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We show that the only polynomial sets with a generating function of the form F (xt -R(t)) and satisfying a three-term recursion relation are the monomial set and the rescaled ultraspherical, Hermite, and Chebyshev polynomials of the first kind.

Introduction and main result

The problem of describing all or just orthogonal polynomials generated by a specific generating function has been investigated by many authors (see for example [1-5, 7-9, 12]). For the special case, where the generating function has the form F (xt -αt2 ), the authors in [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF], [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF] and [START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF] used different methods to show that the orthogonal polynomials are Hermite and ultraspherical polynomials. Recently in [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF], the author gave a motivation of this question and found, even if F is a formal power series, that the orthogonal polynomials are the ultraspherical, Hermite and Chebychev polynomials of the first kind. Moreover, for F corresponding to Chebychev polynomials of the first kind, he showed that these polynomials remain the only orthogonal polynomials with generating function of the form F (xU (t) -R(t)), where U (t) and R(t) are formal power series. A natural question, as mentioned in [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF], is to describe (all or just orthogonal) polynomials with generating functions F (xU (t) -R(t)).

In this paper, we consider the subclass case F (xt -R(t)) = n≥0 α n P n (x)t n where the polynomial set (not necessary orthogonal) {P n } n≥0 satisfies a three-term recursion relation. The main result obtained here is the following: Theorem 1 Let F (t) = n≥0 α n t n and R(t) = n≥1 R n t n /n be formal power series where {α n } and {R n } are complex sequences with α 0 = 1 and R 1 = 0. Define the polynomial set {P n } n≥0 by

F (xt -R(t)) = n≥0 α n P n (x)t n .
(

) 1 
If this polynomial set (which is automatically monic) satisfies the three-term recursion relation xP n (x) = P n+1 (x) + β n P n (x) + ω n P n-1 (x), n ≥ 0, P -1 (x) = 0, P 0 (x) = 1 [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF] where {β n } and {ω n } are complex sequences, then we have: a) If R 2 = 0 and α n = 0 for n ≥ 1, then R(t) = 0, F (t) is arbitrary and F (xt) = n≥0 α n x n t n generates the monomials {x n } n≥0 . b) If α 1 R 2 = 0, then R(t) = R 2 t 2 /2 and the polynomial sets {P n } n≥0 are the rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind.

In the above theorem, let remark that there is no loss of generality in assuming α 0 = 1 and R 1 = 0. Indeed, we can choose the generating function γ 1 + γ 2 F ((x + R 1 )t -R(t)) = γ 1 + γ 2 n≥0 α n P n (x + R 1 )t n for suitable constants γ 1 and γ 2 .

The proof of theorem 1 will be given in section 3. For that purpose some preliminary results must be developed first in section 2. We end the paper by a brief concluding section.

Preliminary results

This section contains two propositions and some related corollaries which are the important ingredients used for the proof of Theorem 1.

Proposition 1 Let {P n } n≥0 be a monic polynomial set generated by [START_REF] Appell | Sur une classe de polynmes[END_REF]. Then we have

α n xP ′ n (x) - n k=1 R k+1 α n-k P ′ n-k (x) = nα n P n (x), n ≥ 1. (3) 
Proof: By combining the two derivatives ∂W ∂x and ∂W ∂t of the generating function

W (x, t) = F (xt -R(t)), we obtain x -R ′ (t) ∂W ∂x = t ∂W ∂t . (4) 
The substitution of the right-hand side of (1) and

R ′ (t) = n≥0 R n+1 t n in (4) gives   x - n≥0 R n+1 t n   n≥0 α n P ′ n (x)t n = n≥0 α n P n (x)nt n . ( 5 
)
After a resummation procedure in left hand side, namely:

  n≥0 R n+1 t n     n≥0 α n P ′ n (x)t n   = n≥0 n k=0 R k+1 α n-k P ′ n-k (x) t n
and a t n coefficients comparison in [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF], the result (3) of proposition 1 follows.

Corollary 1 Let {P n } n≥0 be a monic polynomial set generated by [START_REF] Appell | Sur une classe de polynmes[END_REF].

If α 1 R 2 = 0 then α n = 0 for n ≥ 2.
Proof: In fact suppose that α n 0 = 0 for an n 0 ≥ 2. Then (3) implies that R k+1 α n 0 -k = 0 for k = 1, ..., n 0 -1. In particular R 2 α n 0 -1 = 0 for k = 1 gives α n 0 -1 = 0 since R 2 = 0. By induction we arrive at α 1 = 0 which contradicts the premise α 1 = 0.

Corollary 2 Let α 1 R 2 = 0. If the polynomial set {P n } generated by (1) is symmetric, then R 2l+1 = 0, for l ≥ 1.
Proof: The polynomial set {P n } is symmetric means that P n (-x) = (-1) n P n (x) for n ≥ 0. The substitution x → -x in equation (3) minus equation ( 3) itself left us with

(1 -(-1) k+1 )R k+1 α n-k = 0, for 1 ≤ k ≤ n -1.
So, by Corollary 1, we have R 2l+1 = 0, for l ≥ 1, and

R(t) = k≥1 R 2k 2k t 2k .
Proposition 2 Let α 1 R 2 = 0 and define

T k = R 2k , (k ≥ 1), a n = T 1 2 α n α n+1 , (n ≥ 0) and c n = α n α n-1 ω n , (n ≥ 1). ( 6 
)
For the monic polynomial set generated by [START_REF] Appell | Sur une classe de polynmes[END_REF] and satisfying [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF] we have: a)

