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EXACT GROUPOIDS

CLAIRE ANANTHARAMAN-DELAROCHE

Abstract. Our purpose is to introduce and study in the setting of locally
compact groupoids the analogues of the well known equivalent definitions of
exactness for discrete groups. The best results are obtained for a class of étale
groupoids that we call weakly inner amenable, since for locally compact groups
this notion is weaker than the notion of inner amenability. We give examples
of such groupoids which include transformation groupoids associated to actions
of discrete groups by homeomorphisms on locally compact spaces. We have no
example of étale groupoids which are not weakly inner amenable. For weakly
inner amenable étale groupoids we prove the equivalence of six natural notions
of exactness: (1) strong amenability at infinity; (2) amenability at infinity; (3)
nuclearity of the uniform (Roe) algebra of the groupoid; (4) exactness of this C∗-
algebra; (5) exactness of the groupoid in the sense of Kirchberg-Wassermann;
(6) exactness of its reduced C∗-algebra. We end by several illustrations of our
results and open questions.

Introduction

Motivated by the study of the continuity of fibrewise crossed product C∗-
bundles, Kirchberg and Wassermann introduced in [33] the notion of exact locally
compact group and they proved, among many other results, that a discrete group
G is exact if and only if the corresponding reduced C∗-algebra C∗

r (G) is exact.
Soon after, it was proved that the exactness of C∗

r (G) is equivalent to the nucle-
arity of the uniform Roe C∗-algebra C∗

u(G) and also to the fact that the group G
admits an amenable action on a compact space (see [20, 21, 53, 3]). As a conse-
quence, every discrete exact group is uniformly embeddable into a Hilbert space
and therefore the Novikov higher signature conjecture holds for countable exact
discrete groups ([71, 24, 22, 66]).

The notion of amenability, the Baum-Connes and the Novikov conjectures have
been generalized to locally compact groupoids (see [2] as regards to amenability
and [67] for the conjectures). Concerning the extension of the notion of exactness
to groupoids the situation is not so clear. We presented some results on this subject
in a talk given at the MSRI in 2000 [5], but we have never written down all the
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2 Exact groupoids

details. Our goal in this paper is to provide this details. In the meantime we have
improved some of our results but also discovered several technical difficulties.

The analogue of a discrete group is an étale groupoid (see Section 1.3). So, we
are mainly concerned with such groupoids and we add a separability assumption
when necessary. In this introduction, to make easier the discussion, G will be a
second countable étale groupoid.

A discrete group G is said to be amenable at infinity if it has an amenable
action on a compact space Y . This is equivalent to the fact that the natural
action of G on its Stone-Čech compactification βG is amenable. An action of G
involves a fibre space (Y, p) over the space X = G(0) of units of G. The analogue
of compactness is the property for p to be proper, in which case we say that (Y, p)
is fibrewise compact, following the terminology of [26, Definition 3.1]. We say that
G is amenable at infinity if it has an amenable action on a fibrewise compact fibre
space. A fibre space (Y, p) has a greatest fibrewise compactification called the
Stone-Čech fibrewise compactification of (Y, p). This compactification carries a
natural G-action (i.e., is a G-space) if (Y, p) is a G-space (see [4]). We view G as
G-space fibred on X by the range map r and we denote by (βrG, rβ) its Stone-Čech
fibrewise compactificationa . We do not know whether the amenability at infinity
of G implies that its natural action on (βrG, rβ) is amenable. This holds if and only
if G has an amenable action on a fibrewise compact fibre space (Y, p) such that p
admits a continuous section. If this is the case we say that G is strongly amenable
at infinity. For groups, this makes no difference. Although βrG is a rather ugly
space, the nice feature of strong amenability at infinity is that it has an intrinsic
characterization (Theorem 3.16).

There is a natural notion of exact groupoid that we call KW-exactnessb (see
Definition 6.6). We show that G is KW-exact whenever it is amenable at infinity
and that, if G is KW-exact, then its reduced C∗-algebra C∗

r (G) is exact (Proposition
6.7). The proof is an easy adaptation of the known proof for groups (see [3,
Theorem 7.2] for instance).

Recall that the exactness of the reduced C∗-algebra of a discrete group G im-
plies the amenability of the action of G on its Stone-Čech compactification. Its
classical proof uses the following remark, essentially contained in [20]: if Φ :
C∗
r (G) → B(ℓ2(G)) is a completely positive map such that Φ(δs) = 0 except

for s in a finite subset F of G, then the kernel k : (s, t) ∈ G × G → C defined
by k(s, t) = 〈δs−1 ,Φ(δs−1t)δt−1〉 is positive definite and has its support in the tube

aWe point out that in our definition of a fibre space (Y, p) we do not require p to be open since

in general rβ : βrG → G(0) is not open.
bKW stands for exactness in the sense of Kirchberg and Wassermann who introduced this

notion for groups.
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{
(s, t) ∈ G×G : s−1t ∈ F

}
. The second ingredient of the proof is the characteri-

zation of the amenability at infinity of G in term of nets of such positive definite
kernels on the product space G×G [24, 3].

This characterization has an analogue in the setting of étale groupoids (Theorem
3.16) in term of positive definite kernels on the subspace G ∗r G of pairs (γ, γ1) ∈
G×G with the same range. On the other hand, in the groupoid case, the definition
of a kernel k on G ∗r G, starting from a completely positive map Φ from C∗

r (G)
into the C∗-algebra (analogous to B(ℓ2(G))) containing the regular representation
Λ of C∗

r (G) defined in Section 5.1, raises difficulties. Indeed, for γ, γ1 with the
same range, we need an analogue fγ−1γ1 ∈ C∗

r (G) of δs−1t. We observe that if G
is a discrete group and if g denotes the characteristic function of the diagonal of
G×G then δs−1t is the function y 7→ g(s−1t, y) defined on G. This function g is (of
course) continuous and positive definite on the product group G × G. Moreover
this function is properly supported in the sense that for every compact (i.e., finite)
subset F of G, the intersections of the support of g with F ×G and with G × F
are compact. Following an idea of Jean Renault developed in an unpublished note,
we introduce, for a locally compact groupoid, a property similar to the existence
of g, that we call weak inner amenability (see Definition 4.2). The definition is
justified by the fact that inner amenable locally compact groups are weakly inner
amenable. This includes every discrete group. On the other hand a connected
locally compact group is weakly inner amenable if and only if it is amenable [3,
Theorem 7.3]. Given a discrete group G acting by homeomorphisms on a locally
compact space X, the transformation groupoid X ⋊G is weakly inner amenable.
We do not know whether every étale groupoid is weakly inner amenable. Weak
inner amenability insures the existence of functions on the groupoid product G×G
that behaves like the characteristic function of the diagonal for G×G.

In order to get rid of βrG, we introduce the groupoid analogue C∗
u(G) of the

uniform Roe algebra generated by the operators of finite propagation in case of
a discrete group. This C∗-algebra C∗

u(G), which is canonically isomorphic to the
reduced C∗-algebra C∗

r (βrG ⋊ G) of the semi-direct product groupoid (Theorem
5.3), has the advantage over C∗

r (βrG ⋊ G) to be more elementarily defined.

Our main result states that if G is equivalent to a weakly inner amenable étale
groupoid, then the following three conditions are equivalent: G is amenable at
infinity; G is KW-exact; C∗

r (G) is exact. If G is weakly inner amenable (or even
equivalent in a stronger sense to a weakly inner amenable groupoid, then these
three conditions are also equivalent to the three following ones: G is strongly
amenable at infinity; C∗

u(G) is nuclear; C
∗
u(G) is exact (see Theorem 7.6 and Corol-

lary 7.8). This is applied to show (Corollary 7.7) that if G is such that there
exists a locally proper continuous homomorphism from itself into an exact discrete
group, then the above six conditions hold. This includes examples of groupoids
associated with semigroups (see Remark 8.7).
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Non-exact discrete groups are quite exotic. The first examples were exhibited
by Gromov in [19], often named Gromov monster groups. New examples have
been constructed by Osajda [52]. But still, there are very few examples, whereas
in the setting of étale groupoids, it is easy to find examples of KW-exact and
non KW-exact groupoids. Let us consider first the case of an étale groupoid G
which is a groupoid group bundle (G(x))x∈X (Definition 8.9). Recall that G is
amenable if and only if each group G(x) is amenable [2, 60], and in this case,
C∗
r (G) is a continuous field of C∗-algebras, with fibres C∗

r (G(x)), x ∈ X [56, 39].
The discussion relative to exactness is more subtle. If C∗

r (G) is exact, that each
quotient C∗-algebra C∗

r (G(x)) is exact and therefore the groups G(x) are exact. If
G is KW-exact, then C∗

r (G) is a still a continuous field of C∗-algebras (see Corollary
8.13). However, the exactness of the groups G(x) is not sufficient to ensure that
C∗
r (G) is exact and that it is a continuous field of C∗-algebras with fibres C∗

r (G(x)),
x ∈ X, as shown by examples arising from a construction due to Higson, Lafforgue
and Skandalis [23] (see Proposition 8.14). A second class of interesting examples
are groupoids associated with semigroups, as constructed and studied by many
authors (see Section 8.3).

An aspect that has not been considered in this paper is the behaviour of crossed
products under the action of an exact groupoid, for which we refer to [35].

This paper is organized as follows. Sections 1 to 4 concern exclusively locally
compact groupoids. In the first section we provide the definitions and the notation
relative to these groupoids and their actions, that will be used in the rest of the
paper. In Section 2, we recall some facts about amenable groupoids and amenable
actions of groupoids. The notions of amenability at infinity and of weak inner
amenability are introduced and studied in Sections 3 an 4 respectively. Section 5 is
devoted to the description of the different C∗-algebras associated with a groupoid:
full and reduced C∗-algebras, the uniform Roe C∗-algebra, and crossed products
relative to actions on C∗-algebras. In Sections 6 and 7, we study the relations
between the different natural notions of exactness that we have defined and Section
8 is devoted to examples.

1. Preliminaries

1.1. Groupoids. We assume that the reader is familiar with the basic definitions
about groupoids. For details we refer to [57], [55]. Let us recall some notation

and terminology. A groupoid consists of a set G, a subset G(0) called the set of
units, two maps r, s : G → G(0) called respectively the range and source maps, a
composition law (γ1, γ2) ∈ G(2) 7→ γ1γ2 ∈ G, where

G(2) = {(γ1, γ2) ∈ G × G : s(γ1) = r(γ2)},
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and an inverse map γ 7→ γ−1. These operations satisfy obvious rules, such as the
facts that the composition law (i.e., product) is associative, that the elements of

G(0) act as units (i.e., r(γ)γ = γ = γs(γ)), that γγ−1 = r(γ), γ−1γ = s(γ), and

so on (see [57, Definition 1.1]). For x ∈ G(0) we set Gx = r−1(x) and Gx = s−1(x).
Usually, X will denote the set of units of G.

A subgroupoid H of a groupoid G is a subset of G which is stable under product
and inverse. For instance, let Y be a subset of X = G(0). We set G(Y ) = r−1(Y )∩
s−1(Y ). Then G(Y ) is a subgroupoid of G called the reduction of G by Y . When
Y is reduced to a single element x, then G(x) = r−1(x) ∩ s−1(x) is a group called
the isotropy group of G at x.

A locally compact groupoid is a groupoid G equipped with a locally compact
topology such that the structure maps are continuous, where G(2) has the topology
induced by G × G and G(0) has the topology induced by G. We assume that the
range (and therefore the source) map is open, which is a necessary condition for
the existence of a Haar system.

A locally compact subgroupoid H of G is a locally closed subgroupoid of G such
that the restriction of the range map is open from H onto H(0). For instance, if
E is an invariant locally compact subset of G(0) (that is, r(γ) ∈ E if and only if
s(γ) ∈ E), then the reduction G(E) is a subgroupoid. Also, the isotropy groups

G(x) are subgroupoids, for any x ∈ G(0).

For us, unless explicity mentioned to be false, we shall always assume the locally
compact spaces to be Hausdorff. Given a locally compact space Y , we denote by
Cb(Y ) the algebra of continuous bounded complex valued functions on Y , by C0(Y )
its subalgebra of functions vanishing at infinity, and by Cc(Y ) the subalgebra of
continuous functions with compact support. The support of f ∈ Cb(Y ) will be
denoted by Supp(f).

Definition 1.1. Let G be a locally compact groupoid. A Haar system on G is
a family λ = (λx)x∈X of measures on G, indexed by the set X = G(0) of units
satisfying the following conditions:

• Support: λx has exactly Gx as support, for every x ∈ X;
• Continuity: for every f ∈ Cc(G), the function x 7→ λ(f)(x) =

∫
Gx f dλ

x is
continuous;

• Invariance: for γ ∈ G and f ∈ Cc(G), we have

∫

Gs(γ)

f(γγ1) dλ
s(γ)(γ1) =

∫

Gr(γ)

f(γ1) dλ
r(γ)(γ1).

In this paper, we shall almost always limit ourselves to the case of étale groupoids
in which case there is a canonical Haar system (see Subsection 1.3).
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1.2. Actions of groupoids on spaces. Let X be a locally compact space. A
fibre space over X is a pair (Y, p) where Y is a locally compact space and p is a
continuous surjective map p from Y onto X. For x ∈ X we denote by Y x the fibre
p−1(x).

If (Yi, pi), i = 1, 2, are two fibre spaces over X, we denote by Y1 p1∗p2Y2 (or Y1∗Y2
when there is no ambiguity) the fibred product {(y1, y2) ∈ Y1 × Y2 : p1(y1) = p2(y2)}
equipped with the topology induced by the product topology. For subsets A1 and
A2 of Y1 and Y2 respectively, we use similarly the notation A1 p1∗p2 A2.

Definition 1.2. Let G be a locally compact groupoid. A left G-space is a fibre
space (Y, p) over X = G(0), equipped with a continuous map (γ, y) 7→ γy from
G s∗p Y into Y , satisfying the following conditions:

• p(γy) = r(γ) for (γ, y) ∈ G s∗p Y , and p(y)y = y for y ∈ Y ;

• if (γ1, y) ∈ G s∗p Y and (γ2, γ1) ∈ G(2), then (γ2γ1)y = γ2(γ1y).

The map p will be called the momentum of the G-space. We shall also say that
the map (γ, y) 7→ γy is a continuous G-action on Y .

A continuous G-equivariant morphism from a left G-space (Y1, p1) to a left G-
space (Y2, p2) is a continuous map f : Y1 → Y2 such that p2 ◦ f = p1 and f(γy) =
γf(y) for every (γ, y) ∈ G s∗p Y .

Right G-spaces are defined similarly. Without further precisions, a G-space will
be a left G-space. Let us observe that (G, r) is a G-space in an obvious way, as well
as X. It this latter case, the action of γ ∈ s−1(x) onto x ∈ X will be denoted by
γ · x, in order to distinguish it from γx = γ. By definition, we have γ · x = r(γ).
We also note that if (Y, p) is a G-space, then p is equivariant: p(γy) = γ · p(y).

Remark 1.3. We warn the reader that our definition of G-space is different from the
usual definition found in the literature where it is required that p is an open map.
We do not assume this property because the momentum of the action of a locally
compact groupoid on its Stone-Čech fibrewise compactification is not always open
(see Example 3.2). Moreover, it is a fact that, even if p is not open, the semi-direct
product groupoid has an open range (see Proposition 1.4).

Given a G-space (Y, p) we define a new locally compact groupoid Y ⋊ G, called
the semi-direct product groupoid. As a topological space, it is Yp∗r G. The range
of (y, γ) is (y, r(γ)) = (y, p(y)) and its source is (γ−1y, s(γ)). The product is given
by

(y, γ)(γ−1y, γ1) = (y, γγ1)

and the inverse is given by

(y, γ)−1 = (γ−1y, γ−1).
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Observe that (y, p(y)) 7→ y is a homeomorphism from (Y ⋊G)(0) onto Y . Therefore
we shall identify these two spaces. Sometimes we shall denote by the boldface letter
r the range map of Y ⋊G to distinguish it from the range map r of G (and similarly
for s).

We may equivalently consider the groupoid G⋉Y which is G s∗pY as a topological
space. Here the range of (γ, y) is γy and its source is y. The product is given by

(γ, γ1y)(γ1, y) = (γγ1, y).

Note that (y, γ) 7→ (γ, γ−1y) is an isomorphism of groupoids from Y ⋊ G onto
G ⋉ Y .

An important and well known particular case is when G is a locally compact
group G acting continuously on a locally compact space Y . Then Y ⋊G is called
the transformation groupoid associated with the action of G on Y .

