp,r||〈X〉1/2∞ ||Lp

holds for any X . By [25, Lemma 2] and the fact that stochastic intervals [[0, τ ]] and

]]Tn,∞[[∩Cn for n ∈ N are pairwise disjoint, inequality (5.4) holds for any adequate X

if and only if

E
[
〈Y b〉γ/2∞

]
< ∞ and E

[
〈Y a〉γ/2∞

]
< ∞.

Firstly we show that

(5.5) ||〈Y b〉1/2∞ ||Lγ < ∞ ∀ γ > 0.

By [25, Remark 5.1 2) p.123], since, for γ > 2, xγ/2 is moderate Orlicz function, we have

∣∣∣
∣∣∣
[∫ τ

0

1

Z2
s

d〈m〉s
]1/2 ∣∣∣

∣∣∣
Lγ

≤ C

[
1 +

∣∣∣
∣∣∣
[
log

1

U

]1/2 ∣∣∣
∣∣∣
Lγ

]
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where U is random variable with uniform distribution on [0, 1]. Note that
∫ 1

0
(− log x)γ/2 <

∞ and thus, by using the fact that Lµ ⊂ Lγ for 0 < µ < γ < ∞, the (5.5) holds.

Showing that E
[
〈Y a〉γ/2∞

]
< ∞ if and only if Hγ/2(τ) < ∞ for γ = 2 is a simpler special

case which will be useful afterwards and we start with it. By properties of dual predictable

projection, we have that

E(〈Y a〉∞) =
∑

n

E

[∫ ∞

Tn

11Cn

1

(znt )
2
d〈zn〉t

]
=

∑

n

E

[∫ ∞

Tn

1

znt
d〈zn〉t

]
.

Consider the function f : R+ → R+ defined as f(x) = x − x log x for x > 0 and f(0) = 0.

Then, Itô’s formula for zn implies

11Cn = znt − znt log z
n
t −

∫ ∞

t

log zns dz
n
s − 1

2

∫ ∞

t

1

zns
d〈zn〉s.

We deduce, by taking conditional expectation with respect to Ft, that

(5.6) E

[∫ ∞

t

1

zns
d〈zn〉s|Ft

]
= 2znt log

1

znt
.

Finally

E(〈Y a〉∞) =
∑

n

E

[∫ ∞

Tn

1

znt
d〈zn〉t

]

= −2
∑

n

E
[
znTn

log znTn

]
= 2H(τ) < ∞.

In order to complete the proof it remains to show thatHγ(τ) < ∞ if and only if E [〈Y a〉γ] <
∞, first notice that Lemma C.1 implies that it is equivalent to proving Hγ(τ) < ∞ if and

only if E
[[
log 1

I

]γ]
< ∞. To this end, note that, by Lemma C.2, we have

E

[[
log

1

I

]γ]
=

∑

n

E

[
E

[
11Cn

[
log

1

In

]γ ∣∣∣FTn

]]

=
∑

n

E

[
11Cn

1− znTn

znTn

∫ znTn

0

[
log

1

β

]γ
1

(1− β)2
dβ

]
.

Denoting by z =
∑

n 11Cnz
n
Tn
, taking any ε ∈ (0, 1) and defining f(x) =

∫ x

0

[
log 1

β

]γ
dβ for

x ∈ (0, 1), we further obtain

E

[[
log

1

I

]γ]
= E

[
1− z

z

∫ z

0

[
log

1

β

]γ
1

(1− β)2
dβ

]

≤ E

[
11{z>ε}

[
f(ε)

ε(1− ε)2
+

1

1− ε

[
log

1

ε

]γ]]
+ E

[
11{z≤ε}

f(z)

z(1 − ε)2

]

≤ C1 + C2E

[
11{z≤ε}

[
log

1

z

]γ]

≤ C1 + C2Hγ(τ).

Thus we conclude that Hγ(τ) < ∞ if and only if E
[[
log 1

I

]γ]
< ∞ and the proof is complete.