β n = 0, for n ≥ 0. (7) b) ω n = na n -(n -1)a n-1 , for n ≥ 1. (8) c) 4T 2 T 3 1 1 - n -3 n -2 a n-3 a n = n + 1 a n - 2n a n-1 + n -1 a n-2 , for n ≥ 3. (9) d) 2 T 1 a n - n -2k -1 n -2k a n-2k-1 T k+1 + n + 2 n c n - n -2k + 1 n -2k + 2 c n-2k+1 T k = = k l=1 T l T k-l+1 n -2k + 2l , for k ≥ 2 and n ≥ 2k + 1. ( 10 
)
Proof: By differentiating (2) we get

xP ′ n (x) + P n (x) = P ′ n+1 (x) + β n P ′ n (x) + ω n P ′ n-1 . (11) 
Then by making the combinations nα n Eq(11) + Eq(3) and Eq(3) -α n Eq [START_REF] Koekoek | Hypergeometric orthogonal polynomials and their q-analogues[END_REF] we obtain, respectively,

(n + 1)α n xP ′ n (x) = nα n P ′ n+1 (x) + β n P ′ n (x) + ω n P ′ n-1 (x) + n-1 k=1 R k+1 α n-k P ′ n-k (x) (12) 
and

(n + 1)α n P n (x) = α n P ′ n+1 (x) + β n P ′ n (x) + ω n P ′ n-1 (x) - n-1 k=1 R k+1 α n-k P ′ n-k (x). ( 13 
)
Multiplying ( 13) by x and using (2) in the left-hand side gives

(n+1)α n (P n+1 (x) + β n P n (x) + ω n P n-1 (x)) = α n xP ′ n+1 (x) + β n xP ′ n (x) + ω n xP ′ n-1 (x) - n-1 k=1 R k+1 α n-k xP ′ n-k (x). (14) 
For the left-hand side (resp. the right-hand side) of ( 14) we use (13) (resp. ( 12)) to get

n + 1 n + 2 α n P ′ n+2 (x) + β n+1 P ′ n+1 (x) + ω n+1 P ′ n (x) - n + 1 n + 2 α n α n+1 n k=1 R k+1 α n-k+1 P ′ n-k+1 (x) +α n β n P ′ n+1 (x) + β n P ′ n (x) + ω n P ′ n-1 (x) -β n n-1 k=1 R k+1 α n-k P ′ n-k (x) + n + 1 n α n ω n P ′ n (x) + β n-1 P ′ n-1 (x) + ω n-1 P ′ n-2 (x) - n + 1 n α n α n-1 ω n n-2 k=1 R k+1 α n-k-1 P ′ n-k-1 (x) = = n + 1 n + 2 α n P ′ n+2 (x) + β n+1 P ′ n+1 (x) + ω n+1 P ′ n (x) + 1 n + 2 α n α n+1 n k=1 R k+1 α n-k+1 P ′ n-k+1 (x) + n n + 1 α n β n P ′ n+1 + β n P ′ n + ω n P ′ n-1 + 1 n + 1 β n n-1 k=1 R k+1 α n-k P ′ n-k (x) + n -1 n α n ω n P ′ n (x) + β n-1 P ′ n-1 (x) + ω n-1 P ′ n-2 (x) + 1 n α n α n-1 ω n n-2 k=1 R k+1 α n-k-1 P ′ n-k-1 (x) - n-1 k=1 R k+1 n -k n -k + 1 α n-k P ′ n-k+1 (x) + β n-k P ′ n-k (x) + ω n-k P ′ n-k-1 (x) - n-1 k=1 R k+1 n -k + 1 n-k-1 l=1 R l+1 α n-k-l P ′ n-k-l (x), (15) 
which can be simplified to

- α n α n+1 n k=1 R k+1 α n-k+1 P ′ n-k+1 (x) + 1 n + 1 α n β n P ′ n+1 (x) + β n P ′ n (x) + ω n P ′ n-1 (x) - n + 2 n + 1 β n n-1 k=1 R k+1 α n-k P ′ n-k (x) + 2 n α n ω n P ′ n (x) + β n-1 P ′ n-1 (x) + ω n-1 P ′ n-2 (x) - n + 2 n α n α n-1 ω n n-2 k=1 R k+1 α n-k-1 P ′ n-k-1 (x) + n-1 k=1 R k+1 n -k n -k + 1 α n-k (P ′ n-k+1 (x) + β n-k P ′ n-k (x) +ω n-k P ′ n-k-1 (x)) + n-1 k=1 R k+1 n -k + 1 n-k-1 l=1 R l+1 α n-k-l P ′ n-k-l (x) = 0. ( 16 
)
From ( 16), the coefficient of P ′ n+1 (x) is null, so we get [START_REF] Boas | Polynomials defined by generating relations[END_REF] which means that the polynomial set {P n } is symmetric, see [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF]Theorem 4.3]. Therefore, by Corollary 2, the odd part of the R-sequence is null and a computation of the coefficients of P ′ n (x), P ′ n-2 (x) and

{P ′ n+1-k (x)} n≥k≥4 in (16) yields 2 n α n ω n = R 2 α n α n+1 α n -R 2 n -1 n α n-1 , for n ≥ 1, (17) 
2 n α n ω n ω n-1 = R 4 α n α n+1 α n-2 +R 2 n + 2 n α n α n-1 α n-2 ω n -R 4 n -3 n -2 α n-3 -R 2 n -1 n α n-1 ω n-1 - R 2 2 n α n-2 , for n ≥ 3, (18) and 
R k+1 α n α n+1 - n -k n -k + 1 α n-k α n-k+1 + R k-1 n + 2 n α n α n-1 ω n - n -k + 2 n -k + 3 α n-k+2 α n-k+1 ω n-k+2 = k-2 l=1 R k-l R l+1 n -k + l + 2 , n ≥ k ≥ 5. (19) 
respectively. Finally, by using the notations (6), substituting for ω n from (17) into (18) and by shifting (k, l) → (2k + 1, 2l -1) in ( 19) we obtain ( 8), ( 9) and ( 10).