Proposition 1.4. Let G be a locally compact groupoid and (Y, p) a G-space.

(i) The range map r : Y ⋊ G → Y is open.

(ii) If G has a Haar system (λx)x∈X , then δy×λ
p(y) is a Haar system for Y ⋊G.

Proof. (i) Let Ω be an open subset of Y ⋊ G. Let y0 ∈ r(Ω) and let γ0 be such
that (y0, γ0) ∈ Ω. There exist open neighborhoods U of y0 and V of γ0 such that
U p∗r V ⊂ Ω. Then we have p−1(r(V )) ∩ U ⊂ r(Ω) and p−1(r(V )) ∩ U is an open
neighborhood of y0 since r is open.

We leave the easy proof of (ii) to the reader. �

1.3. Etale groupoids. An étale groupoid is a locally compact groupoid G such
that the range (and therefore the source) map is a local homeomorphism from G
into G(0). In this situation, the fibres Gx = r−1(x) with their induced topology are

discrete and G(0) is open in G. The family of counting measures λx on Gx form a
Haar system (see [57, Proposition 2.8]), which will be implicit in the sequel. Etale
groupoids are sometimes called r-discrete.

Examples of étale groupoids are plentiful. Let us mention groupoids associ-
ated with discrete group actions, local homeomorphisms, pseudo-groups of partial
homeomorphisms, topological Markov shifts, graphs, inverse semigroups, metric
spaces with bounded geometry,... (see [57], [14], [34], [8], [59], [55], [30] for a non
exhaustive list). For a brief account on the notion of étale groupoid see also [11,
Section 5.6].

A bisection is a subset S of G such that the restriction of r and s to S is injective.
Given an open bisection S, we shall denote by r−1

S the inverse map, defined on the

open subset r(S) of G(0), of the restriction of r to S. Note that r−1
S is continuous.
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An étale groupoid G has a cover by open bisections. These open bisections form
an inverse semigroupc with composition law

ST =
{
γ1γ2 : (γ1, γ2) ∈ (S × T ) ∩ G(2)

}
,

the inverse S−1 of S being the image of S under the inverse map (see [55, Propo-
sition 2.2.4]). A compact subset K of G is covered by a finite number of open
bisections. Thus, using partitions of unity, we see that every element of Cc(G) is
a finite sum of continuous functions whose compact support is contained in some
open bisection.

Semi-direct products relative to actions of étale groupoids are themselves étales.

Proposition 1.5. Let G be an étale groupoid and (Y, p) a G-space. Then the
groupoid Y ⋊ G is étale.

Proof. We shall show that every (y0, γ0) ∈ Y ⋊ G has an open neighborhood Ω
such that the restriction of r to Ω is a homeomorphism onto its image, which is
open in Y . We first choose an open bisection S of G which contains γ0 and we set
W = p−1(r(S)). Note that W is an open subset of Y . We set Ω = Wp∗r S. It is
an open subset of Y ⋊ G. Its range r(Ω) is Wp∗r r(S) = {(y, p(y)) : y ∈W}. It is

open in (Y ⋊ G)(0). Obviously, r is a continuous bijection from Ω onto its image.
Its inverse map is (y, p(y)) 7→ (y, r−1

S (p(y)) which is continuous on r(Ω). �

Let G and (Y, p) be as in the previous proposition. An open bisection S of
G defines a homeomorphism αS from p−1(s(S)) onto p−1(r(S)), sending y onto
γy, where γ is the unique element of S such that s(γ) = p(y). For simplicity

of notation, we usually write Sy instead of αS(y). When (Y, p) = (G(0), Id ), we
rather use the notation x 7→ S · x. For every subset W of p−1(s(S)), we shall use
the equality

p(SW ) = S · p(W )). (1)

2. Amenable groupoids and amenable actions

The reference for this section is [2]. Here G will be a locally compact groupoid

and we set X = G(0). For simplicity, the reader may assume that G is étale since
we are mainly interested in this class of groupoids. The notion of amenable locally
compact groupoid has many equivalent definitions. We shall recall three of them.
Before let us recall a notation: given a locally compact groupoid G, γ ∈ G and µ a
measure on Gs(γ), then γµ is the measure on Gr(γ) defined by

∫
f dγµ =

∫
f(γγ1) dµ.

cThe definition is recalled in 8.3.
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Definition 2.1. ([2, Definitions 2.2.2, 2.2.8]) We say that G is amenable if there
exists a net (mi), where mi = (mx

i )x∈X is a family of probability measures mx
i on

Gx, such that

(i) each mi is continuous in the sense that for all f ∈ Cc(G), the function
x 7→

∫
f dmx

i is continuous;

(ii) limi

∥∥∥γms(γ)
i −m

r(γ)
i

∥∥∥
1
= 0 uniformly on the compact subsets of G.

We say that (mi)i is an approximate invariant continuous mean on G.

We say that a function h on a groupoid G is positive definite if for every x ∈ G(0),
n ∈ N, and γ1, . . . , γn ∈ Gx, the n× n matrix [h(γ−1

i γj)] is non-negative, that is,
n∑

i,j=1

αiαjh(γ
−1
i γj) ≥ 0

for α1, . . . , αn ∈ C.

A second useful characterization of amenability is as follows.

Proposition 2.2. ([2, Proposition 2.2.13]) Let G be a locally compact groupoid
with Haar system. Then G is amenable if and only if there exists a net (hi) of
continuous positive definite functions with compact support in G such that limn hi =
1 uniformly on the compact subsets of G.

Finally, we shall also need the following characterization of amenability.

Proposition 2.3. ([2, Proposition 2.2.13]) Let (G, λ) be a locally compact groupoid
with Haar system. Then G is amenable if and only if there exists a net (gi) of non-
negative functions in Cc(G) such that

(a)
∫
gi dλ

x ≤ 1 for every x ∈ G(0);

(b) limi

∫
gi dλ

x = 1 uniformly on the compact subsets of G(0);

(c) limi

∫ ∣∣gi(γ−1γ1)− gi(γ1)
∣∣ dλr(γ)(γ1) = 0 uniformly on the compact subsets

of G.

Remark 2.4. We shall very often consider second countable locally compact grou-
poids. In this case (or more generally in the case of σ-compact groupoids), in the
above statements, we may replace nets by sequences.

Definition 2.5. We say that a continuous G-action on a fibre space (Y, p) is
amenable if the groupoid Y ⋊ G is amenable.

Recall that Y is the set of units of the semi-direct product Y ⋊ G and that
r−1(y) is canonically identified to Gp(y). If G has a Haar system λ, then Y ⋊ G has

a Haar system which is given by the family (λp(y)y∈Y . A positive definite function

on Y ⋊ G is a function h such that, for every y ∈ Y , n ∈ N, and γ1, . . . , γn ∈ Gp(y),
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the n × n matrix [h(γ−1
i y, γ−1

i γj)] is non negative. Then characterizations given
in Propositions 2.2 and 2.3 are easily spelled out for the groupoid Y ⋊ G .

Finally, let us recall that if G is an amenable locally compact groupoid, then for
every G-space (Y, p), the groupoid Y ⋊ G is also amenable [2, Corollary 2.2.10].

3. Amenable actions on fibrewise compact spaces

3.1. Definitions and first results.

Definition 3.1. A fibre space (Y, p) over a locally compact space X is said to be
fibrewise compact if p is a proper map.

Let G be a locally compact groupoid. A fibrewise compact G-space is a G-space
which is fibrewise compact.

In particular, fibrewise compactness implies that all the fibres Y x are compact,
but the converse is not true.

To an étale groupoid G are associated two important fibrewise compact G-spaces,
namely its Alexandroff fibrewise compactification (G+

r , r
+) and its Stone-Čech fi-

brewise compactification (βrG, rβ). For details about these notions we refer to [4].
We recall that G+

r is the Gelfand spectrum of the abelian C∗-algebra of continuous
bounded functions on G of the form f ◦ r+ g with f ∈ C0(G

(0)) and g ∈ C0(G). On
the other hand, βrG is the Gelfand spectrum of the abelian C∗-algebra of contin-
uous bounded functions f on G such that for every ε > 0 there exists a compact
subset K of G(0) satisfying |f(γ)| ≤ ε if γ /∈ r−1(K). Obviously, when G is a
discrete group G, then G+

r is the Alexandroff compactification G+ of G and βrG is
its Stone-Čech compactification βG.

Example 3.2. The following example will show that the maps r+ and rβ are not
always open. We consider the topological subspace G = [0, 1]× {0}∪]1/2, 1] × {1}
of [0, 1]× {0, 1}, that we view as a bundle of groups over X = [0, 1]× {0} ≡ [0, 1],
the fibres over [0, 1/2] being the trivial group, and those over ]1/2, 1] being the
group with two elements. Then we have G+

r = [0, 1]×{0}∪ [1/2, 1]×{1} and r+ is
the projection onto [0, 1], obviously not open. Similarly, βrG has the same fibres

as G, except over {1/2} where r−1
β (1/2) = {1/2} ×

(
{0} ⊔

(
β(]1/2, 1])\]1/2, 1]

))

and rβ is not open.

Proposition 3.3. An étale groupoid G is amenable if and only if the G-space G+
r

is amenable.

Proof. The structure of G+
r is described in [4]. One of its main features is that

it contains a G-invariant closed subset F such that the restriction of p = r+ to
F is a G-equivariant homeomorphism onto an invariant closed subset F ′ of X.
Moreover U = X \ F ′ is the greatest open subset of X such that the restriction
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of r to G(U) is properd (see [4, Propositions 1.10 and 2.2]). Assume that the G-
space G+

r is amenable. Let (hi) be a net of continuous positive definite functions
on G+

r ⋊ G, with compact support, that satisfies the conditions of Proposition
2.2. Let us observe that F p∗r G = {(y, γ) ∈ F × G : p(y) = r(γ)} is canonically
identified to the groupoid G(F ′) thanks to the map (y, γ) 7→ γ. We denote by ki
the restriction of hi to F p∗r G, and we view it as a function on G(F ′). It is a net
of positive type functions on G(F ′) that satisfies the conditions of Proposition 2.2.
So the groupoid G(F ′) is amenable. On the other hand G(U) is amenable since it
is proper. It follows that G is amenable. �

Definition 3.4. We say that a locally compact groupoid G is amenable at infinity if
there is an amenable G-space Y such p : Y → X = G(0) is proper. Whenever (Y, p)
can be chosen such that, in addition, there exists a continuous section σ : X → Y
of p, then we say that G is strongly amenable at infinity.

The interest of this latter notion will become clear later (see Proposition 3.7
and Theorem 3.16).

Proposition 3.5. Let G be an amenable (resp. strongly amenable) at infinity
locally compact groupoid. Let H be a locally compact subgroupoid of G. Then H is
amenable (resp. strongly amenable) at infinity.

Proof. Let (Y, p) be a fibrewise compact amenable G-space and set YE = p−1(E)

where E = H(0). Note that the restriction of p to YE is proper and that it has
a continuous section whenever p has a continuous section. Moreover, it is easily
seen that YE ⋊H is a subgroupoid of Y ⋊ G. Therefore, by [2, Proposition 5.1],
the groupoid YE ⋊H is amenable. �

Proposition 3.6. Let G be a locally compact groupoid.

(i) Assume that G is amenable (resp. strongly amenable) at infinity. Then for
every G-space (Z, q), the semi-direct product groupoid Z ⋊ G is amenable
(resp. strongly amenable) at infinity.

(ii) Let Z be a G-space whose momentum map q is proper. Assume that Z ⋊ G
is amenable at infinity. Then G is amenable at infinity.

(iii) Let Z be a G-space whose momentum map q is proper and has a continuous
section. Assume that Z ⋊ G is strongly amenable at infinity. Then G is
strongly amenable at infinity.

Proof. (i) Let (Y, p) be a fibrewise compact amenable G-space. We denote by
l : Y ∗ Z → Z the projection. We observe that l is proper, and that whenever p

dWhen G is an infinite discrete group G, then F = G+ \G is reduced to the point at infinity,
F ′ = {e}, U is empty and G(F ′) = G.
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has a continuous section σ, then z 7→ (σ(q(z)), z) is a continuous section for l. We
let Z ⋊ G acts on Y ∗ Z by

(z, γ)(y, γ−1z) = (γy, z).

To prove (i), it suffices to show that this action is amenable. The map
(
(y, z), (z, γ)

)
7→ ((y, z), γ)

is an isomorphism of groupoids from (Y ∗Z)⋊ (Z ⋊ G) onto (Y ∗Z)⋊ G, where G
acts diagonally on Y ∗Z. Similarly, the groupoids (Y ∗Z)⋊G and (Y ∗Z)⋊(Y ⋊G)
are isomorphic and they are amenable since Y ⋊ G is amenable.

(ii) Let (Y, p) be a fibrewise compact amenable Z ⋊ G-space. We define a con-
tinuous G-action on Y , whose momentum map is q ◦ p by

γy = (γp(y), γ)y.

The map q ◦ p is proper. Moreover, the map (y, γ) 7→ (y, (p(y), γ)) is an isomor-
phism of groupoids from Y ⋊G onto Y ⋊

(
Z⋊G

)
and therefore Y ⋊G is amenable.

(iii) is proved in the same way. �

Of course, (ii) and (iii) do not extend to the case where q is not proper: for
every group G acting by left translations onto itself, the transformation groupoid
G⋊G is amenable (even proper), although there exist discrete groups that are not
amenable at infinity, for instance the Gromov monster groups [19] or the groups
introduced in [52].

Proposition 3.7. An étale groupoid G is strongly amenable at infinity if and only
if the Stone-Čech fibrewise compactification (βrG, rβ) is an amenable G-space.

Proof. In one direction, we note that the inclusions G(0) ⊂ G ⊂ βrG provide a
continuous section for rβ and therefore the amenability of the G-space βrG implies
the strong amenability at infinity of G. Conversely, assume that (Y, p, σ) satisfies
the conditions of the definition 3.4. We define a continuous G-equivariant morphism
ϕ : (G, r) → (Y, p) by

ϕ(γ) = γσ ◦ s(γ).

Then, by [4, Proposition 2.8], ϕ extends in a unique way to a continuous G-
equivariant morphism Φ from (βrG, rβ) into (Y, p). Now, it follows from [2, Propo-
sition 2.2.9 (i)] that G y βrG is amenable, since G y Y is amenable. �

However, βrG has the serious drawback that it is not second countable in most
of the cases but only σ-compact when G is second countable. On the other hand,
it has the advantage that it is well determined by G alone. The following technical
result shows how to build a second countable amenable fibrewise compact G-space
out of any amenable fibrewise compact G-space.
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Lemma 3.8. Let G be a second countable étale groupoid that acts amenably on
a fibrewise compact fibre space (Z, q). Then there is a second countable fibrewise
compact G-space (Y, p) and a G-equivariant proper surjective continuous morphism
qY : Z → Y such that G also acts amenably on (Y, p) and q = p ◦ qY . Moreover,
if there is a continuous section σ for q, then there is a continuous section for p,
namely qY ◦ σ.

Proof. The space Z is σ-compact and therefore the semi-direct product groupoid
Z ⋊ G is also σ-compact.

We shall use the characterization of an amenable action on a σ-compact fibre
space recalled in Proposition 2.3: there exists a sequence (gn) of non negative
functions in Cc(Z ⋊ G) such that

(a)
∫
gn(z, γ) dλ

q(z)(γ) ≤ 1 for every z ∈ Z;

(b) limn

∫
gn(z, γ) dλ

q(z)(γ) = 1 uniformly on the compact subsets of Z;

(c) limn

∫ ∣∣gn(γ−1z, γ−1γ1)− gn(z, γ1)
∣∣dλq(z)(γ1) = 0 uniformy on the com-

pact subsets of Z ⋊ G.

First observation. Let g : Z ⋊ G → C. Then g is continuous if and only if
for every open bisection S of G, the function z 7→ g(z, r−1

S (q(z))) is continuous on

q−1(r(S)). This is immediate since z 7→ (z, r−1
S (q(z))) is a homeomorphism from

the open subset q−1(r(S)) of Z onto the open subset q−1(r(S)) q∗r S of Z ⋊ G.

Construction of Y . Let F be a countable family of open bisections of G which
covers G, is stable under product and inverse and contains a basis B of open sets
relative to the topology ofX = G(0). For S, S′ ∈ F we denote by gn,S,S′ the function

z 7→ gn(Sz, r
−1
S′ (q(Sz))). The domain of definition ΩS,S′ of this function is the set

of z ∈ Z such that q(z) ∈ s(S) and S ·q(z) ∈ r(S′), that is, q−1
(
S−1 ·

(
r(S)∩r(S′)

))
.