�
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6. General progressive enlargement with a partition

In this section we consider more general progressive enlargement of filtration with given

a partition (Cm)m of Ω, which, in contrary to previous results, allows for adding several

members of a partition at the same time.

Let τ be a thin random time with exhausting sequence (Tn)n and ξ be a discrete random

variable with values in N. Since for each m ∈ N we can find unique decomposition (n, k) ∈
N × N such that m = 2n−1(2k − 1), by rearranging and renumbering terms in (Cm)m, we

can obtain double sequence (Ck
n)n,k of sets such that the members (Ck

n)k are added at time

Tn. More precisely, for double sequence (Ck
n)n,k and a sequence of F-stopping times (Tn)n

with disjoint graphs, we define ξ and τ by

ξ :=
∑

n,k

2n−1(2k − 1)11Ck
n

and τ :=
∑

n

Tn11⋃
k Ck

n
.

Note that {τ = Tn < ∞} = {Tn < ∞} ∩⋃
k C

k
n and σ(ξ11{τ=Tn}) = σ((Ck

n)k). Analogously

to (2.2) we define

(6.1) zn,kt := P(Ck
n|Ft).

Described above situation is captured by the progressively enlarged filtration F ξ,τ :=

(F ξ,τ
t )t≥0 defined through

(6.2) F ξ,τ
t :=

⋂

s>t

Fs ∨ σ
(
ξ11{u≥τ} : u ≤ s

)
.

Similarly to Lemma 2.7 we obtain:

Lemma 6.1. For any G-measurable integrable random variable X and s ≤ t we have

E

[
X|F ξ,τ

t

]
11{s≥Tn}∩Ck

n
= 11{s≥Tn}∩Ck

n

E
[
X11Ck

n
|Ft

]

zn,kt

.

Theorem 3.1 can be easily extended to the case of F ξ,τ as stated below.

Theorem 6.2. The hypothesis (H′) is satisfied for (F,F ξ,τ). Moreover, for each F ξ,τ -

predictable and bounded process G and each F-local martingale Y the integral X := G · Y is

an F ξ,τ -semimartingale with canonical decomposition

(6.3) Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s +

∑

n,k

11Ck
n

∫ t

0

11{s>Tn}
1

zn,ks−

d〈X, zn,k〉s

where X̂ is an F ξ,τ -local martingale.

Proof. The proof is almost identical to the original proof of Theorem 3.1. We just give the

form of F ξ,τ -predictable process H by

Ht = 11{t≤τ}Jt + 11{τ<t}Kt(ξ, τ) t ≥ 0

where J is an F-predictable bounded process andK : R+×Ω×N×R+ → R is P⊗2N⊗B(R+)-

measurable. Note that, since {t ≤ τ} ⊂ {Zt− > 0}, J can be chosen to satisfy Jt =
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Jt11{Zt−>0}. Since τ is a thin random time, we can rewrite the process H as

Ht = Jt11{t≤τ} +
∑

n,k

11{Tn<t}Kt(2
n−1(2k − 1), Tn)11Ck

n
.

Note that each process Kn,k
t := 11{Tn<t}Kt(2

n−1(2k − 1), Tn) is F-predictable and bounded

and, since Ck
n ⊂ {zn,kt− > 0}, Kn,k can be chosen to satisfy Kn,k

t = Kn,k
t 11{zn,k

t− >0}. �

Likewise, Theorem 5.2 can be generalized to the case of F ξ,τ . To this end let us define

(6.4) Hγ(ξ, τ) :=
∑

n,k

E

[
11Ck

n

[
log

1

zn,kTn

]γ
]

γ > 0.

Then, the following result follows by the same proof as Theorem 5.2.

Theorem 6.3. Let (Ck
n)n,k be an F∞-measurable partition, τ be a thin random time with

exhaustive sequence (Tn)n and F ξ,τ be given by (6.2). Assume (C) and let r ∈ [1,∞),

p, γ > 0 satisfy 1
r
= 1

p
+ 1

γ
. The the following conditions are equivalent:

(a) for each F-local martingale Y and each F ξ,τ -predictable process G, the F ξ,τ -semimartingale

X := G · Y satisfies:

||X||Sr(F ξ,τ ) ≤ Cp,r||〈X〉1/2∞ ||Lp;

(b) Hγ/2(ξ, τ) < ∞.