In the following corollaries we adopt the same conditions and notations of Proposition 2.

Corollary 3 If T 2 = 0 then R(t) = T 1 t 2 /2.
In this case, the polynomials generated by F (xt -T 1 t 2 /2) and satisfying [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF] reduce to the rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind.

Proof: We will use [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF] and proceed by induction on k to show that T k = 0 for k ≥ 3. Indeed k = 2 and n = 5 in (10) leads to 2a 5 T 3 /T 1 = 0 and since a n = 0 by Corollary 1 we get T 3 = 0. Suppose that T 3 = T 4 = . . . = T k = 0. Then for n = 2k + 1 the equation [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF] gives 2a 2k+1 T k+1 /T 1 = 0 and finally T k+1 = 0. Accordingly, R(t) = T 1 t 2 /2 and the generating function (1) takes the form

F xt -T 1 t 2 /2 .
Actually to determine F (t), we make use of ( 9) with T 1 = 0 and T 2 = 0 :

n + 1 a n - 2n a n-1 + n -1 a n-2 = 0, n ≥ 3. ( 20 
)
By summing twice in (20) we find

n + 1 a n = 3 a 2 - 2 a 1 n + 4 a 1 - 3 a 2 , n ≥ 3, (21) 
which is valid for n = 1 and n = 2. As a n = T 1 2 αn α n+1 and using (21) we get, for n ≥ 2,

α n = λ 2 (n -1) + λ 1 n α n-1 = n-1 j=1 (λ 1 + jλ 2 ) n! α 1 . (22) 
And the generating function reads

F (t) = 1 + α 1 t + α 1 n≥2 n-1 j=1 (λ 1 + jλ 2 ) n! t n ,
where

λ 1 = 4α 2 /α 1 -3α 3 /α 2 and λ 2 = 3α 3 /α 2 -2α 2 /α 1 .
Now, by the same ideas as in [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] we have: i) If λ 1 = 0, λ 2 = 0, then

F (t) = 1 + α 1 λ 1 1 (1 -λ 2 t) λ 1 /λ 2 -1 . (23) 
According to (22), the ratio λ := λ 1 /λ 2 can not be a negative integer and consequently the monic polynomials P n can be written as

P n (x) = 2T 1 λ 2 n/2 C λ n λ 2 2T 1 x , (24) 
where C λ n (x) are the monic ultraspherical polynomials defined by [11, Section 9.8.1]

1 (1 -2xt + t 2 ) λ = n≥0 (-2) n (λ) n n! C λ n (x)t n . ii) If λ 1 = 0, λ 2 = 2α 2 /α 1 , then F (t) = 1 + α 1 λ 2 ln 1 1 -λ 2 t . ( 25 
)
This later function generates

P n (x) = 2T 1 λ 2 n/2 T n λ 2 2T 1 x , (26) 
where T n are the monic Chebyshev polynomials defined by [10, p. 155]

1 + 1 2 ln 1 1 -2xt + t 2 = 1 + ∞ n=1 2 n-1 n T n (x)t n .
iii) If λ 1 = 2α 2 /α 1 , λ 2 = 0, the generating function reads

F (t) = 1 + α 1 λ 1 e λ 1 t -1 (27)
and the polynomials P n take the form

P n (x) = T 1 λ 1 n/2 H n λ 1 T 1 x , (28) 
where H n are the monic Hermite polynomials defined by [START_REF] Koekoek | Hypergeometric orthogonal polynomials and their q-analogues[END_REF]Section 9.15]

exp(xt -t 2 /2) = ∞ n=0 H n (x) t n n! .
Remark 1 Suppose λ 1 and λ 2 are real numbers then the orthogonality of these polynomials requires w n > 0 for all n ≥ 1, where

ω n = T 1 2 n (λ 2 (n -1) + 2 λ 1 ) (λ 2 n + λ 1 ) (λ 2 (n -1) + λ 1 ) . ( 29 
)
Then it is enough to assume λ 2 /T 1 > 0 and λ > -1/2, λ 2 /T 1 > 0 and λ 1 /T 1 > 0 for the ultraspherical, Chebyshev and Hermite polynomials cases, respectively.

Corollary 4 If T κ = T κ+1 = 0 for some κ ≥ 3, then T 2 = 0.

Proof:

Let k = κ in [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF]. Then for n ≥ 2κ + 1 the fraction κ l=1 T l T κ-l+1 n-2κ+2l , as function of integer n, is null even for real n. Multiplying by n -2κ + 2l and tends n to 2κ -2l we find T l T κ-l+1 = 0 for 1 ≤ l ≤ κ which is T 2 T κ-1 = 0 when l = 2. Supposing T 2 = 0 leads to T κ-1 = 0. So T κ-1 = T κ = 0 and with the same procedure we find T κ-2 = 0. Going so on till we arrive at T 2 = 0 which contradicts T 2 = 0.