We observe that if S is an open subset of X then ΩS,S = q−1(S).

We endow Z with the weakest topology T that contains the ΩS,S′ as open subsets
and makes continuous the functions gn,S,S′ on ΩS,S′. It is second countable but
not necessarily Hausdorff. Now, on Z we define the following equivalence relation:

z1 ∼ z2 if q(z1) = q(z2) and gn,S,S′(z1) = gn,S,S′(z2)

for all n and all S, S′ with z1, z2 ∈ ΩS,S′. We denote by Y the quotient space
endowed with the quotient topology and by qY : Z → Y the quotient map. Let
us observe that T is generated by subsets that are saturated with respect to this
equivalence relation and therefore qY is an open map. We denote by g̃n,S,S′ the
continuous function on qY (ΩS,S′), deduced from gn,S,S′ by passing to the quotient.
We also introduce the map p from Y onto X such that p(qY (z)) = q(z). We remark
that q is still continuous when Z is equipped with the topology T , and therefore
p is continuous.
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The space Y is Hausdorff, second countable. Let qY (z1) 6= qY (z2) in Y . If
q(z1) 6= q(z2), then qY (z1) and qY (z2) belongs to disjoint open subsets of the form
qY (ΩS,S) since F contains a basis of the topology of X. Now, if q(z1) = q(z2),
there exists S, S′ ∈ F and n such that z1, z2 ∈ ΩS,S′ and gn,S,S′(z1) 6= gn,S,S′(z2). It
follows that g̃n,S,S′(qY (z1)) 6= g̃n,S,S′(qY (z2)) and therefore qY (z1) and qY (z2) have
disjoint neighborhoods. Therefore, Y is Hausdorff. Since Z is second countable
and qY is open, we see that Y is second countable.

The map p is proper and Y is locally compact. Let K be a compact subset of
X. Then p−1(K) = qY (q

−1(K)). Since q is proper, q−1(K) is compact for the
initial topology and therefore qY (q

−1(K)) is compact. It follows that Y is locally
compact, because p is a continuous proper map onto the locally compact space X.

We also see that qY is proper when Z is endowed with its initial topology, since
we have

q−1
Y (K) ⊂ q−1

Y (p−1(p(K))) = q−1(p(K)),

for every compact subset K of Y .

The groupoid G acts continuously on (Y, p). First, if z1 ∼ z2, we check that for γ
such that s(γ) = q(z1) then γz1 ∼ γz2. Of course, we have q(γz1) = r(γ) = q(γz2).
If S, S′ ∈ F are such that r(γ) ∈ S−1 · (r(S) ∩ r(S′)), we have to verify that
gn,S,S′)(γz1) = gn,S,S′(γz2), that is,

gn(Sγz1, r
−1
S′ (q(Sγz1))) = gn(Sγz1, r

−1
S′ (q(Sγz2))).

Let T ∈ F such that γ ∈ T . Then gn,S,S′)(γz1) = gn,ST,S′(z1) and similarly for z2.
Since ST ∈ F we get the wanted equality.

Now, we set γqY (z) = qY (γz) if s(γ) = q(z) = p(qY (z)). We have to show that
the map (z, γ) 7→ qY (γz) is continuous from Zq∗sG into Y , when Z is equipped with
the topology T . We check the continuity in (z0, γ0). We consider a neighborhood
of γ0z0 of the form

{
z ∈ ΩS,S′ :

∣∣gn,S,S′(z)− gn,S,S′(γ0z0)
∣∣ ≤ ε

}
.

Such a neighborhood is denoted by V (n, S, S′, ε; γ0z0). We note that the finite
intersections of such V (n, S, S′, ε; γ0z0) with r(γ0) ∈ S−1 ·

(
r(S) ∩ r(S′)

)
form a

basis of neighborhoods of γ0z0. Let T be an open bisection which contains γ0.
Then if (z, γ) ∈ V (n, ST, S′, ε; z0) q∗s T we have

∣∣gn,S,S′(γz)− gn,S,S′(γ0z0)
∣∣ =

∣∣gn,ST,S′(z)− gn,ST,S′(z0)
∣∣ ≤ ε.

This proves the continuity of the action.

The action of G on Y is amenable. For (qY (z), γ) ∈ Y ⋊G we set g̃n(qY (z), γ) =
gn(z, γ). This is well defined. Indeed, let z1 ∼ z2. Let S ∈ B such that q(z1) ∈ S
and let S′ be an open bisection containing γ. Then

gn(z1, γ) = gn,S,S′(z1) = gn,S,S′(z2) = gn(z2, γ).
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It is now straightforward to see that (g̃n) is a sequence in C(Y ⋊G) which satisfies
the appropriate version of the above conditions (a), (b) and (c). �

3.2. Invariance under equivalence. We are now going to show that amenability
at infinity is invariant under equivalence of groupoids. We first recall this notion
of equivalence of groupoids. Let G be a locally compact groupoid and (Z, q) a left

G-space. We say that the action is free if γz = z implies that γ ∈ G(0). We say
that it is proper if the map from G s ∗q Z to Z × Z given by (γ, z) 7→ (γz, z) is
proper. We say that (Z, q) is a principal G-space if the action is free and proper.
Similarly, one defines principal right G-spaces.

Definition 3.9. Let G and H be two locally compact groupoids. We say that a
locally compact space Z is a G-H-equivalence if

(a) Z is a left principal G-space whose momentum qG : Z → G(0) is open;

(b) Z is a right principal H-space whose momentum qH : Z → H(0) is open;
(c) the G and H actions commute;

(d) the map qG induces a homeomorphism from Z/H onto G(0);

(e) the map qH induces a homeomorphism from G \ Z onto H(0).

We say that G and H are equivalent if there exists a G-H-equivalence.

Proposition 3.10. Let G and H be two equivalent locally compact groupoids. As-
sume that H is amenable at infinity. Then G is also amenable at infinity.

Proof. We keep the notation of Definition 3.9. Let Y be an amenable left H-space
such that the the momentum map p : Y → H(0) is proper. We set

W = {(z, y) ∈ Z × Y : qH(z) = p(y)}.

Then H acts to the right on W by (z, y)γ = (zγ, γ−1y) and this action is proper.
It follows that the orbit space, denoted Z ∗H Y , is locally compact. We denote by
l : W → Z ∗H Y the quotient map.

Now, we define a continuous left action of the groupoid G on Z ∗H Y as follows.
The momentum map q : Z ∗H Y → G(0) is q : l(z, y) 7→ qG(z) and, for γ ∈ G such
that s(γ) = qG(z), we set

γl(z, y) = l(γz, y).

Obviously, these maps are well defined. Let us check that q is proper. Let K be a
compact subset of G(0). Then we have

{(z, y) ∈W : qG(z) ∈ K} ⊂ q−1
G (K)× p−1

(
qH(q

−1
G (K))

)
.

It follows that t : (z, y) ∈W 7→ qG(z) is proper since qG and p are proper and that
q is also proper since q−1(K) = l(t−1(K)).

To end the proof, it remains to show that the groupoids G′ = (Z ∗H Y )⋊ G and
H′ = Y ⋊ H are equivalent, because amenability is invariant under equivalence
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[2, Theorem 2.2.17]. The equivalence is defined via the locally compact space W ,
with momentum maps qG′ = l and qH′ : (z, y) 7→ y. The left and right actions of
G′ and H′ are respectively defined by

(
γl(z, y), γ

)
(z, y) = (γz, y), for

(
γl(z, y), γ

)
∈ G′, (z, y) ∈W,

and
(z, y)(y, γ) = (zγ, γ−1y), for (z, y) ∈W, (y, γ) ∈ H′.

Let us show that qH′ is open. Let ΩZ and ΩY be open subsets of Z and Y
respectively. Then

qH′

(
(ΩZ ×ΩY ) ∩W

)
= p−1

(
qH(ΩZ)

)
∩ ΩY

is open since qH is open. To show that qG′ = l is open, we observe that, given an
open subset Ω of W we have

l−1
(
l(Ω)

)
=

{
ωγ : ω ∈ Ω, γ ∈ r−1

(
q(ω)

)}
= s

(
r−1(Ω)

)

where s, r are here the source and range maps respectively of the groupoidW ⋊H.

The other conditions insuring that W is a G′-H′-equivalence are easily esta-
blished. �

Remark 3.11. Assume that in the previous proposition the groupoid H is strongly
amenable at infinity and that the G-H-equivalence is such that there exists a
continuous map σG : G(0) → Z such that qG ◦ σG(x) = x for all x ∈ G(0). Then G
is also strongly amenable at infinity. Indeed, keeping the notation of the proof of
Proposition 3.10, it suffices to show that q : Z ∗HY → G0 has a continuous section.
Let σY be continuous section for p : Y → H(0). Then we set

σ(x) = l
(
σG(x), σY

(
qH(σG(x))

))
.

Obviously, σ is a continuous section for q.

3.3. A characterization of strong amenability at infinity. Let G be an étale
groupoid. It is strongly amenable at infinity if and only if the semi-direct product
groupoid βrG ⋊ G is amenable. This can be defined in terms of positive definite
functions as recalled in Proposition 2.3. We are going to provide a characterization
where the obscure space βrG does not occur. To that end we introduce the dense
open subspace

G ∗r G = {(γ, γ1) ∈ G × G : r(γ) = r(γ1)}

of βrG ⋊ G. For simplicity, we shall use the notation q instead of rβ : βrG → X =

G(0). We recall that the restriction of q to G is the range map r.

For f ∈ Cc(βrG ⋊ G), we denote by ρ(f) its restriction to G ∗r G. Let us observe
that the support of f is contained in q−1(r(K)) ∗rK

e for some compact subset K
of G.

eIf A ⊂ βrG and B ⊂ G, we write A ∗r B instead of A q∗r B.
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Lemma 3.12. Let G be an étale groupoid. Let h be a bounded continuous function
on G ∗r G with support in r−1(r(K)) ∗r K for some compact subset K of G. Then
h extends continuously to an element H of Cc(βrG ⋊ G).

Proof. Let K ⊂ ∪n
i=1Si be a covering of K by a finite number of open bisections,

and let ψi, i = 1, . . . , n, be continuous non-negative functions on G, the support of

ψi being compact and contained in Si, such that
∑

i=1,...,n

ψi(γ) = 1 if γ ∈ K. We

shall denote by Si,r(γ) the unique element γ′ of Si such that r(γ′) = r(γ) whenever
r(γ) ∈ r(Si). Then Si,r is a continuous map from r−1

(
r(Si)

)
onto Si.

For i = 1, . . . , n, we define a continuous function ki on G as follows:

ki(γ) = h(γ, Si,r(γ))
√
ψi(Si,r(γ)) if r(γ) ∈ r(Si)

= 0 otherwise.

Note that ki is a continuous bounded function on G supported in r−1(r(Supp(ψi)).
Thus ki extends to an element of C0(βrG), still denoted by ki, whose support is
compact, since it is contained into q−1(r(Supp(ψi)).

For (z, γ) ∈ βrG ⋊ G, let us set

H(z, γ) =

n∑

i=1

ki(z)
√
ψi(γ).

Obviously, H is a continuous function on βrG ⋊ G with compact support, and for
(γ, γ1) ∈ G ∗r G we have

H(γ, γ1) =
n∑

i=1

ki(γ)
√
ψi(γ1)

=
n∑

i=1

h(γ, Si,r(γ))
√
ψi(Si,r(γ))

√
ψi(γ1).

Since γ1 = Si,r(γ) for every i such that γ1 ∈ Si it follows that

H(γ, γ1) =

n∑

i=1

h(γ, γ1)ψi(γ1) = h(γ, γ1).

�

Definition 3.13. et G be a locally compact groupoid. We say that a function
k : G ∗r G → C is a positive definite kernel if for every x ∈ X, n ∈ N and
γ1, . . . , γn ∈ Gx, the matrix [k(γi, γj)] is non-negative, that is

n∑

i,j=1

αiαjk(γi, γj) ≥ 0
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for α1, . . . , αn ∈ C.

Definition 3.14. Let G be a locally compact groupoid. A tube is a subset of G∗rG
whose image by the map (γ, γ1) 7→ γ−1γ1 is relatively compact in G.

We denote by Ct(G ∗r G) the space of continuous bounded functions on G ∗r G
with support in a tube.

We define a linear bijection from Cb(G ∗r G) onto itself by setting

θ(f)(γ, γ1) = f(γ−1, γ−1γ1).

Note that θ = θ−1.

Theorem 3.15. Let G be an étale groupoid.

(i) The map Θ : f 7→ θ(ρ(f)) is a linear bijection from Cc(βrG ⋊ G) onto
Ct(G ∗r G).

(ii) The map Θ induces a bijection between the space of continuous positive
definite functions with compact support on the groupoid βrG ⋊ G and the
space of continuous positive definite kernels contained in Ct(G ∗r G).

Proof. Let us prove (i). We observe that h ∈ Ct(G ∗r G) if and only if there exists a
compact subsetK of G such that the support of θ(h) is contained in r−1(r(K))∗rK.
Let f ∈ Cc(βrG⋊G). Then its support is contained in some q−1(r(K)) ∗rK where
K is a compact subset G and therefore we have ρ(f) ∈ θ(Ct(G ∗r G)). Moreover, ρ
is injective since G ∗r G is dense into βrG ⋊ G. Thus Θ is injective. Its surjectivity
follows from the previous lemma.

(ii) Assume that f ∈ Cc(βrG ⋊ G) is positive definite, that is, for every z ∈ βrG,
n ∈ N and γ1, . . . , γn ∈ Gq(z), the matrix [f(γ−1

i z, γ−1
i γj)] is non-negative. Observe

that Θ(f)(γi, γj) = f(γ−1
i , γ−1

i γj) and so, by taking z = r(γi) ∈ G(0) ⊂ G ⊂ βrG,
we get the non-negativity of [Θ(f)(γi, γj)].

Conversely, assume that the kernel Θ(f) is positive definite. Let z ∈ βrG and

γ1, . . . , γn ∈ Gq(z) as above. Let (zα) be a net in G such that lim zα = z. For each
i we choose an open bisection Si in G with γi ∈ Si and for α large enough we set
γi,α = r−1

Si
(r(zα)). Given λ1, . . . , λn ∈ C, we have

∑
λiλjf(γ

−1
i,αzα, γ

−1
i,αγj,α) =

∑
λiλjΘ(f)(γ̃i,α, γ̃j,α) ≥ 0,

where we have set γ̃i,α = z−1
α γi,α. The fact that

∑
λiλjf(γ

−1
i z, γ−1

i γj) ≥ 0 is
obtained by passing to the limit. �

Theorem 3.16. Let G be an étale groupoid. The following conditions are equiva-
lent:

(i) G is strongly amenable at infinity;
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(ii) there exists a net (ki)i∈I of bounded positive definite continuous kernels on
G ∗r G supported in tubes such that limi ki = 1 uniformly on tubes.

Proof. By Proposition 2.2, the groupoid βrG ⋊ G is amenable if and only if there
exists a net (hi)i∈I of continuous positive definite functions in Cc(βrG ⋊ G) such
that limi hi = 1 uniformly on every compact subset of βrG ⋊ G.

Therefore, to prove the theorem we just have to check that limi hi = 1 uniformly
on every compact subset of βrG ⋊ G if and only if limi ki = 1 uniformly on tubes
where we set ki = Θ(hi). First, given a compact subset K of G, if i is such that
|hi(z, γ) − 1| ≤ ε on the compact set q−1(r(K))∗rK, then we have |ki(γ1, γ2)− 1| ≤
ε whenever γ−1

1 γ2 ∈ K. Conversely, let K be a compact subset of G and let Ω
be an open relatively compact subset of G containing K. Let i be such that
|ki(γ1, γ2)− 1| ≤ ε whenever γ−1

1 γ2 ∈ Ω. Then we have |hi(γ, γ
′)− 1| ≤ ε for

(γ, γ′) ∈ G ∗r Ω. Since G ∗r Ω is dense in βrG q∗r Ω, we get |hi(z, γ
′)− 1| ≤ ε for

(z, γ′) ∈ βrG ∗r K. To conclude, we observe that every compact subset of βrG ⋊ G
is contained in such a subset βrG ∗r K. �

Remark 3.17. This theorem can be used to show that strongly amenable at infinity
étale groupoids are uniformly embeddable in continuous fields of Hilbert spaces.