In particular, if the conditions (a) and (b) are satisfied, then Hp(F) is continuously embedded

in Sr(F ξ,τ).

Appendix A. Projections

We collect here the definitions of the key tools we have used along the paper. Projections

and dual projections onto the reference filtration F play an important role in the theory

of enlargement of filtrations. First we recall the definition of optional and predictable

projections, see [13, Theorems 5.1 and 5.2] and [16, p.264-265].

Definition A.1. Let X be a measurable bounded (or positive) process. The optional pro-

jection of X is the unique optional process oX such that for every stopping time T we have

E
[
XT11{T<∞}|FT

]
= oXT11{T<∞} a.s..

The predictable projection of X is the unique predictable process pX such that for every

predictable stopping time T we have

E
[
XT11{T<∞}|FT−

]
= pXT11{T<∞} a.s..

For definition of dual optional projection and dual predictable projection see [16, p.265],

[22, Chapter 3 Section 5], [11, Chapter 6 Paragraph 73 p.148], [13, Sections 5.18, 5.19]. We

point out that the convention we use here allows a jump at 0.
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Definition A.2. (a) Let V be a càdlàg pre-locally integrable variation process (not necessary

adapted). The dual optional projection of V is the unique optional process V o such that for

every optional process H we have

E

[∫

[0,∞)

HsdVs

]
= E

[∫

[0,∞)

HsdV
o
s

]
.

(b) Let V be a càdlàg locally integrable variation process (not necessary adapted). The dual

predictable projection of V is the unique predictable process V p such that for every predictable

process H we have

E

[∫

[0,∞)

HsdVs

]
= E

[∫

[0,∞)

HsdV
p
s

]
.

Appendix B. Honest times

In this Appendix we gather complementary results on honest times. They complete or

slightly extend the existing results mainly from [17]. We have made use of them along the

paper.

Proposition B.1. (a) A random time τ is an F-honest time if and only if for every t > 0

there exists an Ft−-measurable random variable τt such that τ = τt on {τ < t}.
(b) A random time τ is an F-honest time if and only if for every t > 0 there exists an

Ft-measurable random variable τt such that τ = τt on {τ ≤ t}.

Proof. Sufficiency of both conditions is straightforward.

Using the notation from Definition 4.1 we introduce the process α− as α−
t = supr∈Q,r<t τr.

This definition implies that α− is an increasing, left-continuous, adapted process such that

α−
t = τ on {τ < t} thus the necessary condition in (a) is proven.

Let us denote by α the right-continuous version of α−, i.e., αt = α−
t+. Then, α is an

increasing, càdlàg, adapted process such that αt = τ on {τ ≤ t} and τ = sup{t : αt = t}
thus the necessary condition in (b) is proved. �

The next theorem gives some characterisations of an honest time. We prove equivalence of

the condition (f). We also refer the reader to Azéma [7, Theorem 1.4 and Proposition 1.2,

p. 298-299] to compare with predictable case.

Theorem B.2. Let τ be a random time. Then, the following conditions are equivalent:

(a) τ is an honest time;

(b) there exists an optional set Γ such that τ(ω) = sup{t : (ω, t) ∈ Γ} on {τ < ∞};
(c) Z̃τ = 1 a.s. on {τ < ∞};
(d) τ = sup{t : Z̃t = 1} a.s. on {τ < ∞};
(e) Pτ |]]0,∞[[ is generated by P|]]0,∞[[ and ]]0, τ ]], where Pτ is the predictable σ-field linked to

Fτ ;

(f) Ao
t = Ao

t∧τ a.s. ∀t ≥ 0 on the set {τ < ∞}.