Corollary 5 If R(t) is a polynomial then R(t) = T 1 t 2 /2.
Proof: If R(t) is a polynomial then for some κ ≥ 2, T k = 0 whenever k ≥ κ. By Corollary 4, since T κ = T κ+1 = 0, we conclude that T 2 = 0 and by Corollary 3 that T k = 0 for k ≥ 3.

Corollary 6 If a n is a rational fraction of n then T 2 = 0.

Proof: Observe that c n = T 1 (na n /a n-1 -(n -1)) /2 will also a rational fraction of n. Then it follows that, in [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF], two fractions are equal for natural numbers n ≥ 2k + 1, k ≥ 2 and extensively will be for real numbers n. If we denote by N s (F (x)) the number of singularities of a rational fraction F (x) then we can easily verify, for all rational fractions F and F of x and a constant a = 0, that:

a) N s (F (x + a)) = N s (F (x)), b) N s (aF (x)) = N s (F (x)), c) N s (F (x) + F (x)) ≤ N s (F (x)) + N s ( F (x)).
Using property a) of N s we have

N s n -2k -1 n -2k a n-2k-1 = N s n n + 1 a n and N s n -2k + 1 n -2k + 2 c n-2k+1 = N s n n + 1 c n .
According to properties b) and c) of N s , the N s of the left-hand side of ( 10) is finite and independent of k. Thus, the right-hand side of (10) has a finite number of singularities which is independent of k. As consequence there exists a k 0 for which

T l T k-l+1 = 0 for all k ≥ k 0 and k 0 ≤ l ≤ k. Taking successively k = k 0 = l and k = k 0 + 1 = l we get T k 0 = T k 0 +1 = 0.
Then, by Corollary 4 we have T 2 = 0.

Remark 2

The fact that a n is a rational fraction of n means that F (z) = n≥0 α n z n is a series of hypergeometric type.

Corollary 7 If T κ = T m = 0 for some κ = m ≥ 3, then T 2 = 0.
Proof: If T κ+1 = 0 or T m+1 = 0 then by Corollary 4 we have T 2 = 0. Suppose that T κ+1 = 0 and T m+1 = 0. Take k = κ and k = m in [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF] to get, respectively,

2 T 1 a n - n -2κ -1 n -2κ a n-2κ-1 T κ+1 = κ l=1 T l T κ-l+1 n -2κ + 2l , for n ≥ 2κ + 1, ( 30 
) and 2 T 1 a n - n -2m -1 n -2m a n-2m-1 T m+1 = m l=1 T l T m-l+1 n -2m + 2l , for n ≥ 2m + 1. (31) 
The operation Eq(30)/T κ+1 -Eq(31)/T m gives

n -2m -1 n -2m a n-2m-1 - n -2κ -1 n -2κ a n-2κ-1 = Q 1 (n). ( 32 
)
Assuming m > κ and replacing n by n + 2m + 1 (resp. n + 2m -2κ) in (32) (resp. (31)) leads to

n n + 1 a n - n + 2m -2κ n + 2m -2κ + 1 a n+2m-2κ+1 = Q 1 (n + 2m + 1) (33) 
and

a n+2m-2κ - n -2κ -1 n -2κ a n-2κ-1 = Q 2 (n + 2m -2κ). ( 34 
)
Now Eq(30)/T κ+1 -Eq(34) is the equation

a n -a n+2m-2κ = Q 3 (n). ( 35 
)
Multiplying (35) by n+2m-2κ n+2m-2κ+1 and using (33) we find

n n + 1 - n + 2m -2κ n + 2m -2κ + 1 a n = Q 4 (n). ( 36 
)
Since the Q i (n) (i = 1..4) functions, the right-hand sides of (32), (33), (34), ( 35) and (36), are partial fractions of n then a n is also a partial fraction of n; and by Corollary 6 we deduce T 2 = 0.

Corollary 8

The following equality is true for k ≥ 3 and n ≥ 2k + 3.

T k-1 D k+1 (a n -ãn-2k-3 ) -T k+1 D k (a n-2 -ãn-2k-1 ) = k-1 l=1 V k,l n -2k + 2l , ( 37 
)
where

• D k,l = T k T k-l+1 -T k+1 T k-l . • D k = D k,1 = T 2 k -T k+1 T k-1 . • V k,l = T 1 2 (T l T k+1 D k-1,l-1 -T l+1 T k-1 D k,l ).
• ãn = n n+1 a n .

Proof: Denoting the equation ( 10) by E(k, n) then (37) is the result of the operation

T k+1 (T k-1 E(k, n) -T k E(k -1, n -2)) -T k-1 (T k E(k + 1, n) -T k+1 E(k, n -2)) .
Now we are in a position to prove Theorem 1.