3.4. Examples induced by locally proper homomorphisms.

Definition 3.18. Let ρ : G → H be a continuous homomorphism (also called
cocycle) between locally compact groupoids. We denote by ψ the map γ 7→
(r(γ), ρ(γ), s(γ) from G into G(0) × H × G(0). We say that ρ locally proper is ψ
is proper or, equivalently, if for every compact subset K of G, the restriction of ρ
to the reduction G(K) of G by K is proper. Following [30, 61], we say that ρ is
faithful if ψ is injective.

Note that a continuous homomorphism is faithful and locally proper if and only
if the map ψ is faithful and closed.

Examples 3.19. (a) If G is a closed subgroupoid of H, then the inclusion map is
faithful and locally proper.

(b) Let E be a locally compact subset of H(0) such that the reduction H(E) is
a locally compact subgroupoid of H (i.e., the range map of H(E) is open). Then
the inclusion map from H(E) into H faithful and locally proper. Indeed, it suffices
to observe that if K is a compact subset of E, then H(E)(K) = H(K).

(c) If Y is a H-space, the obvious homomorphism from Y ⋊H → H is faithful
and locally proper.

Proposition 3.20. Let G and H be locally compact groupoids. Assume that there
exists a continuous, faithful and locally proper homomorphism ρ : G → H.
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(i) The groupoid G is equivalent to a semi-direct product groupoid Y ⋊H via

an equivalence Z such that there exists a continuous section σ : G(0) → Z
of qG : Z → G(0).

(ii) If H is amenable (resp. strongly amenable) at infinity then G is amenable
(resp. strongly amenable) at infinity.

Proof. We follow the arguments of the proof of [30, Theorem 1.8] (see also [61]).

We set X = G(0) and we underline the elements of H in order to distinguish them
from the elements of G. We set Z =

{
(x, γ) ∈ X ×H : ρ(x) = r(γ)

}
. The groupoid

G acts to the left on Z by

γ(s(γ), γ) = (r(γ), ρ(γ)γ).

This action is free and proper exactly when ρ is faithful and locally proper. We
set Y = G \ Z. It is a locally compact space, since the G-action is proper.

The groupoid H acts to the right on Z by (x, γ)γ′ = (x, γγ′). Obviously, this
action is free and proper. It follows that Z is a G-(Y ⋊H) equivalence. Observe that

the momentum map qG : Z → G(0) admits the continuous section x 7→ (x, ρ(x)).
Then, the conclusion follows from Proposition 3.10, Remark 3.11 and Proposition
3.6 (i). �

For étale groupoids, we have the following stronger result.

Proposition 3.21. Let G be an étale groupoid. Assume that there exists a locally
proper continuous homomorphism ρ from G into a strongly amenable at infinity
étale groupoid H. Then G is strongly amenable at infinity.

Proof. Let (ki)i∈I be a net of kernels on H∗r H satisfying the condition (ii) of the

theorem 3.16 and let (ϕj)j∈J be a net of continuous functions ϕj : G(0) → [0, 1]

with compact support and such that for every compact subset K of G(0) there
exists j0 for which ϕj(x) = 1 if x ∈ K and j ≥ j0. For (γ1, γ2) ∈ G ∗r G, we set

hi,j(γ1, γ2) = ϕj(s(γ1))ϕj(s(γ1))ki(ρ(γ1), ρ(γ2)).

Then (hi,j)(i,j)∈I×J is a net of kernels satisfying the condition (ii) of the theorem
3.16. �

Corollary 3.22. Let G be an étale groupoid such that there exists a locally proper
continuous homomorphism ρ from G into a countable exact discrete group G. Then
G is strongly amenable at infinity.

Proof. This follows from the fact that one of the equivalent definitions of exactness
for a discrete group is (strong) amenability at infinity. �
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4. Weakly inner amenable groupoids

We shall use in Section 7 another kind of amenability. Since for locally compact
groups it is weaker than inner amenability, we shall call it weak inner amenabilityf.

Let us first recall some facts about inner amenability. Let G be a locally compact
group, λ its left regular representation and ρ its right regular representation. These
representations act in the Hilbert space L2(G) of square integrable functions. For
ξ ∈ L2(G) and s, y ∈ G, we have

(λsξ)(y) = ξ(s−1y), (ρsξ)(y) = ∆(s)1/2ξ(ys)

where ∆ is the modular function of G.

Following [54, page 84], we say that G is inner amenable if there exists an inner
invariant mean on L∞(G), that is, a state m such that m(sfs−1) = m(f) for every
f ∈ L∞(G) and s ∈ G, where (sfs−1)(y) = f(s−1ys). This is equivalent to the
existence of a net (ξi) in Cc(G) such that ‖ξi‖2 = 1 and 〈ξi, λsρsξi〉 goes to one
uniformly on compact subsets of G (see [45]).

Amenable groups are inner amenable. Every discrete group G is inner amenable
in this sense, since the Dirac measure δe is an inner invariant meang. On the other
hand, inner amenable connected groups are amenable [45].

Let G be a locally compact group and let (ξi) be a net of elements of Cc(G)
satisfying the above condition. Let us define fi on G×G by

fi(s, t) = 〈ξi, λsρtξi〉.

Then fi is a positive definite function on the product group G × G. For each
compact subset K of G, the intersections with K × G and with G × K of the
support of fi are compact. Moreover, limi fi = 1 uniformly on the diagonal.

To extend these properties to locally compact groupoids, we introduce the fol-
lowing definitions.

Definition 4.1. Let G be a locally compact groupoid. Following [64, Definition
2.1], we say that a closed subset A of G × G is proper if for every compact subset
K of G, the sets (K×G)∩A and (G ×K)∩A are compact. We say that a function
f : G × G → C is properly supported if its support is proper.

Given a groupoid G, let us observe that the product G × G has an obvious
structure of groupoid, with X × X as set of units, where X = G(0). Observe
that a map f : G × G → C is positive definite if and only if, given an integer n,
(x, y) ∈ X×X and γ1, . . . , γn ∈ Gx, η1, . . . , ηn ∈ Gy, the matrix [f(γ−1

i γj, η
−1
i ηj)]i,j

is non-negative.

fThis notion was considered in [3] for transformation groupoids, under the name of Property
(W).

gEffros [16] excludes this trivial inner invariant mean in his definition of inner amenability.
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Definition 4.2. We say that a locally compact groupoid G is weakly inner amenable
if for every compact subset K of G and for every ε > 0 there exists a continuous
bounded positive definite function f on the product groupoid G × G, properly
supported, such that |f(γ, γ)− 1| < ε for all γ ∈ K.

Remark 4.3. (1) Every amenable locally compact groupoid G with Haar system
is weakly inner amenable since the groupoid G × G is amenable and therefore
Proposition 2.2 applies to this groupoid.

(2) Inner amenable locally compact groups are weakly inner amenable. A locally
compact group which is either almost connected or type I is weakly inner amenable
if and only if it is amenable (see [3, Remark 5.10]). We do not know whether there
exist weakly inner amenable groups that are not inner amenable. Such examples
should be sought in the class of totally disconnected locally compact (non discrete)
groups.

Proposition 4.4. Let ρ : G → H be a locally proper continuous homomorphism
between locally compact groupoids. Assume that H is weakly inner amenable. Then
the groupoid G is also weakly inner amenable.

Proof. Let K be a compact subset of G and let ε > 0 be given. We choose a
continuous function ϕ : G(0) → [0, 1] with compact support K ′, such that ϕ(x) = 1
if x ∈ r(K) ∪ s(K). Let f : H × H → C be a continuous bounded positive
definite function f on the product groupoid H×H, properly supported, such that
|f(γ, γ)−1| < ε for all γ ∈ ρ(K). We define a positive definite function F on G×G
by

F (γ1, γ2) = ϕ ◦ r(γ1)ϕ ◦ s(γ1)f(ρ(γ1), ρ(γ2))ϕ ◦ r(γ2)ϕ ◦ s(γ2).

We have obviously |F (γ, γ)− 1| < ε if γ ∈ K. Let us check that F is properly
supported. We denote by SF and Sf the supports of F and f respectively. We fix
a compact subset K1 of G. Let C be a compact subset of H such that

(ρ(K1)×H) ∩ Sf ⊂ C × C.

Then
(
K1 × G

)
∩ SF is contained into

(
ρ−1(C) ∩ G(K ′)

)
×

(
ρ−1(C) ∩ G(K ′)

)
and

therefore is compact. The case of
(
G ×K1) ∩ SF is similar. �

Applying this result to the examples given in 3.19 we obtain the following corol-
laries.

Corollary 4.5. Let H be a weakly inner amenable locally compact groupoid.

(i) Every closed subgroupoid of H is weakly inner amenable.

(ii) Let E be a locally compact subset of H(0) such that the reduced groupoid
H(E) is a subgroupoid. Then H(E) is weakly inner amenable.
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Corollary 4.6. Let H be a weakly inner amenable locally compact groupoid and
(Y, p) a G-space. Then the semi-direct product groupoid Y ⋊ H is weakly inner
amenable.

Remark 4.7. In particular, we see that if G is weakly inner amenable, all its isotropy
subgroups must be amenable whenever they are connected. We do not know
whether every étale groupoid is weakly inner amenable.

5. Groupoids and C∗-algebras

5.1. Full, reduced and uniform C∗-algebras. Let (G, λ) be a locally compact

groupoid with a Haar system λ. We set X = G(0). The space Cc(G) is an involutive
algebra with respect to the following operations for f, g ∈ Cc(G):

(f ∗ g)(γ) =

∫
f(γ1)g(γ

−1
1 γ)dλr(γ)(γ1)

f∗(γ) = f(γ−1).

We define a norm on Cc(G) by

‖f‖1 = max

{
sup
x∈X

∫
|f(γ)| dλx(γ), sup

x∈X

∫ ∣∣f(γ−1)
∣∣dλx(γ)

}
.

The full C∗-algebra C∗(G) of the groupoid (G, λ) is the enveloping C∗-algebra of
the Banach ∗-algebra obtained by completion of Cc(G) with respect to the norm
‖·‖1.

For the notion of Hilbert C∗-module H over a C∗-algebra A (or Hilbert A-
module) that we use in the sequel, we refer to [38]. We shall denote by BA(H) the
C∗-algebra of A-linear adjointable maps from H into itself.

Let E be the Hilbert C∗-moduleh L2
C0(X)(G, λ) over C0(X) obtained by comple-

tion of Cc(G) with respect to the C0(X)-valued inner product

〈ξ, η〉(x) =

∫

Gx

ξ(γ)η(γ) dλx(γ).

The C0(X)-module structure is given by

(ξf)(γ) = ξ(γ)f ◦ r(γ).

Let us observe that L2
C0(X)(G, λ) is the space of continuous sections vanishing at

infinity of a continuous field of Hilbert spaces with fibre L2(Gx, λx) at x ∈ X.

We let Cc(G) act on E by the formula

(Λ(f)ξ)(γ) =

∫
f(γ−1γ1)ξ(γ1) dλ

r(γ)(γ1).

hWhen G is étale, we shall use the notation ℓ2C0(X)(G) rather than L2
C0(X)(G, λ)
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Then, Λ extends to a representation of C∗(G) in the Hilbert C0(X)-module E ,
called the regular representation of (G, λ). Its range is denoted by C∗

r (G) and
called the reduced C∗-algebraiof the groupoid G. Note that Λ(C∗(G)) acts fibrewise
on the corresponding continuous field of Hilbert spaces with fibres L2(Gx, λx) by
the formula

(Λx(f)ξ)(γ) =

∫

Gx

f(γ−1γ1)ξ(γ1) dλ
x(γ1)

for f ∈ Cc(G) and ξ ∈ L
2(Gx, λx). Moreover, we have ‖Λ(f)‖ = supx∈X ‖Λx(f)‖.

We now introduce a third C∗-algebra associated with a groupoid, which extends
the notion of uniform Roe algebra associated with a countable discrete group [64].
Recall that Ct(G ∗r G) denotes the space of continuous bounded functions on G ∗r G
with support in a tube. We define on Ct(G ∗r G) the following operations:

(f ∗ g)(γ, γ′) =

∫
f(γ, γ1)g(γ1, γ

′) dλr(γ)(γ1)

f∗(γ, γ′) = f(γ′, γ),

which make Ct(G ∗r G) a ∗-algebra.

For f ∈ Ct(G ∗r G) and ξ ∈ E , we set

(T (f)ξ)(γ) =

∫
f(γ, γ1)ξ(γ1) dλ

r(γ)(γ1).

Then T is a ∗-homomorphism from Ct(G ∗r G) into BC0(X)(E).

Definition 5.1. The uniform C∗-algebra of G is the C∗-subalgebra C∗
u(G) of

BC0(X)(E) generated by the operators T (f) associated with the bounded continuous
kernels supported in tubes.

Our goal is now to prove that the C∗-algebras C∗
u(G) and C∗

r (βrG ⋊ G) are
canonically isomorphic when G is an étale groupoid. We keep the notation of
Theorem 3.15. Recall that we have set q = rβ : βrG → X. We shall have to apply
the definition of the reduced C∗-algebra to the groupoid βrG⋊G. It is represented
by Λ′ in the Hilbert C0(βrG)-module E ′ which is the completion of Cc(βrG ⋊ G)
with respect to the inner product

〈ξ, η〉(z) =

∫
ξ(z, γ)η(z, γ) dλq(z)(γ).

Lemma 5.2. Let G be an étale groupoid.

iVery often, the Hilbert C0(X)-module L2
C0(X)(G, λ

−1) is considered in order to define the

reduced C∗-algebra (see for instance [30, 31]). We pass to this setting to ours (which we think more
convenient for our purpose) by considering the isomorphism U : L2

C0(X)(G, λ
−1) → L2

C0(X)(G, λ)

such that (Uξ)(γ) = ξ(γ−1).
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(i) The ∗-algebra Cc(G) is canonically embedded into the ∗-algebras Cc(βrG⋊G)
and Ct(G ∗r G) (via ∗-homomorphisms).

(ii) These embeddings extend into embeddings of C∗
r (G) into C

∗
r (βrG ⋊ G) and

C∗
u(G).

(iii) The map Θ : f 7→ θ(ρ(f)) is an isomorphism of ∗-algebras from Cc(βrG⋊G)
onto Ct(G ∗r G) which preserves the above mentioned embeddings of Cc(G).

Proof. (i) The embedding from Cc(G) into Cc(βrG⋊G) is given by f 7→ f ◦π where
π : βrG ⋊ G → G is the second projection, which is proper. We embed Cc(G) into
Ct(G ∗r G) by sending f ∈ Cc(G) onto f̃ such that f̃(γ, γ1) = f(γ−1γ1).

(ii) For f ∈ Cc(G), we have ‖Λ′(f ◦ π)‖ = supz∈βrG ‖Λ
′
z(f ◦ π)‖ with

(
Λ′
z(f ◦ π)ξ

)
(z, γ) =

∫
f(γ−1γ1)ξ(z, γ1) dλ

q(z)(γ1).

Observe that ξ ∈ ℓ2((βrG ⋊ G)z) can be identified to the element γ 7→ ξ(z, γ) of

ℓ2(Gq(z)). It follows that ‖Λ′
z(f ◦ π)‖ =

∥∥Λq(z)(f)
∥∥ and so ‖Λ′(f ◦ π)‖ = ‖Λ(f)‖.

The second assertion of (ii) is immediate.

Taking into account Theorem 3.15, straightforward computations prove (iii). �

Theorem 5.3. Let G be an étale groupoid. The map Λ′(f) 7→ T (Θ(f)) defined on
Λ′(Cc(βrG⋊G) extends to an isomorphim from C∗

r (βrG⋊ G) onto C∗
u(G), which is

the identity on C∗
r (G).

Proof. Let Φ be the faithful non-degenerate homomorphism from C0(βrG) into
BC0(X)(E) defined by

Φ(f)ξ(γ) = f(γ−1)ξ(γ).

The relative (or interior) tensor product

H = E ′ ⊗C0(βrG) E ,

is a Hilbert C0(X)-module (see [38]) whose C0(X)-inner product is defined, for
ξ, ξ′ ∈ Cc(βrG ⋊ G) and η, η′ ∈ Cc(G), by

〈
ξ ⊗ η, ξ′ ⊗ η′

〉
(x) =

∫

Gx

η(γ)
〈
ξ, ξ′

〉
(γ−1)η′(γ) dλx(γ)

=

∫

Gx

η(γ)η′(γ)
( ∫

ξ(γ−1, γ1)ξ
′(γ−1, γ1) dλ

s(γ)(γ1)
)
dλx(γ).