Proof. The equivalence among conditions (a), (b), (c), (d) and (e) is stated in Theorem

(5,1) from Jeulin [17].
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To prove that (b)⇒(f) suppose that τ is an end of the optional set Γ on {τ < ∞}.
Without loss of generality we may assume that Γ is left-closed, i.e., for each ω if xn ր x

and xn ∈ Γ(ω) then x ∈ Γ(ω), since left-closure of an optional set is optional. Thus one has

[[τ ]] ⊂ Γ. Define the support of the measure dAo, i.e.,

S(dAo) := {(ω, t) : t ≥ 0 ∀ε > 0 Ao
t (ω) > Ao

t−ε(ω)},

with the extension of Ao such that Ao
t = 0 for t ≤ 0. Note that S(dAo) is left-closed and

optional. Moreover [[τ ]] ⊂ S(dAo) since

P(τ < ∞) = E(Ao
∞) = E

[ ∫

[0,∞)

11S(dAo)(s)dA
o
s

]
= P

[
[[τ ]] ⊂ S(dAo), τ < ∞

]
.

Let Λ be any left-closed, optional set containing [[τ ]]. Then

E

[ ∫

[0,∞)

11Λ(s)dA
o
s

]
= E

[ ∫

[0,∞)

11Λ(s)dAs

]
= P(τ < ∞)

= E(Ao
∞) = E

[ ∫

[0,∞)

11S(dAo)(s)dA
o
s

]
,

where the first and the third equality comes from Definition A.2, the second is due to

[[τ ]] ⊂ Λ. Hence S(dAo) ⊂ Λ. Therefore we conclude that S(dAo) is the smallest left-closed

optional set containing [[τ ]] and we deduce that [[τ ]] ⊂ S(dAo) ⊂ Γ. Since, by assumption, τ

is an end of Γ on {τ < ∞}, we obtain that, on the set {τ < ∞}, Ao
t = Ao

t∧τ for t ≥ 0.

To finish the proof, we show implication (f)⇒(b). It is straightforward to see that τ is

the end of the support of dAo which is an optional set. �

For an honest time, on the set {t ≥ τ}, the projection on F τ
t can be expressed in terms

of projection on Ft as in the following proposition. It is known that, on the set {t ≥ τ},
1− Zt > 0.

Proposition B.3. Let τ be an honest time. Then, for any G-measurable integrable random

variable X and s ≤ t we have

E [X|F τ
t ] 11{τ≤s} = 11{τ≤s}

E
[
X11{τ≤s}|Ft

]

P [τ ≤ s|Ft]
.

Proof. Note that for each G ∈ F τ
t there exists F ∈ Ft such that G∩ {τ ≤ s} = F ∩{τ ≤ s}

as, by Monotone Class Theorem, it is enough to check it for G ∈ Ft for which it is obviously

satisfied and for G = {τ ∈ B} where B is a Borel set for which, by honest time property,

we have

{τ ∈ B} ∩ {τ ≤ s} = {τs ∈ B} ∩ {τ ≤ s}
with {τs ∈ B} ∈ Fs ⊂ Ft. Then, we have to show that

E
[
X11{τ≤s}P(τ ≤ s|Ft)|F τ

t

]
= 11{τ≤s}E(X11{τ≤s}|Ft).

For any G ∈ F τ
t , we choose F ∈ Ft such that G ∩ {τ ≤ s} = F ∩ {τ ≤ s}, and we obtain

E
[
X11{τ≤s}∩G P (τ ≤ s|Ft)

]
= E

[
X11{τ≤s}∩F P(τ ≤ s|Ft)

]

= E
[
11{τ≤s}∩F E(X11{τ≤s}|Ft)

]
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= E
[
11{τ≤s}∩G E(X11{τ≤s}|Ft)

]
.

which ends the proof. �

Appendix C. Entropy of thin random time

Here we present generalisations of two auxiliary lemmas, Lemma 3 and Lemma 4, from

[25]. They serve to prove Theorem 5.2.