Proof of Theorem 1

The proof of a)

As R 1 = R 2 = 0, it is enough to show by induction that R n = 0 for n ≥ 3. For n = 1, 2, 3, the equation (3) gives P 1 (x) = x, P 2 (x) = x 2 and P 3 (0) = -R 3 α 1 3α 3 . But according to equation ( 2), for n = 2, P 3 (0) = 0 and then R 3 = 0. Now assume that R k = 0 for 2 ≤ k ≤ n -1. According to (3) we have, for 2 ≤ k ≤ n -1, P k (0) = 0 and P n (0) = -Rnα 1 nαn . On other hand, by the shift n → n -1 in (2) we have P n (0) = 0 and thus R n = 0. As R(t) = 0, the generating function (1) reduces to F (xt) = n≥0 α n x n t n which generates the monomials with F (t) arbitrary. The proof of b) According to Corollary 3, it is sufficient to prove that T 2 = 0. In the sequel we will investigate three cases:

Case 1: There exists k 0 ≥ 3 such that D k = 0 for k ≥ k 0 . Considering Corollary 7 we can choose k ≥ k 0 such that T k = 0 for k ≥ k -1. Let, for k ≥ k, Dk = D k T k-1 T k and Ē(k, n) be the equation (37) divided by T k-1 T k T k+1 .
By making the operations

Dk-1 Ē(k, n + 2) -Dk Ē(k -1, n) -Dk Ē(k, n) + Dk+1 Ē(k -1, n -2),
we can eliminate ãn-2k-3 and ãn-2k-1 and keeping only, for k ≥ k + 1, the following equation

a n+2 -a n-4 -Dk (a n -a n-2 ) = k l=1 W k,l n -2k + 2l := Q (1) k (n), (38) 
where W k,l is independent of n and

Dk = D2 k + Dk Dk-1 + Dk Dk+1 Dk-1 Dk+1 .
Similarly, after eliminating a n and a n-2 by the operations

Dk-1 Ē(k, n + 2) -Dk+1 Ē(k -1, n + 2) -Dk-1 Ē(k, n) + Dk Ē(k -1, n) (39) 
and then shifting n → n + 2k + 1 in (39) we obtain

ãn+2 -ãn-4 -Dk (ã n -ãn-2 ) = k l=1 W k,l n + 2l + 1 := Q (1) k (n), (40) 
where W k,l is independent of n. Now, for k = κ ≥ k + 1, the equations ( 38) and (40) give, respectively,

( Dκ -Dk )(a n -a n-2 ) = Q (1) k (n) -Q (1) κ (n) (41) 
and

( Dκ -Dk ) n n + 1 a n - n -2 n -1 a n-2 = Q (1) k (n) -Q (1) κ (n). ( 42 
)
If Dk = Dκ for some k = κ ≥ k + 1, then by ( 41) and (42) we can eliminate a n-2 to get that a n is a rational fraction of n. So, by Corollary 6, we have T 2 = 0.

If Dk = D for k ≥ k + 1, then (38) and (40) become, respectively,

a n+2 -a n-4 -D(a n -a n-2 ) = Q (1) k (n) (43) and ãn+2 -ãn-4 -D(ã n -ãn-2 ) = Q (1) k (n). ( 44 
)
The subtraction Eq(43) -Eq(44) leads to

a n+2 n + 3 - a n-4 n -3 -D a n n + 1 - a n-2 n -1 = Q (2) k (n). ( 45 
)
Then the combinations (Eq(43) -(n + 3)Eq(45)) /2 and (Eq(43) -(n -3)Eq(45))/2 give, respectively,

3a n-4 n -3 -D - a n n + 1 + 2a n-2 n -1 = Q (3) k (n) (46) 
and

3a n+2 n + 3 -D 2a n n + 1 - a n-2 n -1 = Q (4) k (n). ( 47 
)
By shifting n → n + 2 in (46) we obtain

3a n-2 n -1 -D - a n+2 n + 3 + 2a n n + 1 = Q (3) k (n + 2). ( 48 
)
The elimination of a n+2 and a n-2 by the operations DEq(47) -3Eq(48) and 3Eq(47) -DEq(48), respectively, yields 6D -

2D 2 n + 1 a n + D 2 -9 n -1 a n-2 = Q (5) k (n) (49) and 9 -D 2 n + 3 a n+2 - 6D -2D 2 n + 1 a n = Q (6) k (n). ( 50 
)
Finally, the shifting n → n -2 in (50) leads to

9 -D 2 n + 1 a n - 6D -2D 2 n -1 a n-2 = Q (6) k (n -2) (51) 
and the operation (6D -2D 2 )Eq(49) + (D 2 -9)Eq(51) gives

[(6D -2D 2 ) 2 + (D 2 -9) 2 ]a n = Q (7) k (n). (52) 
According to manipulations made above, Q

k (n) is a partial fraction of n. So, if D = 3, a n is a partial fraction of n and then T 2 = 0. Now, we explore the case D = 3. We have from ( 46) and (47):

Q (3) k (n) = 1 2 Q (1) k (n) -(n + 3) Q (2) k (n) = 1 2 (n + 3) Q (1) k (n) -(n + 2)Q (1) k (n) (53)
and

Q (4) k (n) = 1 2 Q (1) k (n) -(n -3) Q (2) k (n) = 1 2 (n -3) Q (1) k (n) -(n -4)Q (1) k (n) . ( 54 
) Remark that Q (j) k (n) , 1 ≤ j ≤ 4, and 
Q (1)
k (n) are independent of k. Observe also that, according to the left-hand sides of ( 46) and (47) for D = 3, we have

Q (3) k (n + 2) = Q (4) k (n) .
From ( 53) and (54) we get

(n + 4)Q (1) k (n + 2) -(n -4)Q (1) k (n) = (n + 5) Q (1) k (n + 2) -(n -3) Q (1) k (n) . (55) 
In (55) two partial fractions are equal for natural numbers and are so for real numbers. By using the expressions of Q