We shall first check that H is isomorphic to the Hilbert C0(X)-module

H̃ = L2
C0(X)(G ∗r G, λ⊗ λ)
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which is defined as the completion of Cc(G ∗r G) with respect to the C0(X)-valued
inner product

〈
ξ, ξ′

〉
(x) =

∫
ξ(γ, γ1)ξ

′(γ, γ1) dλ
x(γ) dλx(γ1).

The C0(X)-module structure is defined by

(ξf)(γ, γ1) = ξ(γ, γ1)f ◦ r(γ).

For ξ ∈ Cc(βrG ⋊ G) and η ∈ Cc(G) we set
(
W (ξ ⊗ η)

)
(γ1, γ2) = ξ(γ−1

2 , γ−1
2 γ1)η(γ2).

We have W (ξ ⊗ η) ∈ Cc(G ∗r G). A straightforward computation shows that W

extends to an isomorphism of Hilbert C0(X)-module from H onto H̃.

We also observe that the map from Cc(G) × Cc(G) into Cc(G ∗r G) sending (ξ, η)
to (γ, γ1) ∈ G ∗r G → ξ(γ)η(γ1) defines an isomorphism of Hilbert C0(X)-module

from E ⊗C0(X) E onto H̃. We identify these two Hilbert C0(X)-modules.

For f ∈ Cc(βrG ⋊ G), we claim that

W ◦ (Λ′(f)⊗ Id E) =
(
T (Θ(f))⊗ Id E

)
◦W.

This will imply that Λ′(f) 7→ T (Θ(f)) is isometric and thus extends to an iso-
morphism of the completions. This isomorphism will be the identity on C∗

r (G) by
Lemma 5.2 (iii). Let us prove our claim. Given ξ ∈ Cc(βrG⋊G) and η ∈ Cc(G), we
have

W ◦ (Λ′(f)⊗ Id )(ξ ⊗ η)(γ1, γ2) =
(
Λ′(f)ξ

)
(γ−1

2 , γ−1
2 γ1)η(γ2)

=
( ∫

f
(
(γ−1

1 , γ−1
1 γ2)(γ

−1
2 , γ)

)
ξ(γ−1

2 , γ) dλs(γ2)(γ)
)
η(γ2)

=
( ∫

f(γ−1
1 , γ−1

1 γ2γ)ξ(γ
−1
2 , γ) dλs(γ2)(γ)

)
η(γ2)

=
( ∫

f(γ−1
1 , γ−1

1 γ)ξ(γ−1
2 , γ−1

2 γ) dλr(γ2)(γ)
)
η(γ2).

On the other hand, we have
((
T (Θ(f))⊗ Id E

)
◦W

)
(ξ ⊗ η)(γ1, γ2) =

∫
Θ(f)(γ1, γ)

(
W (ξ ⊗ η)

)
(γ, γ2) dλ

r(γ2)(γ)

=

∫
f(γ−1

1 , γ−1
1 γ)ξ(γ−1

2 , γ−1
2 γ)η(γ2) dλ

r(γ2)(γ),

and so our claim is proved.

�
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5.2. Groupoid actions on C∗-algebras and crossed products.

Definition 5.4. Let X be a locally compact space. A C0(X)-algebra is a C∗-
algebra A equipped with a ∗-homomorphism ρ from C0(X) into the centre of the
multiplier algebra of A which is non-degenerate in the sense that there exists an
approximate unit (uλ) of C0(X) such that limλ ρ(uλ)a = a for every a ∈ A.

Given f ∈ C0(X) and a ∈ A, for simplicity we shall write fa instead of ρ(f)a.

We begin by recalling some facts and definitions that are mostly borrowed from
[41, 31]. Let U be an open subset ofX and F = X\U . We view C0(U) as an ideal of
C0(X) and we denote by C0(U)A the closed linear span of {fa : f ∈ C0(U), a ∈ A}.
It is a closed ideal of A and in fact, we have C0(U)A = {fa : f ∈ C0(U), a ∈ A}
(see [9, Corollaire 3.9]). We set AF = A/C0(U)A and whenever F = {x} we write
Cx(X) instead of C0(X \ {x}) and Ax instead of A{x}. We denote by ex : A→ Ax

the quotient map and for a ∈ A we set a(x) = ex(a). Recall that the map
a 7→ (a(x))x∈X from A into

∏
x∈X Ax is injective and that x 7→ ‖a(x)‖ is upper

semi-continuous (see [63]).

Let A and B be two C0(X)-algebras. A morphism α : A→ B of C0(X)-algebras
is a morphism of C∗-algebras which is C0(X)-linear, that is, α(fa) = fα(a) for
f ∈ C0(X) and a ∈ A. For x ∈ X, in this case α factors through a morphism
αx : Ax → Bx such that αx(a(x)) = α(a)(x).

Let X,Y be two locally compact spaces and p : Y → X a continuous map. Then
C0(Y ) has an obvious structure of C0(X)-algebra: for f ∈ C0(X) and g ∈ C0(Y ) we
set

(
ρ(f)g

)
(y) = f ◦ p(y)g(y).

Let A be a C0(X)-algebra. Then A ⊗ C0(Y ) is a C0(X × Y )-algebra. We set
F = {(p(y), y) : y ∈ Y }. It is a closed subset ofX×Y . We put p∗A =

(
A⊗C0(Y )

)
F
.

With its natural structure of C0(Y )-algebra, p∗A is called the pull-back of A via p.
Let us observe that

(
p∗A

)
y
= Ap(y).

Let α : A→ B be a morphism of C0(X)-algebras. Then

α⊗ Id : A⊗ C0(Y ) → B ⊗ C0(Y )

passes to the quotient and defines a morphism of C0(Y )-algebras p∗α : p∗A→ p∗B.

Definition 5.5. ([41]) Let (G, λ) be a locally compact groupoid with a Haar system

and X = G(0). An action of G on a C∗-algebra A is given by a structure of C0(X)-
algebra on A and an isomorphism α : s∗A → r∗A of C0(G)-algebras such that for

every (γ1, γ2) ∈ G(2) we have αγ1γ2 = αγ1αγ2 , where αγ : As(γ) → Ar(γ) is the
isomorphism deduced from α by factorization.

When A is equipped with such an action, we say that A is a G-C∗-algebra.

Let A be a G-C∗-algebra. We set Cc(r
∗(A)) = Cc(G)r

∗(A). It is the space of
the continuous sections with compact support of the upper semi-continuous field
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of C∗-algebras defined by the C0(G)-algebra r
∗A. Then, Cc(G)r

∗(A) is a ∗-algebra
with respect to the following operations:

(f ∗ g)(γ) =

∫
f(γ1)αγ1

(
g(γ−1

1 γ)
)
dλr(γ)(γ1)

and
f∗(γ) = αγ

(
f(γ−1)∗

)

(see [49, Proposition 4.4]). We define a norm on Cc(r
∗(A)) by

‖f‖1 = max

{
sup
x∈X

∫
‖f(γ)‖dλx(γ), sup

x∈X

∫ ∥∥f(γ−1)
∥∥ dλx(γ)

}
.

The full crossed product A⋊G is the enveloping C∗-algebra of the Banach ∗-algebra
obtained by completion of Cc(r

∗(A)) with respect to ‖·‖1.

For x ∈ X, we consider the Hilbert Ax-module L2(Gx, λx) ⊗ Ax. It is the
completion of the space Cc(G

x, Ax) of continuous compactly supported functions
on Gx with values in Ax, with respect to the Ax-valued inner product

〈ξ, η〉 =

∫
ξ(γ)∗η(γ) dλx(γ).

For f ∈ Cc(r
∗(A)) and ξ ∈ Cc(G

x, Ax), we set

Λx(f)ξ(γ) =

∫
αγ

(
f(γ−1γ1)

)
ξ(γ1) dλ

r(γ)(γ1). (2)

Then Λx(f) extends to an element of BAx

(
(L2(Gx, λx)⊗Ax

)
still denoted by Λx(f).

Moreover, Λx is a representation of A ⋊ G. The reduced crossed product A ⋊r G
(also denoted by C∗

r (G, A) in the sequel) is the quotient of A ⋊ G with respect to
the family of representations (Λx)x∈X (see [31, Section 3.6]j).

As explained in [31] this family of representations come from a representation
Λ of A ⋊ G in the Hilbert A-module L2

A(G, λ) which is defined by completion of
the right A-module Cc(r

∗(A)) with respect to the A-valued inner product

〈ξ, η〉(x) =

∫

Gx

ξ(γ)∗η(γ) dλx(γ),

the structure of right A-module being given by (ξa)(γ) = ξ(γ)a ◦ r(γ). We let
Cc(r

∗(A)) act on L2
A(G, λ) by

Λ(f)ξ = f ⊛ ξ,

where (f ⊛ ξ)(γ) =
∫
αγ

(
f(γ−1γ1)

)
ξ(γ1) dλ

r(γ)(γ1).

For x ∈ X, the map sending ξ ⊗ b ∈ L2
A(G, λ) ⊗ex Ax onto

γ ∈ Gx 7→ ξ(γ)b

jAs for the reduced C∗-algebra, we have made a different choice from that in [31] for the
construction of A ⋊r G. However, the constructions are easily seen to be isomorphic.
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induces an isomorphism of Hilbert Ax-modules from L2
A(G, λ) ⊗ex Ax onto

L2(Gx, λx)⊗Ax. Under this identification, Λ(f)⊗ex Id becomes Λx(f). It follows
that Λ extends to a ∗-homomorphism from A ⋊ G into BA(L

2
A(G, λ) with range

isomorphic to A⋊r G.

Lemma 5.6. Let (G, λ) be a locally compact groupoid with Haar system. Let
(Z, qZ) and (Y, qY ) be two G-spaces and let p : Z → Y be a continuous G-equivariant
morphism. Let A be a (Y ⋊ G)-C∗-algebra.

(i) p∗A is in a natural way a (Z ⋊ G)-C∗-algebra.
(ii) If p is proper, then C∗

r (Y ⋊ G, A) embeds canonically into C∗
r (Z ⋊ G, p∗A).

Proof. Let us first observe that Y and Z are (Y ⋊ G)-spaces in an obvious way,

and that, by replacing Y ⋊ G by G, we may assume that Y = G(0) and therefore
p = qZ .

(i) We have to show that p∗A has a natural structure of (Z ⋊ G)-space. Let
us denote for the moment by H the groupoid Z ⋊ G and by s, r its source and
range maps respectively, in order to distinguish them from the source and range
maps s : G → X and r : G → X respectively. Let P : H → G be the groupoid
homomorphism defined by P (z, γ) = γ. We observe that p ◦ s = s ◦ P and that
that p ◦ r = r ◦ P . It follows that

s∗(p∗A) = (p ◦ s)∗A = (s ◦ P )∗A = P ∗(s∗A)

and similarly for r instead of s. Now, the structure of H-algebra on p∗A is defined
by the isomorphism β = P ∗α : P ∗(s∗A) → P ∗(r∗A). Note that

(
P ∗(s∗A)

)
(z,γ)

=

As(γ), that
(
P ∗(r∗A)

)
(z,γ)

= Ar(γ), and that β(z,γ) = αγ . For these facts we refer

to [41].

(ii) Note that since p is proper, the map P is still proper. We define a ∗-
homomorphism Φ from the ∗-algebra Cc(r

∗(A)) into the ∗-algebra

Cc(r
∗p∗A) = Cc(P

∗r∗A)

by f 7→ f ◦ P . We have to show that this map is isometric. We have

‖f‖C∗
r (G,A) = sup

x∈G(0)

‖Λx(f)‖

where Λx(f) acts on the completion L2(Gx, λx)⊗Ax of Cc(G
x, Ax). Now, we observe

that if z ∈ Z is such that p(z) = x, then (Z ⋊ G)z is canonically identified with
Gx and that (p∗A)z = Ax. It follows that L

2(Gx, λx)⊗Ax is canonically identified

with L2((Z ⋊ G)z, λp(z))⊗ (p∗A)z and that Λz(Φ(f)) = Λx(f). This concludes the
proof since ‖Φ(f)‖C∗

r (Z⋊G,p∗A) = supz∈Z ‖Λz(Φ(f))‖.

�
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6. Amenability at infinity versus exactness

6.1. Nuclearity. One of our goals in this section is to show that if G is a second
countable amenable at infinity étale groupoid, then C∗

r (βrG ⋊ G) (or C∗
u(G)) is

nuclear. It is proved in [2, Corollary 6.2.14] that if Y is a second countable G-
space with G étale and second countable, then the groupoid Y ⋊ G is amenable
(i.e., the G-action on Y is amenable) if and only if the C∗-algebra C∗

r (Y ⋊ G)
is nuclear. The proof given there relies heavily on the separability assumption.
Unfortunately, here βrG is not second countable and we have to extend the result
of [2, Corollary 6.2.14] to this case.

Let us first recall the definition of nuclearity.

Definition 6.1. Let Φ : A→ B be a completely positive contraction between two
C∗-algebras. We say that Φ is factorable if there exists an integer n and completely
positive contractions ψ : A→Mn(C), ϕ :Mn(C) → B such that Φ = ϕ ◦ ψ.

We say that Φ is nuclear if there exists a net of factorable completely positive
contractions Φi : A→ B such that

∀a ∈ A, lim
i
‖Φ(a)− Φi(a)‖ = 0.

We say that a C∗-algebra A is nuclear if IdA : A→ A is nuclear.

An equivalent definition of nuclearity for a C∗-algebra A is the fact that, for
every C∗-algebra B there is only one C∗-norm on the algebraic tensor product
A⊙B (see [11, Theorem 3.8.7]).

Proposition 6.2. Let G be a second countable locally compact groupoid with Haar
system and let (Z, q) be a fibrewise compact amenable G-space. Then C∗

r (Z ⋊ G)
is nuclear in either case:

(i) Z is second countable;
(ii) G is étale.

Proof. (i) follows from [2, Corollary 6.2.14], whose proof requires the separability
assumptions. To prove (ii), the only difficulty is that we have no separability
assumption on Z. We denote by F the set of finite subsets of C0(Z), ordered
by inclusion. We shall construct a family (AF )F∈F of nuclear C∗-subalgebras of
C∗
r (Z ⋊ G) such that AF1 ⊂ AF2 when F1 ⊂ F2 and C∗

r (Z ⋊ G) = ∪F∈FAF . Then
C∗
r (Z ⋊ G) will be nuclear by [37].

Construction of AF . We choose a second countable fibrewise compact amenable
G-space (Y, p) and qY : Z → Y as in Lemma 3.8. Recall that p and qY are proper.
We view Y and Z as (Y ⋊ G)-spaces in an obvious way. We denote by BF the
smallest C∗-subalgebra of C0(Z) which contains q∗Y C0(Y ) = {f ◦ qY : f ∈ C0(Y )}
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and F , and is stable under convolution by the elements of Cc(Y ⋊ G). It is a sep-
arable abelian C∗-algebra and therefore its spectrum YF is second countable. Let
qF : Z → YF (resp. pF : YF → Y ) be the continuous surjective map corresponding
to the inclusion BF ⊂ C0(Z) (resp. C0(Y ) ⊂ BF ). Note that pF ◦ qF = qY is a
proper map and therefore pF and qF are proper. Since BF is stable under convo-
lution by the elements of Cc(Y ⋊G), using [4, Proposition 2.9] we see that (YF , pF )
has a unique structure of (Y ⋊ G)-space (or equivalently of G-space) which makes
qF equivariant. By [2, Proposition 2.2.9], the G-space YF is amenable and so, by
[2, Corollary 6.2.14], the C∗-algebra C∗

r (YF ⋊ G) is nuclear.

Since qF is proper, AF = C∗
r (YF ⋊ G) is canonically embedded in C∗

r (Z ⋊ G) by
Lemma 5.6. Moreover, if F1 ⊂ F2 we have AF1 ⊂ AF2 .

Proof of C∗
r (Z ⋊ G) = ∪F∈FAF . It suffices to show that every f ∈ Cc(Z ⋊ G)

belongs to ∪F∈FAF . There exists a compact subset K of G such that the support
of f is contained in q−1(r(K))∗K. Using a finite covering of K by open bisections
and a corresponding partition of units, it suffices to consider the case where K

is contained in an open bisection S. For z ∈ Z, we set f̃(z) = f(z, r−1
S (q(z)) if

z ∈ q−1(r(S)) and f̃(z) = 0 otherwise. Then f̃ ∈ Cc(Z) and therefore belongs to
some Cc(YF ). Let ϕ ∈ Cc(G), with support contained in S and equals to 1 on K.