Lemma C.1. For all γ > 0 there exist cγ and Cγ such that

(C.1) cγE [〈Y a〉γ∞] ≤ E

[[
log

1

I

]γ]
≤ CγE [〈Y a〉γ∞]

where I is defined as

(C.2) I :=
∑

n

11CnIn where In := inf
t≥Tn

znt

Proof. Step 1. We first prove the first inequality in (C.1). We have that

11{t≥Tn}∩CnE

[
〈Y a〉∞ − 〈Y a〉t|F τ

t

]
= 11{t≥Tn}∩CnE

[ ∫ ∞

t

1

(zns )
2
d〈zn〉s|F τ

t

]

= 11{t≥Tn}∩Cn

1

znt
E

[
11Cn

∫ ∞

t

1

(zns )
2
d〈zn〉s|Ft

]

= 11{t≥Tn}∩Cn

1

znt
E

[ ∫ ∞

t

1

zns
d〈zn〉s|Ft

]

= 211{t≥Tn}∩Cn log
1

znt

≤ 211Cn log
1

In

where the second equality follows from Lemma 2.7, the third one from dual predictable

projection properties and the four one from (5.6). Therefore, for each µ ∈ (0, 1] we deduce

that

11{t≥Tn}∩CnE

[[
〈Y a〉∞ − 〈Y a〉t

]µ
|F τ

t

]
≤ 11{t≥Tn}∩Cn

[
E

[
〈Y a〉∞ − 〈Y a〉t|F τ

t

]µ

≤ 2µ11Cn

[
log

1

In

]µ
.(C.3)

Consequently, the required inequality for γ ∈ (0, 1] follows by

E(〈Y a〉γ∞) =
∑

n

E

[
11CnE

[[
〈Y a〉∞ − 〈Y a〉Tn

]γ
|F τ

Tn

]]

≤
∑

n

E

[
sup
t

11{t≥Tn}∩CnE

[[
〈Y a〉∞ − 〈Y a〉t

]γ
|F τ

t

]]

≤ 2γ
∑

n

E

[
11Cn

[
log

1

In

]γ]

= 2γE

[[
log

1

I

]γ]
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and for γ > 1 follows by

E(〈Y a〉γ∞) ≤ γγ
∑

n

E

[
sup
t

11{t≥Tn}∩Cn

[
E

[
〈Y a〉∞ − 〈Y a〉t|F τ

t

]]γ]

≤ (2γ)γE

[
11Cn

[
log

1

In

]γ]

= (2γ)γ E

[[
log

1

I

]γ]
,

where the first inequality is due to Burkholder-Gundy inequality for terminal value of in-

creasing process and supremum of the associated potential ([11] p.188) and the second

inequality is due to (C.3) for µ = 1.

Step 2. We now prove the second inequality in (C.1). Let µ ∈ (0, 1] and p > 1 and

consider Fτ -martingale Mt := E(〈Y a〉µ∞|F τ
t ). Firstly we will show that

[
log

1

I

]µ
≤ Cµ

[
1 + sup

t
Mt

]
.(C.4)

By Itô’s lemma and decomposition (6.3) applied to zn we obtain that on {t ≥ Tn} ∩ Cn

log
1

znt
=

∫ ∞

t

1

zns
dẑns +

1

2

∫ ∞

t

1

(zns )
2
d〈zn〉s.

Next, by taking conditional expectation w.r.t F τ
t and using inequality |x+ y|µ ≤ |x|µ + |y|µ

for µ ∈ (0, 1], we deduce that on {t ≥ Tn} ∩ Cn

[
log

1

znt

]µ
≤ E

[∣∣∣∣
∫ ∞

t

1

zns
dẑns

∣∣∣∣
µ ∣∣F τ

t

]
+

1

2µ
E

[[∫ ∞

t

1

(zns )
2
d〈zn〉s

]µ ∣∣F τ
t

]

≤ C

[
E

[[∫ ∞

t

1

(zns )
2
d〈zn〉s

]µ/2 ∣∣F τ
t

]
+ E

[[∫ ∞

t

1

(zns )
2
d〈zn〉s

]µ ∣∣F τ
t

]]

≤ C
[
E
[
〈Y a〉µ/2∞

∣∣F τ
t

]
+ E

[
〈Y a〉µ∞

∣∣F τ
t

]]

where in the second inequality we have used Burkholder-Davis-Gundy inequality for con-

tinuous local martingales (see [24, IV-42, p.93]) applied to F̂-local martingale N11F̂ for any

F̂ ∈ F̂0 where

NT :=

∫ T+t

t

1

zns
dẑns and F̂ := (FT )T≥0 with F̂T := F τ

T+t.