(1)

k (n) and Q (1)
k (n) (see ( 38) and ( 40)) we find that

(n + 4)Q (1) k (n + 2) -(n -4)Q (1) k (n) = k l=1 (n + 4)W k,l n + 2 -2k + 2l - k l=1 (n -4)W k,l n -2k + 2l (56) = 2W k,k n + 2 - (2k -6)W k,1 n -2k + 2 + k l=2 (2k -2l + 4)W k,l-1 -(2k -2l -4)W k,l n -2k + 2l . and (n + 5) Q (1) k (n + 2) -(n -3) Q (1) k (n) = k l=1 (n + 5) W k,l n + 2l + 3 - k l=1 (n -3) W k,l n + 2l + 1 (57) = 6 W k,1 n + 3 - (2k -2) W k,k n + 2k + 3 + k l=2 (-2l + 4) W k,l-1 + (2l + 4) W k,l n + 2l + 1 .
Observe that the singularities of (56) are even numbers, whereas the singularities of (57) are odd ones. So, we should have

W k,k = W k,1 = W k,1 = W k,k = 0, (2k -2l + 4)W k,l-1 -(2k -2l -4)W k,l = 0 and (-2l + 4) W k,l-1 + (2l + 4) W k,l = 0 for 2 ≤ l ≤ k. Since k ≥ k + 1 ≥ 4
and by induction on l all the W k,l and W k,l are null. Thus, (43) reads

a n+2 -a n-4 -3 (a n -a n-2 ) = 0. ( 58 
)
The solution of (58) has the form

a n = C 1 + C 2 n + C 3 n 2 (-1) n + C 4 + C 5 n + C 6 n 2 . ( 59 
)
Using (59) for n even, the left-hand side of ( 10) is a partial fraction of n with finite number of singularities. So, by the same arguments as in Corollary 6 we obtain T 2 = 0.

Case 2: There exists

k 0 ≥ 3 such that D k = 0 for k ≥ k 0 . Suppose that D k = T 2 k -T k-1 T k+1 = 0 for all k ≥ k 0 . First, notice that if there exists a k 1 ≥ k 0 such that T k 1 = 0, then T k 1 -1 T k 1 +1 = 0. So, T k 1 -1 = 0 or T k 1 +1 =
0 and by Corollary 4, T 2 = 0. We have also T k 0 -1 = 0, otherwise T k 0 = 0 and by Corollary 4, T 2 = 0. Now, for T k = 0 (k ≥ k 0 -1), we have

T k+1 T k = T k T k-1 = T k 0 T k 0 -1 . ( 60 
)
This means that

T k = T k 0 T k 0 -1 k-k 0 T k 0 = ab k (61) 
where

a = T k 0 k 0 -1 /T k 0 -1 k 0 and b = T k 0 /T k 0 -1 . The substitution of T k by ab k in (10) for k ≥ k 0 leads to the equation 2 T 1 b a n - n -2k -1 n -2k a n-2k-1 + n + 2 n c n - n -2k + 1 n -2k + 2 c n-2k+1 = b -k a k l=1 T l T k-l+1 n -2k + 2l = Q k (n) . (62) 
Let denote (62) by E (k, n) and make the subtraction

E (k + 1, n + 2) -E (k, n) to get 2 T 1 b (a n+2 -a n ) + n + 4 n + 2 c n+2 - n + 2 n c n = Q k+1 (n + 2) -Q k (n) . (63) 
On the right hand side of (63) we have, for k ≥ k 0 , the expression

Q k (n) := Q k+1 (n + 2) -Q k (n) = b -k-1 a k+1 l=1 T l T k-l+2 n -2k + 2l - b -k a k l=1 T l T k-l+1 n -2k + 2l = b -k-1 a T k+1 T 1 n + 2 + b -k-1 a T k (T 2 -bT 1 ) n + b -k-1 a k-1 l=1 T l (T k-l+2 -bT k-l+1 ) n -2k + 2l = T 1 n + 2 + T 2 -bT 1 bn + b -k-1 a k-1 l=1 T l (T k-l+2 -bT k-l+1 ) n -2k + 2l (64) 
from which we deduce

Q k+1 (n) = T 1 n + 2 + T 2 -bT 1 bn + b -k-2 a k l=1 T l (T k-l+3 -bT k-l+2 ) n -2k -2 + 2l = T 1 n + 2 + T 2 -bT 1 bn + b -k-2 a k-1 l=1 T l+1 (T k-l+2 -bT k-l+1 ) n -2k + 2l . (65) 
Now since the left hand side of equation ( 63) is independent of k, it follows

Q k+1 (n) -Q k (n) = b -k-2 a k-1 l=1 (T l+1 -bT l ) (T k-l+2 -bT k-l+1 ) n -2k + 2l = 0. ( 66 
)
As a result, for 1 ≤ l ≤ k -1 and k ≥ k 0 , we have

(T l+1 -bT l ) (T k-l+2 -bT k-l+1 ) = 0. ( 67 
)
Let take k = 2 (k 0 -2) -1 and l = k 0 -2 to get (T k 0 -1 -bT k 0 -2 ) 2 = 0 and then T k 0 -1 = bT k 0 -2 , (or equivalently D k 0 -1 = 0). Thus, the equations (60) and (61) are valid for k = k 0 -1 and by induction we arrive at T 4 = bT 3 , (or equivalently D 4 = 0). For k = 4, the right-hand side of (37) is null. So, V 4,2 = 0 and using T 5 = T 2 4 /T 3 (from D 4 = 0) we get D 3 = 0.