Then for (z, γ) ∈ Z ⋊ G, we have f(z, γ) = f̃(z)ϕ(γ) ∈ Cc(YF ⋊ G). It follows that
f ∈ AF . �

6.2. Exactness. Let us recall the definition of this notion, which is weaker than
nuclearity.

Definition 6.3. We say that a C∗-algebra A is exact if for every short exact
sequence

0 → J → B → B/J → 0

of C∗-algebras, the following sequence

0 → A⊗ J → A⊗B → A⊗ (B/J) → 0

is exact, where ⊗ denotes the minimal (or spatial) tensor product.

A deep result of Kirchberg states that A is exact if and only if there exists an
Hilbert space H and a nuclear embedding of A into B(H) (or equivalently a nuclear
embedding in some C∗-algebra). In particular, every C∗-subalgebra of a nuclear
C∗-algebra is exact. We refer to [69] for more details relative to these results.

Recall that if (Y, p) is a fibrewise compact G-space, then C∗
r (G) embeds canoni-

cally into C∗
r (Y ⋊ G). As an immediate consequence of Proposition 6.2 we get:

Corollary 6.4. Let G be a second countable étale groupoid and consider the fol-
lowing conditions:

(1) G is strongly amenable to infinity.
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(2) G is amenable to infinity.
(3) C∗

u(G) is nuclear.
(4) C∗

u(G) is exact.
(5) C∗

r (G) is exact.

Then (1) ⇒ (3) ⇒ (4) ⇒ (5) and (1) ⇒ (2) ⇒ (5) .

Definition 6.5. Let G be a locally compact groupoid and A, B two G-C∗-algebras.
A G-equivariant morphism ρ : A → B is a morphism of C0(X)-algebras such that
β ◦ (s∗ρ) = (r∗ρ)◦α, where α and β denote the G-actions on A and B respectively.

Definition 6.6. We say that a locally compact groupoid G with Haar system is
C∗-exact if C∗

r (G) is exact. We say that it is exact in the sense of Kirchberg and
Wassermann (or KW -exact) if for for every G-equivariant exact sequence

0 → I → A→ B → 0

of G-C∗-algebras, the corresponding sequence

0 → C∗
r (G, I) → C∗

r (G, A) → C∗
r (G, B)

of reduced crossed products is exact.

Proposition 6.7. Let G be a second countable locally compact groupoid with Haar
system. Consider the following conditions:

(1) G acts amenably on a second countable fibrewise compact fibre space (for
instance G is étale and amenable at infinity).

(2) G is KW -exact.
(3) C∗

r (G) is exact.

Then (1) ⇒ (2) ⇒ (3).

If moreover G is étale, then (2) ⇒ C∗
u(G) exact ⇒ (3).

Before proceeding to the proof, we need some preliminaries.

Lemma 6.8. Let A be a G-C∗-algebra with G-action α.

(i) Given a ∈ A and ξ ∈ Cc(r
∗(A)), we set (maξ)(γ) = αγ(a(s(γ))ξ(γ). Then

ma extends to an operator Ma ∈ BA(L
2
A(G, λ)).

(ii) Ma is a two-sided multiplier of C∗
r (G, A). More precisely, for f ∈ Cc(r

∗(A))
and a ∈ A we have

Λ(f)Ma = Λ(f · a), where (f · a)(γ) = f(γ)αγ(a(s(γ)),

and

MaΛ(f) = Λ(a · f), where (a · f)(γ) = a(r(γ))f(γ).

(iii) Let (uk) be an approximate unit of A. Then, for f ∈ C∗
r (G, A), we have

lim
k

‖uk · f − f‖C∗
r (G,A) = 0.
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Proof. (i) is obvious.

(ii) Given f, ξ ∈ Cc(r
∗(A)), a ∈ A, we have

(Λ(f)Maξ)(γ) = (f ⊛Maξ)(γ)

=

∫
αγ(f(γ

−1γ1))αγ1(s(γ1))ξ(γ1) dλ
r(γ)(γ1)

=

∫
αγ

(
f(γ−1γ1))αγ−1γ1(s(γ

−1γ1))
)
ξ(γ1) dλ

r(γ)(γ1)

= Λ(f · a)ξ(γ).

Similarly, one shows that MaΛ(f) = Λ(a · f). It follows that Ma is a two-sided
multiplier of C∗

r (G, A).

(iii) It suffices to consider the case where f ∈ Cc(r
∗(A)). We have to show that

limk ‖ukf − f‖C∗
r (G,A) = 0 (where we write ukf instead of uk · f . By [31, Section

3.6], we have

‖ukf − f‖C∗
r (G,A) ≤ ‖ukf − f‖1.

We are going to show that limk ‖ukf − f‖1 = 0. Let K be a compact subset of G
which contains the support of f and let c > 0 be such that

max(sup
x∈X

λx(K), sup
x∈X

λx(K)) ≤ c.

We set c′ = supγ∈G ‖f(γ)‖.

Recall that

(ukf − f)(γ) = uk(r(γ))f(γ)− f(γ) ∈ Ar(γ).

We fix γ ∈ K and choose a ∈ A with a(r(γ)) = f(γ). Given ε′ > 0, there exists
kγ such that

∥∥ukγa− a
∥∥ < ε′. In particular, we have

∥∥ukγ (r(γ))f(γ)− f(γ)
∥∥ < ε′.

Using the upper semi-continuity of the norm, we see that there is a neighborhood
Vγ of γ such that ∥∥ukγ (r(γ′))f(γ′)− f(γ′)

∥∥ ≤ ε′

for γ′ ∈ Vγ .

The compact space K is covered by finitely many such Vγ ’s, that are denoted

Vγi , i = 1, . . . n. Let k be such that
∥∥∥ukukγi − ukγi

∥∥∥ ≤ ε′ for i = 1, . . . n. Take

γ ∈ K and choose Vγi such that γ ∈ Vγi . We have

‖uk(r(γ))f(γ)− f(γ)‖ ≤
∥∥∥uk(r(γ))

(
f(γ)− ukγi (r(γ))f(γ)

)∥∥∥+
∥∥∥
(
uk(r(γ))ukγi (rγ)− ukγi (r(γ))

)
f(γ)

∥∥∥+
∥∥∥ukγi (r(γ)f(γ)− f(γ)

∥∥∥
≤ 2ε′ + ε′c′.



34 Exact groupoids

It follows that supγ∈G ‖(ukf − f)(γ)‖ ≤ 2ε′ + ε′c′ and therefore ‖(ukf − f)‖1 ≤
(2ε′ + ε′c′)c. �

Proof of Proposition 6.7. (1) ⇒ (2) Let Y be an amenable second countable G-
space with p : Y → X = G(0) proper and let

0 → I → A→ B → 0

be an equivariant exact sequence of G-C∗-algebras. Then

0 → p∗I → p∗A→ p∗B → 0

is an equivariant exact sequence of (Y ⋊G)-C∗-algebras. Taking the reduced crossed
products we obtain the commutative diagram

0 → C∗
r (G, I) → C∗

r (G, A) → C∗
r (G, B) → 0

iI ↓ iA ↓ iB ↓

0 → C∗
r (Y ⋊ G, p∗I)) → C∗

r (Y ⋊ G, p∗A) → C∗
r (Y ⋊ G, p∗B) → 0

The vertical arrows were introduced in Lemma 5.6 and shown to be injective,
due to the fact that p is proper. Since Y ⋊ G is second countable and amenable
the reduced crossed products of the second line are also full crossed products [2,
Corollary 6.2.14], and therefore the second line is exact (see [2, Lemma 6.3.2]).

Let us show that the first line is exact in the middle. Assume that a ∈ C∗
r (G, A)

is sent onto 0 ∈ C∗
r (G, B). Then iA(a) belongs to C∗

r (Y ⋊ G, p∗I) due to the
exactness of the second line. This forces a to belong to C∗

r (G, I). Indeed, let (uk)
be a bounded approximate unit of I. Then, by Lemma 6.8, we have

iA(a) = lim
k
iI(uk)iA(a) = lim

k
iA(uka).

Next we observe that uka ∈ C∗
r (G, I). It suffices to consider the case where a ∈

Cc(r
∗A). But then, for γ ∈ G, we have (uka)(γ) = uk(r(γ))a(γ) ∈ Ir(γ) and so, by

[13, Lemma 2.1 (iii)], we see that uka ∈ Cc(r
∗I). Therefore, we have

iA(a) = lim
k
iI(uka) ∈ iI(C

∗
r (G, I))

and we conclude that a ∈ C∗
r (G, I).

(2) ⇒ (3). Let

0 → I → A→ B → 0

be an exact sequence of C∗-algebras. Then

0 → I ⊗ C0(X) → A⊗ C0(X) → B ⊗ C0(X) → 0
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is a G-equivariant exact sequence of G-C∗-algebras. Assuming that (2) holds we
see that

0 → C∗
r (G, I ⊗ C0(X)) → C∗

r (G, A ⊗ C0(X)) → C∗
r (G, B ⊗ C0(X)) → 0

is an exact sequence. Then we have just to observe that it coincides with the
sequence

0 → I ⊗C∗
r (G) → A⊗ C∗

r (G) → B ⊗ C∗
r (G) → 0.

Assume now that G is étale and that (2) holds. Then C∗
u(G) = C∗

r (βrG ⋊ G).
Using [4, Proposition 2.9] as in the proof of Proposition 6.2, we see that there is an
increasing net (AF ) of crossed products AF = C∗

r (YF ⋊G) with each YF separable,
such that C∗

r (βrG ⋊ G) = ∪F∈FAF . Since G is KW-exact, then each AF is exact
and therefore C∗

r (βrG ⋊ G) is exact.

Finally, if C∗
u(G) is exact, then C

∗
r (G), which is contained in C∗

u(G), is exact. �

Remark 6.9. KW-exactness of groupoids has been studied by Lalonde in [35, 36].
In [36], it is proved that equivalence of groupoids preserves KW-exactness. In [35],
it is proved that the reduced crossed product C∗

r (G, A) is exact whenever G is a
KW-exact second countable locally compact groupoid acting on a separable exact
C∗-algebra A.

Remark 6.10. We end this section by stating immediate consequences of amenabil-
ity at infinity and KW-exactness.

Let G be a locally compact groupoid with a Haar system. We say that a subset
E of X = G(0) is invariant if s(γ) ∈ E if and only if r(γ) ∈ E. Let F be a closed
invariant subset of X and set U = X \ F . It is well known that the inclusion
ι : Cc(G(U)) → Cc(G) extends to an injective homomorphism from C∗(G(U)) into
C∗(G) and from C∗

r (G(U)) into C∗
r (G). Similarly, the restriction map π : Cc(G) →

Cc(G(F )) extends to a surjective homomorphism from C∗(G) onto C∗(G(F )) and
from C∗

r (G) onto C
∗
r (G(F )). Moreover the sequence

0 → C∗(G(U)) → C∗(G) → C∗(G(F )) → 0

is exact. For these facts, we refer to [57, page 102], [25, Section 2.4], or to [56,
Proposition 2.4.2] for a detailed proof. On the other hand, the corresponding
sequence with respect to the reduced C∗-algebras is not always exact, as shown by
Skandalis in the Appendix of [58]. However, it is exact whenever G is KW-exact.

Assume now that G is amenable at infinity. Then all its isotropy groups G(x),
x ∈ X = G(0), are amenable at infinity by Proposition 3.5 applied to E = {x}. It
follows that G(x) is KW-exact and that C∗

r (G(x)) is exact (see [3, Theorem 7.2]).
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7. A sufficient condition for exactness to imply amenability at
infinity

The main result of this section is Theorem 7.6. Its proof requires some prelim-
inaries. First, we shall need the following slight extension of the classical Kirch-
berg’s characterization of exactness.

Lemma 7.1. Let A, B be two separable C∗-algebras, where B is nuclear. Let E
be a countably generated Hilbert C∗-module over B. Let ι : A → BB(E) be an
embedding of C∗-algebras. Then A is exact if and only if ι is nuclear.

Proof. If ι is nuclear, it is well known that A is exact (see [69, Proposition 7.2]).
Conversely, assume that A is exact. We identify A with its image by ι. We denote

by Ã the C∗-algebra obtained by adjunction of a unit 1 to A. We assume that

Ã is embedded into B(H) for some separable Hilbert space H and that 1 is the

unit of B(H). We set H∞ = ℓ2(N)⊗H and denote by i the embedding of Ã into

B(H∞) sending a to 1ℓ2(N) ⊗ a. Observe that i(Ã) ∩K(H∞) = {0}, where K(H∞)

is the C∗-algebra of compact operators on H∞. We now identify Ã with its image
in B(H∞).

Using Kasparov’s stabilization theorem [38, Corollary 6.3], E is a direct factor
of the Hilbert B-module H∞ ⊗ B. So we may assume that E = H∞ ⊗ B. We
identify E to B ⊕ E ′ with E ′ = H∞ ⊗B and we define a unital representation π of

Ã into BB(E) by
(λ, a)(b, ξ) = (λb, λξ + aξ),

where λ, µ ∈ C, a ∈ A, b ∈ B and ξ ∈ E ′.

Recall that BB(E) is the multiplier algebra M(K(H∞)⊗B) of K(H∞)⊗B (see

[38, Theorem 2.4]). We denote by τ the embedding of Ã into BB(E) obtained

by composition of the canonical embeddings of Ã into B(H∞) and of B(H∞) into
BB(E).

Let ε > 0 and a1, · · · , an ∈ A be given. Since B is nuclear, the Kasparov-
Voiculescu theorem [27, Theorem 6] implies the existence of a unitary operator
U ∈ BB(E , E ⊕ E) such that

for 1 ≤ k ≤ n, ‖Uτ(ak)U
∗ − (τ ⊕ π)(ak)‖ ≤ ε.

Since Ã is exact and since τ factors through B(H∞), there exists a factorable

completely positive contraction Φ : Ã→ BB(E) such that

for 1 ≤ k ≤ n, ‖Φ(ak)− τ(ak)‖ ≤ ε.

It follows that

for 1 ≤ k ≤ n, ‖UΦ(ak)U
∗ − τ(ak)⊕ π(ak)‖ ≤ 2ε.
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Denoting by P the projection of E ⊕ E onto its second component, we get

for 1 ≤ k ≤ n, ‖PUΦ(ak)U
∗P − π(ak)‖ ≤ 2ε.

For a ∈ A ⊂ Ã and ξ ∈ H∞ ⊗ B = E ′, we have π(a)(0, ξ) = (0, aξ). Let Q be
the projection of E onto its summand E ′. Then we get

for 1 ≤ k ≤ n, ‖QPUΦ(ak)U
∗PQ− ak‖ ≤ 2ε.

This shows that the embedding of A into BB(H∞ ⊗B) is nuclear. �

The major part of the rest of this section 7 is adapted from an unpublished note
of Jean Renault that we thank for allowing us to use his ideas.

Definition 7.2. Let (G, λ) be a locally compact groupoid with a Haar system and
let B be a C∗-algebra. A map Φ : C∗

r (G) → B is said to have a compact support if
there exists a compact subset K of G such that Φ(f) = 0 for every f ∈ Cc(G) with
(Supp f) ∩K = ∅.

Lemma 7.3 (Renault). Let (G, λ) be a locally compact groupoid with a Haar sys-
tem, and let Φ : C∗

r (G) → Mn(C) be a completely positive map. Then for every
ε > 0 and every finite subset F of C∗

r (G) there exists a completely positive map
Ψ : C∗

r (G) →Mn(C) with compact support such that ‖Ψ(a)−Φ(a)‖ ≤ ε for a ∈ F .

Proof. Using the Stinespring dilation theorem, we get a representation ρ of C∗
r (G)

into some Hilbert space Hρ and vectors e1, . . . , en ∈ Hρ such that, for a ∈ C∗
r (G),

we have

Φ(a) = [〈ei, ρ(a)ej〉] ∈Mn(C).

Let E be the Hilbert module L2
C0(X)(G, λ) over C0(X). Let µ be a probability

measure on X = G(0) with support X and define on G the measure µ ◦ λ by
∫

G
f dµ ◦ λ =

∫

X

( ∫

Gx

f(γ) dλx(γ)
)
dµ(x).

We consider the faithful representation f 7→ Λ̃(f) = Λ(f)⊗ Id in the Hilbert space
E ⊗C0(X) L

2(X,µ). Observe that this Hilbert space is canonically isomorphic to

the Hilbert space L2(G, µ ◦λ) and that, for f ∈ Cc(G) and ξ ∈ L2(G, µ ◦λ) we have

(Λ̃(f)ξ)(γ) =

∫
f(γ−1γ1)ξ(γ1) dλ

r(γ)(γ1).