Finally, using inequality x+x2 ≤ 2x2+1/4 to x = 〈Y a〉µ/2∞ we conclude that on {t ≥ Tn}∩Cn

[
log

1

znt

]µ
≤ C

[
1 + E

[
〈Y a〉µ∞

∣∣F τ
t

]]

and by taking supremum over t and summing over n the inequality (C.4) follows. In order

to prove general case, relying on (C.4) and the inequality (1+x)p ≤ 2p−1(1+xp), we obtain
[
log

1

I

]µp
≤ Cp

µ 2
p−1

[
1 + sup

t
Mp

t

]
.
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Then, by taking expectations and applying Doob’s maximal inequality to M we obtain

E

[[
log

1

I

]µp]
≤ Cp

µ 2
p−1

[
1 + E(sup

t
Mp

t )
]

≤ Cp
µ 2

p−1
[
1 +

pp

(p− 1)p
E(〈Y a〉µp∞ )

]
.

That completes the proof since any γ = µp > 0 can be obtained with µ ∈ (0, 1] and

p > 1. �

Lemma C.2. Let, for each n, Qn be an absolutely continuous measure given by dQn

dP
=

11Cn

zn
0

.

Then, for each FTn-measurable random variable β with values in random interval (0, znTn
),

we have

Qn(In < β|FTn) =
β

1− β

1− znTn

znTn

where In is defined in (C.2). Or, equivalently

Qn(In ∈ dβ|FTn) =
1− znTn

znTn

1

(1− β)2
11{0<β<znTn}

.

Proof. For any FTn-measurable random variable β with values in random interval (0, znTn
)

we define an F-stopping time T β
n by T β

n := inf{t ≥ Tn : znt < β}. Then we compute

P({In < β} ∩ Cn|FTn) = P({T β
n < ∞} ∩ Cn|FTn)

= EP(P({T β
n < ∞} ∩ Cn|FTβ

n
)|FTn)

= EP(11{Tβ
n<∞}z

n

Tβ
n
|FTn)

= β P({T β
n < ∞}|FTn)

= β P({In < β} ∩ Cn|FTn) + β P({In < β} ∩ Cc
n|FTn).

Since {In < β} ∩ Cc
n = Cc

n we deduce that

(1− β)P({In < β} ∩ Cn|FTn) = β(1− znTn
)

and therefore, by Bayes’ rule, we have

Qn(In < β|FTn) =
P({In < b} ∩ Cn|FTn)

znTn

=
β

1− β

1− znTn

znTn

which completes the proof. �
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variation. In Séminaire de Probabilités XXVIII, pages 21–35. Springer, 1994.

[15] Monique Jeanblanc and Yann Le Cam. Progressive enlargement of filtrations with

initial times. Stochastic Processes and their Applications, 119(8):2523–2543, 2009.

[16] Monique Jeanblanc, Marc Yor, and Marc Chesney. Mathematical methods for financial

markets. Springer, 2009.

[17] Thierry Jeulin. Semi-martingales et grossissement d’une filtration. Number 833-835.

Springer, 1980.

[18] Constantinos Kardaras. On the characterisation of honest times that avoid all stopping

times. Stochastic Processes and their applications, (124):373–384, 2014.

[19] Younes Kchia and Philip Protter. On progressive filtration expansion with a process,

applications to insider trading. arXiv preprint arXiv:1403.6323, 2014.

[20] Roger Mansuy and Marc Yor. Random times and enlargements of filtrations in a Brow-

nian setting. Number 1873. Springer Berlin, 2006.
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UMR CNRS 8071, Université d’Évry-Val-d’Essonne, 23 Boulevard de France, 91037 Évry
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