On the other side suppose that T 2 = 0, then we can write

T k = T 3 T 2 k-2 T 2 = ab k , for k ≥ 2,
where b = T 3 /T 2 and a = T 3 2 /T 2 3 . Therefore, the equation (62

) reads 2 T 1 b a n - n -2k -1 n -2k a n-2k-1 + n + 2 n c n - n -2k + 1 n -2k + 2 c n-2k+1 = = T 1 n -2k + 2 + T 1 n + k-1 l=2 ab n -2k + 2l , for k ≥ 2 and n ≥ 2k + 1. (68) 
When n = 2k + 1 and n = 2k + 2, the equation (68) gives

2 T 1 ba 2k+1 + 2k + 3 2k + 1 c 2k+1 = 2 3 c 2 + T 1 3 + T 1 2k + 1 + k-1 l=2 ab 2l + 1 (69) and 2 T 1 ba 2k+2 + k + 2 k + 1 c 2k+2 = 1 T 1 a 1 b + 3 4 c 3 + T 1 4 + T 1 2k + 2 + k-1 l=2 ab 2l + 2 (70) 
respectively. Let take n = 2N + 1 in (68) and use (69) to obtain the expression

2 3 c 2 + T 1 3 + T 1 2N + 1 + N -1 l=2 ab 1 + 2l - 2(N -k)b 2(N -k) + 1 2 T 1 a 2(N -k) - 2(N -k) + 2 2(N -k) + 3 c 2(N -k)+2 = T 1 2(N -k) + 3 + T 1 2N + 1 + k-1 l=2 ab 2(N -k) + 2l + 1 .
In this last equality let put N -k instead of k to get

- 2bk 2k + 1 2 T 1 a 2k - 2k + 2 2k + 3 c 2k+2 = - 2 3 c 2 - T 1 3 - N -1 l=2 ab 1 + 2l + T 1 2k + 3 + N -k-1 l=2 ab 2k + 2l + 1 = - 2 3 c 2 - T 1 3 + T 1 2k + 3 - k l=1 ab 2l + 3 . ( 71 
) After defining A 1 = a 1 T 1 + 3 4 c 3 b + T 1 4b , A 2 = -2 3 c 2 b -T 1 3b and A 3 = T 1
b and making the operation

1 k + 2 2k + 2 2k + 3 Eq(70) + k + 2 k + 1 Eq(71)
we have

2(k + 1) (k + 2)(2k + 3) 2 T 1 a 2(k+1) - 2k (k + 1)(2k + 1) 2 T 1 a 2k = = A 1 (2k + 2) + A 3 (k + 2)(2k + 3) + A 2 k + 1 + A 3 (k + 1)(2k + 3) + 2k + 2 (k + 2)(2k + 3) k-1 l=2 a 2 + 2l - 1 k + 1 k+1 l=2 a 2l + 1 = - 2A 1 2 k + 3 + 2 A 2 -A 3 k + 2 + A 2 + A 3 k + 1 + - 1 2 k + 3 + 1 k + 2 k-1 l=2 a l + 1 - 1 k + 1 k+1 l=2 a 2l + 1 = B 1 k + 2 + B 2 k + 3 2 + B 3 k + 1 + a 1 k + 2 - 1 2 
1 k + 3 2 Ψ (k + 1) - 1 2 a k + 1 Ψ k + 5 2 , (72) 
where short notations

B 1 = (-3/2 + γ) a+2A 1 -A 3 , B 2 = (3/4 -γ/2) a-A 1 , B 3 = (-γ/2 -ln (2) + 4/3) a+ A 2 + A 3
, (γ is Euler's constant) are introduced as well as Ψ(x) which stands for the Digamma function. Taking

U k = 2k (k + 1)(2k + 1) 2 T 1 a 2k
and

G(k + 1) = B 1 k + 2 + B 2 k + 3 2 + B 3 k + 1 + a 1 k + 2 - 1 2 
1 k + 3 2 Ψ (k + 1) - 1 2 a k + 1 Ψ k + 5 2 , (73) 
then (72) can be written in compact form as

U k+1 -U k = G(k + 1).
The later recurrence is easily solved to give

U k = U 3 + k j=4 G(j).
By using the formula Ψ(j + 1) = Ψ(j) + 1/j and the relations [13, Theorems 3.1 and 3.2]

k l=0 Ψ(l + α) l + β + k l=0 Ψ(l + β + 1) l + α = Ψ(k + α + 1)Ψ(k + β + 1) -Ψ(α)Ψ(β), (74) 
k j=0 Ψ(j + β) j + β = 1 2 Ψ ′ (k + β + 1) -Ψ ′ (β) + Ψ(k + β + 1) 2 -Ψ(β) 2 , (75) 
we obtain

U k = 2k (k + 1)(2k + 1) 2 T 1 a 2k = a 2 (Ψ (k + 2)) 2 + B 1 Ψ (k + 2) + a 2 Ψ ′ (k + 2) + B 2 Ψ k + 3 2 + - a 2 Ψ k + 3 2 + B 3 Ψ (k + 1) + a k + 1 + δ 2 . (76) 
From (76) we deduce the asymptotic behaviour of a 2k as k → ∞:

2 T 1 a 2k = δ 1 k + 3 2 + 1 2k + 3a 4 + 5a 16k + a 32k 2 - 3a 128k 3 + ... ln(k)+δ 2 k +δ 3 + δ 4 k + δ 5 k 2 + δ 6 k 3 +• • • (77)
where coefficients δ i are defined by (higher terms are omitted) 

δ 1 = B 1 + B 2 + B 3 , δ 2 = γ - 25 
a 2k+1 b 2 T 1 + T 1 2 2k + 3 a 2k = φ(k), (78) 
where

φ (k) = T 1 2 2k(2k + 3) 2k + 1 -bA 2 + bA 3 2k + 1 + k-1 l=2 ab 2l + 1
.