Since the representation ρ is weakly contained in Λ̃, given ε′ > 0, there exists a
multiple Λ̃K = Λ̃ ⊗ IdK , where K is some separable Hilbert space, and vectors
ξ1, . . . , ξn in L2(G, µ ◦ λ)⊗K = L2(G, µ ◦ λ,K) such that

∣∣∣〈ei, ρ(a)ej〉 −
〈
ξi, Λ̃K(a)ξj

〉∣∣∣ < ε′
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for a ∈ F and i, j ∈ {1, . . . , n}. Moreover, we may choose the ξi’s to have a
compact support. For f ∈ Cc(G), we have

〈
ξi, Λ̃K(f)ξj

〉
=

∫
〈ξi(γ), ξj(γ1)〉f(γ

−1γ1) dλ
x(γ) dλx(γ1) dµ(x).

It follows that the completely positive map

a 7→ Ψ(a) =
[〈
ξi, Λ̃K(a)ξj

〉]

has a compact support and satisfies ‖Ψ(a) − Φ(a)‖ ≤ ε for a ∈ F if ε′ is small
enough. �

Corollary 7.4. Let B be a C∗-algebra and Φ : C∗
r (G) → B be a nuclear completely

positive map. Then for every ε > 0 and every a1, . . . , ak ∈ C∗
r (G) there exists a

factorable completely positive map Ψ : C∗
r (G) → B, with compact support, such

that ‖Ψ(ai)− Φ(ai)‖ ≤ ε for i = 1, . . . , k.

The notion of positive definite function extends to the case of f : G → B in an
obvious way: it is positive definite if for every x ∈ X, n ∈ N and γ1, . . . , γn ∈ Gx,
then [f(γ−1

i γj)] is a positive element of Mn(B). In the next lemma, we shall use
the following observation: f is positive definite if and only if for every finite set
I and every groupoid homomorphism θ : I × I → G, where I × I is the trivial
groupoid on I, the element [f ◦ θ(i, j)] of the C∗-algebra MI(B) of matrices over
I × I with coefficients in B is positive. Indeed, assume that this property holds.
Let γ1, . . . , γn ∈ Gx be given. We set I = {1, . . . , n} and θ(i, j) = γ−1

i γj . Then

θ : I×I → G is a groupoid homomorphism and the matrix [f(γ−1
i γj)] = [f ◦θ(i, j)]

is positive. The converse assertion is also easy.

Given f : G × G → C, we set fγ(γ
′) = f(γ, γ′).

Lemma 7.5 (Renault). Let (G, λ) be a locally compact groupoid with a Haar sys-
tem.

(a) Let f ∈ Cc(G) be a continuous positive definite function. Then, f viewed
as an element of C∗

r (G) is a positive element.
(b) Let f : G × G → C be a properly supported positive definite function. Then

γ 7→ fγ is a continuous positive definite function from G into C∗
r (G).

Proof. (a) Let E = L2
C0(X)(G, λ). We have to show that Λ(f) ∈ BC0(X)(E) is

positive, which amounts to prove that for every x ∈ G(0) and ξ ∈ L2(Gx, λx), we
have 〈ξ,Λx(f)ξ〉 ≥ 0. It suffices to consider the case where ξ ∈ Cc(G

x). Let K be
the support of ξ. Since

〈ξ,Λx(f)ξ〉 =

∫
ξ(γ)f(γ−1γ1)ξ(γ1) dλ

x(γ) dλx(γ1),
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by approximating the restriction of λx to K by positive measures with finite sup-
port, we get the wanted positivity result.

(b) Since f is properly supported, the map γ 7→ fγ is continuous from G into
Cc(G) endowed with the inductive limit topology, and therefore from G into C∗

r (G)
endowed with its norm topology. To show that γ 7→ F (γ) = fγ is a continuous
positive definite function, let I be a finite set and θ : I × I → G be a groupoid
homomorphism. We have to check that [F ◦ θ(i, j)] ∈ MI(C

∗
r (G)) is positive. But

MI(C
∗
r (G)) = C∗

r ((I × I) × G). Therefore, by the first part of the lemma applied
to the product groupoid (I × I)× G, it suffices to show that

((i, j), γ) 7→ fθ(i,j)(γ) = f(θ(i, j), γ)

belongs to Cc((I × I) × G) and is positive definite. But this is clear, since this
function is obtained by composing f with the homomorphism θ×Id : (I×I)×G →
G × G. �

Theorem 7.6. Let G be a second countable weakly inner amenable étale groupoid.
Then the following condition are equivalent:

(1) G is strongly amenable at infinity.
(2) G is amenable at infinity.
(3) C∗

u(G) is nuclear.
(4) C∗

u(G) is exact.
(5) G is KW -exact.
(6) C∗

r (G) is exact.

Proof. By Corollary 6.4 and Proposition 6.7 it suffices to show that (6) implies (1).
Therefore, let us assume that C∗

r (G) is exact. The proof is adapted from ideas of
Jean Renault.

We fix a compact subset K of G and ε > 0. We want to find a continuous
bounded positive definite kernel k ∈ Ct(G∗rG) such that |k(γ, γ1)− 1| ≤ ε whenever
γ−1γ1 ∈ K.

We set E = ℓ2C0(X)(G) with X = G(0). Recall that λx is the counting measure on

Gx. We first choose a bounded, continuous positive definite function f on G × G,
properly supported, such that |f(γ, γ) − 1| ≤ ε/2 for γ ∈ K. Let Φ : C∗

r (G) →
BC0(X)(E) be a compactly supported completely positive map such thatk

‖Φ(fγ)− fγ‖ ≤ ε/2

for γ ∈ K. We also choose a continuous function ξ : G(0) → [0, 1] with compact
support such that ξ(x) = 1 if x ∈ s(K) ∪ r(K).

Let (γ, γ1) ∈ G ∗r G. We choose an open bisection S such that γ ∈ S and
a continuous function ϕ : X → [0, 1], with compact support in r(S) such that

kWe write fγ instead of Λ(fγ) for simplicity of notation.
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ϕ(x) = 1 on a neighborhood of r(γ). We denote ξϕ the continuous function on G
with compact support (and thus ξϕ ∈ E) such that

ξϕ(γ
′) = 0 if γ′ /∈ S, ξϕ(γ

′) = ϕ ◦ r(γ′)ξ ◦ s(γ′) if γ′ ∈ S.

Note that ‖ξϕ‖E ≤ 1. We define ξϕ1 similarly with respect to γ1.

We set, for (γ, γ1) ∈ G ∗r G,

k(γ, γ1) = 〈ξϕ,Φ(fγ−1γ1)ξϕ1〉(r(γ))

= ξ ◦ s(γ)
(
Φ(fγ−1γ1)ξϕ1

)
(γ).

We observe that k(γ, γ1) does not depend on the choices of S,ϕ, S1, ϕ1.

We see that k is continuous since γ 7→ Φ(fγ) is continuous. Moreover, since Φ is
completely positive and compactly supported, we see that k is bounded, positive
definite, and supported in a tube.

Let (γ, γ1) ∈ G ∗r G such that γ−1γ1 ∈ K. Then we have

|k(γ, γ1)− 1| ≤ ε/2 +
∣∣〈ξϕ,

(
Λ(fγ−1γ1)ξϕ1

)
〉(r(γ)) − 1

∣∣,
and

〈ξϕ,
(
Λ(fγ−1γ1)ξϕ1

)
〉(r(γ) = ξ ◦ s(γ)ξ ◦ s(γ1)f(γ

−1γ1, γ
−1γ1).

We fix (γ, γ1) such that γ−1γ1 ∈ K. Observe that s(γ) ∈ r(K) and s(γ1) ∈ s(K)
and therefore ξ ◦ s(γ) = 1 = ξ ◦ s(γ1). It follows that

|k(γ, γ1)− 1| ≤ ε/2 +
∣∣f(γ−1γ1, γ

−1γ1)− 1
∣∣ ≤ ε.

�

Corollary 7.7. Let G be a second countable étale groupoid such that there exists a
locally proper continuous homomorphism ρ from G into a countable discrete group
G. Then the six conditions of Theorem 7.6 are equivalent. Moreover, they holds
when G is exact.

Proof. We observe that G is weakly inner amenable. Then, by Proposition 4.4 the
groupoid G is weakly inner amenable. �

Corollary 7.8. Let G be a second countable locally compact groupoid with Haar
system.

(i) Assume that G is equivalent to a second countable weakly inner amenable
étale groupoid H. Then the conditions (2), (5) and (6) of the previous
theorem are equivalent.

(ii) Assume that G is equivalent to a second countable weakly inner amenable

étale groupoid H via a G-H-equivalence Z such that qG : Z → G(0) admits
a continuous section. Then all the conditions of the previous theorem are
equivalent.
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Before beginning the proof, let us recall some facts. Let A, B be two C∗-
algebras. They are said to beMorita equivalent if there exists an A-B imprimitivity
bimodule. For details about this notion due to Rieffel, we refer to [62]. In fact, since
we mainly consider separable C∗-algebras, we shall use the Brown-Green-Rieffel
theorem saying that two separable C∗-algebras A and B are Morita-equivalent if
and only if A⊗K and B⊗K are isomorphic, where K is the C∗-algebra of compact
operators on a separable Hilbert space [10]. In particular, in this case, it is obvious
that exactness is preserved under Morita equivalence.

Proof. (i) Assume that G is equivalent to a second countable étale groupoid H
which is weakly inner amenable and assume that C∗

r (G) is exact. Then the C∗-
algebras C∗

r (G) and C∗
r (H) are Morita equivalent (see [48], [68] or [65]). It fol-

lows from Theorem 7.6 that H is strongly amenable at infinity and therefore G is
amenable at infinity by Proposition 3.10.

To prove (ii), we use the remark 3.11 instead. �

Remark 7.9. With similar techniques as those used to prove Theorem 7.6 we can
prove the following result.

Proposition 7.10. Let G be a second countable locally compact groupoid with Haar
system. The following conditions are equivalent:

(i) G is amenable;
(ii) C∗

r (G) is nuclear and G is weakly inner amenable.

The case of a transformation groupoid was dealt with in [3, Theorem 5.8].

8. Examples

8.1. Groupoids equivalent to transformation groupoids. Let (G, λ) be se-
cond countable locally compact groupoid which is equivalent to a transformation
groupoidX⋊G whereG is discrete. This groupoidX⋊G is weakly inner amenable.
Then Corollary 7.8 applies and the conditions (2), (5) and (6) of the theorem 7.6
are equivalent. In particular they hold if G is exact since X ⋊G is then amenable
at infinity by Corollary 3.22. Moreover, if X is compact, then G is amenable at
infinity if and only if G is exact by Proposition 3.6.

Example 8.1. Transitive groupoids. Assume that G is transitive, that is, for
every x, y ∈ X there exists γ ∈ G such that r(γ) = x and s(γ) = y. Then all the
isotropy groups of G are isomorphic. We know that when G is amenable at infinity,
these isotropy groups are KW-exact (see Remark 6.10). If they are discrete, let us
observe that the converse is true: if any of its isotropy group is exact, then G is
amenable at infinity. Indeed, fixing x ∈ X, the space Gx is a G-G(x)-equivalence,
where qG is the restriction of r to Gx, and where the left action of G and the right
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action of G(x) are obviously defined (see [48]). So G is equivalent to the group
G(x) and therefore is amenable at infinity whenever G(x) is exact. Note that, by
the corollary 7.8, this latter property is equivalent to the KW-exactness of G and
also to the exactness of C∗

r (G). The equivalence of these two last properties has
been also established in [36].

8.2. Groupoids from partial group actions. A partial action of a discrete
group G on a locally compact space X is a pair β = ({Xt}t∈G, {βt}t∈G) such that

• Xt is open in X and βt : Xt−1 → Xt is a homeomorphism for every t ∈ G;
• Xe = X and βe = IdX , where e is the unit of G;
• βst is an extension of βs ◦ βt for every s, t ∈ G.

The following groupoid G⋉β X is associated to β. It is defined as the topological
subspace

G⋉β X = {(x, t, y) : t ∈ G, y ∈ Xt−1 , x = βt(y)}

of X × G × X. We have r((x, t, y)) = x (where x is identified with (x, e, x)),
s((x, t, y)) = y, the composition law is given by (x, s, y)(y, t, z) = (x, st, y) and the
inverse is given by (x, t, y)−1 = (y, t−1, x). As such, G ⋉β X is an étale groupoid
(see [1]). The C∗-algebra C∗

r (G⋉βX) is isomorphic to the reduced crossed product
C0(X)⋊r G with respect to the partial action of G (see [44, Proposition 2.2]) and
so C∗

r (G ⋉β X) is exact whenever the group G is exact, by [7, Corollary 5.3].
It would be nice to have a direct proof of this fact (not using Fell bundles as
in [7]). Although we have not checked all the details, it seems that G ⋉β X is
KW-exact when G is exact. Indeed, actions of G⋉β X on C∗-algebras give rise to
partial actions of G and we use the fact that exact sequences which are equivariant
under partial actions of an exact group yield exact sequences of the corresponding
reduced crossed products (see [18, Theorem 22.9]).

Note that the cocycle (x, t, y) 7→ t is faithful. It is locally proper if and only if
for every t ∈ G the graph {(βt(y), y) : y ∈ Xt−1} is closed in X ×X. In this case,
the groupoid G ⋉β X is equivalent to a transformation groupoid Y ⋊ G which is
explicitly constructed and the groupoid G⋉β X is strongly amenable at infinity if
and only if Y ⋊G is strongly amenable at infinity (see Proposition 3.20 (i)). This
holds when G is exact. In general, we do not know whether G ⋉β X is amenable
at infinity when G is exact.

In the next section, we show that many semigroups provide groupoids defined
by partial actions.

8.3. Groupoids from semigroups.

8.1.2.1. Inverse semigroups. A semigroup S is an inverse semigroup if for each
u ∈ S there exists a unique u∗ ∈ S (called the inverse of u) such that u = uu∗u
and u∗ = u∗uu∗. The set ES of idempotents of S plays a crucial role. It is an
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abelian sub-semigroup of S. There is a natural partial order on S defined by u ≤ v
if there exists an idempotent e ∈ S such that u = ve. One defines an equivalence
relation σ on S by saying that u∼σ v whenever there exists an idempotent e ∈ S
such that ue = ve. The quotient S/σ is a group, denoted by GS , and called the
maximal group homomorphic image of S (or the minimum group congruence). For
these facts and more on the theory of inverse semigroups we refer to [40].

By an abuse of notation, σ will also denote the quotient map from S onto S/σ.
If S has a zero, we denote by S× the set S \ {0}. When S does not have a zero,
we set S× = S.

To each inverse semigroup S is associated in an explicit way a groupoid GS . We
recall its construction, which is described in detail in [55]. We denote by X the
space of non-zero maps χ from ES into {0, 1} such that χ(ef) = χ(e)χ(f) and
χ(0) = 0 whenever S has a zero. Equipped with the topology induced from the

product space {0, 1}E , the space X, called the spectrum of S, is locally compact
and totally disconnected. Note that when S is a monoid (i.e., has a unit element
1) then χ is non-zero if and only if χ(1) = 1, and therefore X is compact.

The semigroup S acts on X as follows. The domain (open and compact) of
t ∈ S is Dt∗t = {χ ∈ X : χ(t∗t) = 1} and we set θt(χ)(e) = χ(t∗et). We define on
Ξ = {(t, χ) ∈ S ×X : χ ∈ Dt∗t} the equivalence relation (t, χ) ∼ (t1, χ1) if χ = χ1

and there exists e ∈ ES with χ(e) = 1 and te = t1e. Then GS is the quotient of
Ξ with respect to this equivalence relation, equipped with the quotient topology.
The range of the class [t, χ] of (t, χ) is θt(χ) and its source is χ. The composition
law is given by [u, χ][v, χ′] = [uv, χ′] if θv(χ

′) = χ (see [55] or [17] for details). In
general, GS is not Hausdorff. However, in many common examples it is the case.

Definition 8.2. An inverse semigroup S is said to be E-unitary if ES is the
kernel of σ : S → S/σ (equivalently, every element greater than an idempotent is
an idempotent. When S has a zero, this means that S = ES .

Definition 8.3. Let S be an inverse semigroup. A morphism (or grading) is an
application ψ from S× into a discrete group G such that ψ(st) = ψ(s)ψ(t) if st 6= 0.
If in addition ψ−1(e) = E×

S , we say that ψ is an idempotent pure morphism. When
such an application ψ from S× into a group G exists, the inverse semigroup S is
called strongly E∗-unitary.

Note that when S is without zero, S is strongly E∗-unitary if and only if it is
E-unitary.

Let S be an inverse semigroup. Its reduced C∗-algebra C∗
r (S) is defined in [55].