• If we suppose lim k→∞ a 2k 2k = ∞, then from (78) we deduce on one side

lim k→∞ a 2k+1 2k + 1 = lim k→∞ φ(k) 2k+1 2b T 1 + T 1 2 2k+3 a 2k = T 2 1 4b . (79) 
On the other side, for n = 2k + 3, (9) reads

4T 2 T 3 1 1 - 2k 2k + 1 a 2k a 2k+3 = 2k + 4 a 2k+3 -2 2k + 3 a 2k+2 + 2k + 2 a 2k+1 . (80) 
Under the assumption T 2 = 0, (80) admits the limit ∞ = 8b/T 2 1 , as k → ∞, which exhibit a contradiction.

• Now if lim k→∞ a 2k 2k = η 1 = 0, then from (78) we have lim k→∞ a 2k+1 2k + 1 = lim k→∞ φ(k) 2k+1 2b T 1 + T 1 2 2k+3 a 2k = T 1 2 2b T 1 + T 1 2η 1 := η 2 .
(81) Equation ( 9) becomes, for n = 2k + 2,

4T 2 T 3 1 1 - 2k -1 2k a 2k-1 a 2k+2 = 2k + 3 a 2k+2 -2 2k + 2 a 2k+1 + 2k + 1 a 2k . (82) 
And if we assume that T 2 = 0 and η 2 = ∞, then the limit process k → ∞ in (82) left us with the contradiction ∞ = 2/η 1 . But if η 2 = ∞, then by taking the limit in (80) and (82) we obtain, respectively,

4T 2 T 3 1 1 - η 1 η 2 = 2 η 2 - 2 η 1 and 4T 2 T 3 1 1 - η 2 η 1 = 2 η 1 - 2 η 2 .
Adding the two later we get 2 -η 1 /η 2 -η 2 /η 1 = 0 and therefore η 1 = η 2 . According to (81) η 1 = 0 which is in contradiction with the initial hypothesis η 1 = 0.

• Finally if lim k→∞ a 2k 2k = 0, then from ( 81) and ( 78 

From (78) we have

a 2k+1 = φ(k) b 2 T 1 + T 1 2 2k+3 a 2k , (84) 
which gives an explicit formula for a 2k+1 . Using (84), the right-hand side of (82) reads

-8 b T 1 k + 1 φ (k) + 2 k + 3 a 2k+2 + -2 T 1 (2k + 3) (k + 1) φ (k) + 2 k + 1 1 a 2k . ( 85 
)
By virtue of (83), the limit of the both sides of (82), as k → ∞, gives -8b To exclude Case 1 and Case 2, there exists a mixed case with infinitely many k and κ such that: D k = 0 and D κ = 0. Now, it suffices to take k 1 and k 2 , k 1 = k 2 , with D k 1 = 0, D k 1 +1 = 0, D k 2 = 0 and D k 2 +1 = 0 to get two equations similar to (30) and (31). Consequently, a reasoning analogous to that of Corollary 7 completes the proof.

Concluding remarks

We have shown that the only polynomial sets (besides the monomial set) {P n } generated by F (xt-R(t)) = n≥0 α n P n (x)t n and satisfying the three-term recursion xP n (x) = P n+1 (x) + β n P n (x) + ω n P n-1 (x), are the rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind. In [START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF], the authors generalized the results obtained in [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF] and [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF] in the context of d-orthogonality by considering the polynomials (which fulfils a (d + 1)-order difference equation) generated by F ((d + 1)xt -t d+1 ), where d is a positive integer. Recently in [START_REF] Varma | A characterization theorem and its applications for d-orthogonality of Sheffer polynomial sets[END_REF], the author characterized the Shefer d-orthogonal polynomials. These polynomials have the generating function A(t) exp(xH(t)) which has the alternative form exp(xH(t) + ln(A(t))) = F (xU (t) -R(t)). So, a natural extension is to look at polynomial sets generated by F (xU (t) -R(t)) and satisfying the (d + 1)-order recursion

xP n (x) = P n+1 (x) + d l=0 γ l n P n-l (x), (86) 
where {γ l n }, 0 ≤ l ≤ d, are complex sequences. Currently, we are attempting to generalize the results given here by investigating polynomial sets satisfying the recursion (86) and generated by F (xt -R(t)). This also provides generalizations of the results given in [START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF] and [START_REF] Varma | A characterization theorem and its applications for d-orthogonality of Sheffer polynomial sets[END_REF].
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 2 the left-hand side of (82) tends to 0 as k → ∞. In the other hand, according to (77), lim k→∞ a 2k 2k = 0 implies that δ 1 = δ 2 = 0 anda 2k = T 1
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 103 So, b = 0 and T k = 0 for k ≥ 3. Therefore, by corollary 4 we have T 2 = 0 which contradicts T 2 = 0. For every k 0 ≥ 3, there exists k ≥ k 0 such that D k = 0 or D k = 0.
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