It is canonically isomorphic to the reduced C∗-algebra of the groupoid GS (see [55,
Theorem 4.4.2], [30, Theorem 3.5]).

Proposition 8.4. Let S be an inverse semigroup such that there exists an idem-
potent pure morphism ψ from S× into a discrete group G. Then GS is isomorphic
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to G⋉β X for a canonical action of G on the spectrum X of S. In particular, the
reduced C∗-algebra C∗

r (S) is exact when G is exact.

Proof. The construction of a partial action of G on the spectrum of S such that
the groupoids GS and G⋉βX are canonically isomorphic is carried out in [46] (see
also [6, 44]). The second assertion of the proposition is then immediate. �

Proposition 8.5. Let S be a E-unitary inverse semigroup. Then C∗
r (S) is exact

if and only if the maximal group homomorphic image S/σ is an exact group.

Proof. We have to show that S/σ is exact when C∗
r (S) is exact. It suffices to

consider the case where S does not have a 0, since S = ES otherwise. Let χ∞ be the
character such that χ∞(e) = 1 for every e ∈ ES . Then χ∞ is GS-invariant in X =

G
(0)
S and [t, χ∞] 7→ σ(t) is an isomorphism from the isotropy group GS(χ∞) onto
S/σ. But, as recalled in the remark 6.10, the C∗-algebra C∗

r (GS(χ∞)) is a quotient
of C∗

r (GS). This latter C∗-algebra is exact since it is canonically isomorphic to
C∗
r (S). It follows that the group S/σ is exact. �

8.1.2.1. Sub-semigroups of a group. In this subsection, we consider a discrete
groupe G and a sub-semigroup P which contains the unit e of G. For p ∈ P ,
let Vp be the isometry in B(ℓ2(P )) defined by

Vpδq = δpq.

The reduced C∗-algebra or Toeplitz algebra of P is the sub-C∗-algebra C∗
r (P ) of

B(ℓ2(P )) generated by these isometries.

An inverse semigroup S(P ), called the inverse hull of P , is attached to P . One
of its definitions is

S(P ) =
{
V ∗
p1Vq1 · · ·V

∗
pnVqn : n ∈ N, pi, qi ∈ P

}
.

It is an inverse semigroup of partial isometries in B(ℓ2(P )) (see [51, §3.2]). An
important property of S(P ) is that the map ψ from S(P )× into G such that

ψ
(
V ∗
p1Vq1 · · ·V

∗
pnVqn

)
= p−1

1 q1 · · · p
−1
n qn

is well defined and is an idempotent pure morphism (see [51, Proposition 3.2.11]).
Moreover, by [51, Lemma 3.4.1], the semigroup S(P ) does not have a zero if and
only if PP−1 is a subgroup of G.

Let us denote by λG the left regular representation of G and by EP the orthogo-
nal projection from ℓ2(G) onto ℓ2(P ). We say that (P,G) satisfies the Toeplitz con-
dition if for every g ∈ G such that EPλgEP 6= 0, there exist p1, . . . , pn, q1, . . . , qn ∈
P such that EPλgEP = V ∗

p1Vq1 . . . V
∗
pnVqn . For instance the quasi-lattice ordered

groups introduced by Nica in [50] satisfy this property (see [43, §8]).

Proposition 8.6. Let (P,G) be as above.
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(i) If G is exact, then the C∗-algebra C∗
r (P ) is exact.

(ii) Assume that G = PP−1 and that the Toeplitz condition is satisfied. Then
C∗
r (P ) is exact if and only if the group G is exact.

Proof. (i) follows from Proposition 8.4 and from the fact that C∗
r (P ) is a quotient

of C∗
r (GS(P )) (see [51, Corollary 3.2.13]).

(ii) Assume now that G = PP−1 and that the Toeplitz condition is satisfied.
Then the inverse semigroup S(P ) does not have a 0. Moreover, the map τ :
S(P )/σ → G such that τ ◦σ = ψ is an isomorphism. Indeed ψ is surjective, so τ is
also surjective. Assume that τ(σ(x)) = e, with x ∈ S(P ). Since ψ is idempotent
pure, we see that x is an idempotent and therefore σ(x) is the unit of S(P )/σ.

It follows from Proposition 8.5 that C∗
r (S(P )) is exact if and only if G is exact.

Finally, we conclude by using the fact that C∗
r (P ) = C∗

r (S(P )) since the Toeplitz
condition is satisfied (see [51, Theorem 3.2.14] and [42, Lemma 2.28]). �

Remark 8.7. Assume that (P,G) satisfies the Toeplitz condition. Using Propo-
sition 8.4 and its notation, we know that the groupoid GS(P ) is isomorphic to
G⋉β X. Moreover, the Toeplitz condition implies that the cocycle (g, x) 7→ g (of
course faithful) is locally proper (see [6, Corollary 3.9]). In this case the equiva-
lence with a transformation groupoid Y ⋊G is such that we can apply Corollary
7.8 (see Proposition 3.20). If G is exact, the six equivalent conditions of Theorem
7.6 hold.

8.4. Fields of groupoids.

Definition 8.8. A field of groupoids is a triple (G, T, p) where G is a groupoid, T

a set and p : G(0) → T is a surjective map such that p ◦ r = p ◦ s.

For t ∈ T , note that (p ◦ r)−1(t) = Gt is the reduction G(p−1(t)) of G by p−1(t).

Its set of units is p−1(t). In the case where T = G(0) and p is the identity map,
then Gt is the isotropy group of G(t) at t, and we say that G is a field of groups.

Definition 8.9. A continuous field of groupoids (or groupoid bundle) is a triple
(G, T, p) as in the previous definition where G is a locally compact groupoid, T is
locally compact and p is continuous and open.

In case p is the identity map of G(0) we shall say that (G, T, p) is a continuous
field of groupsl or groupoid group bundle.

Let (G, T, p) be a continuous field of groupoids. In the sequel, we shall we assume
that G has a Haar system. In the case of a field of groups, the existence of a Haar
system is equivalent to the fact that r = s is open by [58, Lemma 1.3]. Observe

lThis terminology is rather misleading since, as we shall see, C∗
r (G) is not in general a continuous

field of C∗-algebras with fibres C∗
r (G(x)), x ∈ G(0).
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that Cc(G) has a structure of C0(T )-module by setting (fa)(γ) = f ◦ p(r(γ))a(γ)
for f ∈ C0(T ) and a ∈ Cc(G). The map a 7→ fa extends continuously in order
to turn C∗(G) and C∗

r (G) into C0(T )-algebras. This is obvious for the reduced
C∗-algebra. In the case of the full C∗-algebra, that we shall not need, one uses the
same arguments as in the proof of [57, Lemma 1.13] (see also [56, Lemme 2.4.4]
for details).

We shall see that C∗
r (G) can be viewed as a field of C∗-algebras over T in two

different ways. Before, we need to recall some definitions.

Definition 8.10. A field of C∗-algebras over a locally compact space X is a triple
A = (A, {πx : A→ Ax}x∈X ,X) where A, Ax are C∗-algebras, and where πx is a
surjective ∗-homomorphism such that

(i) {πx : x ∈ X} is faithful, that is, ‖a‖ = supx∈X ‖πx(a)‖ for every a ∈ A;
(ii) for f ∈ C0(X) and a ∈ A, there is an element fa ∈ A such that πx(fa) =

f(x)πx(a) for x ∈ X.

We say that the field is upper semi-continuous (resp. lower semi-continuous) if the
function x 7→ ‖πx(a)‖ is upper semi-continuous (resp. lower semi-continuous) for
every a ∈ A.

If for each a ∈ A, the function x 7→ ‖πx(a)‖ is in C0(X), we shall say that A is
a continuous field of C∗-algebrasm.

For f ∈ C0(X), denote by ρf the map a 7→ fa. Then ρf is in the center
Z(M(A)) of the multiplier algebra M(A) of A and f 7→ ρf is a ∗-homomorphism
from C0(X) into Z(M(A)). In the case of a continuous field of C∗-algebras, we have
A = C0(X)A, that is, A is a C0(X)-algebra (see [32, Lemma 2.1]). Observe that the
converse is not true: a C0(X)-algebra only give rise to an upper semi-continuous
field of C∗-algebras (see [63, Proposition 1.2]).

Let (G, T, p) be a continuous field of groupoids as above. We set X = G(0). For
t ∈ T , we set Xt = p−1(t) and Ut = X \Xt. Let us explain now how C∗

r (G) can
be viewed as a field of C∗-algebras over T in two different ways. First, since it is
a C0(T )-algebra, we have the field (C∗

r (G), {et : C
∗
r (G) → C∗

r (G)t}t∈T , T ) where et
is the quotient map from C∗

r (G) onto C∗
r (G)t = C∗

r (G)/Ct(T )C
∗
r (G). Second, it is

the field (C∗
r (G), {πt : C

∗
r (G) → C∗

r (G(Xt))}t∈T , T ). The first field is upper semi-
continuous by [63, Proposition 1.2] and the second is lower semi-continuous by by
[56, Théorème 2.4.6] (see also [39, Theorem 5.5]).

Proposition 8.11. Let (G, T, p) be a continuous field of groupoids. We assume
that G has a Haar system. Let t0 ∈ T . The function t 7→ ‖πt(a)‖ is continuous at

mIn [32], this is called a continuous bundle of C∗-algebras.
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t0 for every a ∈ C∗
r (G) if and only if the following sequence

0 → C∗
r (G(Ut0)) → C∗

r (G)
πt0→ C∗

r (G(Xt0)) → 0

is exact.

Proof. We have Cc(G(Ut0)) = Ct0(T )Cc(G) and by continuity we get C∗
r (G(Ut0)) =

Ct0(T )C
∗
r (G). It follows from [32, Lemma 2.3] that the function t 7→ ‖πt(a)‖ is

upper semi-continuous at t0 for all a ∈ C∗
r (G) if and only if the kernel of πt0 is

C∗
r (G(Ut0)). Since t 7→ ‖πt(a)‖ is always lower semi-continuous, this proves the

proposition. �

Remark 8.12. We immediately get from Proposition 8.11 that the function t 7→
‖πt(a)‖ is continuous at t0 for every a ∈ C∗

r (G) whenever the groupoid G(Xt0) is
second countable and amenable. Indeed chasing around the following commutative
diagram

0 → C∗(G(Ut0)) −→ C∗(G) −→ C∗(G(Xt0)) → 0

↓ ↓ ↓

0 → C∗
r (G(Ut0)) −→ C∗

r (G)
πt0−→ C∗

r (G(Xt0)) → 0

and using the facts that the first line is exact, that the vertical arrows are surjec-
tive and that C∗(G(Xt0)) = C∗

r (G(Xt0)) since G(Xt0) is amenable [2, Proposition
6.1.10], we see that the second line is also an exact sequence.

This continuity result was obtained in [56, Corollary 2.4.7].

This is no longer true if G(Xt0) is only assumed to be exact, but we have the
following result.

Corollary 8.13. Let (G, T, p) be a continuous field of groupoids. We assume that
G has a Haar system and is KW-exact. Then

(C∗
r (G), {πt : C

∗
r (G) → C∗

r (G(Xt))}t∈T , T )

is a continuous field of C∗-algebras on T .

Proof. This is an immediate consequence of Remark 6.10 and Proposition 8.11. �

Consider now the case of an étale groupoid G which is a groupoid group bundle.
This means that for every γ ∈ G we have r(γ) = s(γ). Assume that C∗

r (G) is an

exact C∗-algebra. Then, for every x ∈ X = G(0), the C∗-algebra C∗
r (G(x)) is exact,

since its is a quotient of C∗
r (G). It follows that the discrete group G(x) is exact

and therefore G is a bundle of exact discrete groups. If moreover G is KW-exact,
then C∗

r (G) is a continuous field of C∗-algebras with fibres C∗
r (G(x)).
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We now give an example of étale groupoid group bundle G such that G(x) is an
exact group for every x ∈ G(0), whereas G is not KW-exact. The construction is
due to Higson, Lafforgue and Skandalis [23].

We consider a residually finite group Γ and an decreasing sequence Γ ⊃ N0 ⊃
N1 · · · ⊃ Nk ⊃ · · · of finite index normal subgroups with ∩kNk = {e}. Let

N̂ = N ∪ {∞} be the Alexandroff compactification of N. We set N∞ = {e} and,

for k ∈ N̂, we denote by qk : Γ → Γk = Γ/Nk the quotient homomorphism. Let G

be the quotient of N̂× Γ with respect to the equivalence relation

(k, t) ∼ (l, u) if k = l and qk(t) = qk(u).

Equipped with the quotient topology, G has a natural structure of (Hausdorff)

étale locally compact groupoid group bundle: its space of units is N̂, the range and
source maps are given by r([k, t]) = s([k, t]) = qk(t), where [k, t] = (k, qk(t)) is the
equivalence class of (k, t). The fibre G(k) of the bundle is the quotient group Γk if
k ∈ N and Γ if k = ∞. We call this groupoid an HLS-groupoid. A basic result of
[23] is that the sequence

0 −→ C∗
r (G(N)) −→ C∗

r (G) −→ C∗
r (G(∞)) −→ 0

is not exact whenever Γ has Kazdhan’s property (T) (it is not even exact in K-
theory!). Therefore G is not KW-exact. As an example we can take the exact
group SL(3,Z) and any sequence (Nk) as above.

For this HLS-groupoids, the exactness of C∗
r (G) is a very strong condition which

suffices to imply the amenability of Γ as shown by Willet in [70].

Proposition 8.14. Let us keep the above notation and assumptions. We assume
that Γ is finitely generated. Then the following conditions are equivalent:

(1) If Γ is amenable;
(2) G is amenable;
(3) G is KW-exact;
(4) C∗

r (G) is a continuous field of C∗-algebras with fibres C∗
r (G(x));

(5) C∗
r (G) is nuclear;

(6) C∗
r (G) is exact.

Proof. The equivalence between (1) and (2) follows from [2, Corollary 5.3.33].
That (2) ⇒ (3) is obvious and (3) ⇒ (4) is contained in Corollary 8.13. Let us
prove that (4) ⇒ (1). Assume by contradiction that Γ is not amenable. We fix a
symmetric probability measure µ on Γ with a finite support that generates Γ and
we choose n0 such that the restriction of qn to the support of µ is injective for
n ≥ n0. We define a ∈ Cc(G) ⊂ C∗

r (G) such that a(γ) = 0 except for γ = (n, qn(s))
with n ≥ n0 and s ∈ Supp(µ) where a(γ) = µ(s). Then πn(a) = 0 if n < n0 and
πn(a) = λΓn(µ) ∈ C∗

r (Γn) = C∗
r (G(n)) if n ≥ n0, where λΓn is the quasi-regular
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representation of Γ in ℓ2(Γn). By Kesten’s result [29, 28] on the spectral radius
relative to symmetric random walks, we have ‖λΓn(µ)‖C∗

r (Γn)
= 1 for N ∋ n ≥ n0

and ‖λΓ∞
(µ)‖C∗

r (Γ∞) < 1 since Γ is not amenable. It follows that C∗
r (G) is not a

continuous field of C∗-algebras with fibres C∗
r (G(n)) on N̂, a contradiction.

We know that (2) ⇒ (5) ⇒ (6). The fact that (6) ⇒ (1) is due to Willett
[70]. �

9. Open questions

(1) Let G be a locally compact groupoid. Is it true that the amenability at
infinity of G implies its strong amenability ar infinity? Note that by Theorem 7.6
this is true for every second countable weakly inner amenable étale groupoid (see
also Corollary 7.8 (ii) for a more general result).

(2) Are there étale groupoids that are not weakly inner amenable? In particular,
if G is a discrete group acting partially on a locally compact space X, is it true
that the corresponding partial transformation groupoid is weakly inner amenable?
This is true when the domains of the partial homeomorphisms are both open and
closed but what happens in general?

(3) Is it true that an étale groupoid G is KW-exact whenever its reduced C∗-
algebra is exact? Is it true that the KW-exactness implies the amenability at
infinity?

(4) In [32], Kirchberg and Wassermann have constructed examples of continuous
fields of exact C∗-algebras on a locally compact space, whose C∗-algebra of con-
tinuous sections vanishing at infinity is not exact. Find examples of étale groupoid
group bundles G, whose reduced C∗-algebra is not exact whereas

(C∗
r (G), {πx : C∗

r (G) → C∗
r (G(x))}x∈G(0) ,G(0))

is a continuous field of exact C∗-algebras.
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Université d’Orléans et CNRS (UMR 7349 et FR2964),
B. P. 6759, F-45067 Orléans Cedex 2
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