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It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

John Godfrey Saxe
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1 Introduction

In recent years, Teichmüller theory, which is the study of moduli spaces of marked Riemann
surfaces, has come to be considered more and more from the point of view of actions of
surface groups inside certain semi-simple Lie groups. In particular, we consider the case
where the Lie groups in question have symmetric spaces which are lorentzian spacetimes.
Indeed, this can be considered as the starting point of Mess’ seminal work, which led to
the development of new and strikingly simpler proofs of many results of Teichmüller theory
by considering them in terms of geometric objects inside these symmetric spaces. Our aim
is to provide a brief and straightforward introduction to this approach, whilst developing
what we consider to be a useful mental framework for organising known results and open
problems.

Group actions and Teichmüller theory We first recall how Teichmüller theory is de-
scribed in terms of group actions. Throughout this paper, S will denote a compact, oriented
surface of hyperbolic type, g will denote its genus, and Π1 will denote its fundamental group.
Recall that the Teichmüller space of S can be defined as the space of marked hyperbolic
metrics over S, modulo diffeomorphisms which preserve the marking.1 Marked hyperbolic
metrics are associated to group actions of Π1 as follows. Let H2 denote 2-dimensional hy-
perbolic space. Recall that the identity component of its isometry group is identified with
PSL(2,R). Now, given a marked hyperbolic metric, g, over S, there exists a homomorphism,
θ : Π1 → PSL(2,R), which is injective and discrete, and which is unique up to conjugation,
such that g is equivalent to the quotient, H2/θ(Π1). In this manner, the Teichmüller space
of S is parametrised by conjugacy classes of certain types of homomorphisms of Π1 into
PSL(2,R).

GHMC spacetimes We now recall the definition of ghmc spacetimes (c.f. [O’N83,
Rin09]), which will play a central role throughout the rest of the paper. First, a (lorentzian)
spacetime is a smooth manifold, M , furnished with a smooth, semi-riemannian metric of
signature (n, 1), along with spatial and temporal orientations. Lorentzian spacetimes arise
in a natural manner, and are rarely studied in mathematics without the assumption of some
additional structure which reflects their motivations from theoretical physics. In order to
understand this, consider first vectors and curves in M . A tangent vector, X, of M is said
to be timelike, lightlike or spacelike depending on whether its Lorentz norm squared has
positive, zero or negative sign respectively. A differentiable curve, c, in M is said to be
causal whenever its tangent vector is never spacelike. The spacetime, M , is then said to
be causal whenever it contains no closed causal curves, reflecting the physical idea that one
cannot return to the past by travelling into the future. Next, given two points, p and q,
inside M , q is said to lie in the past of p, and p is said to lie in the future of q, whenever
there exists a future oriented, causal curve starting at q and ending at p. A causal spacetime
is then said to be globally hyperbolic whenever the intersection of the past of any point, p,
with the future of any other point, q, is compact (c.f. [BS03, BS07]).

Global hyperbolicity is equivalent to the existence in M of a Cauchy hypersurface, which
is a smooth, embedded, spacelike hypersurface, N , which intersects every inextensible causal
curve in M once and only once. Although the Cauchy hypersurfaces in M are trivially not
unique, they are all diffeomorphic, and, given a Cauchy hypersurface, N , the spacetime itself
is diffeomorphic to N × R.

A globally hyperbolic spacetime is said to be maximal whenever it cannot be embedded
isometrically into a larger spacetime of the same dimension in such a manner that the

1Recall that a marking is defined to be an ordered set, (a1, ..., ag, b1, ..., bg), of generators of Π1 such that
[a1, b1][a2, b2] · · · [ag, bg] = Id. Two markings are identified whenever there exists an element of Π1 which
conjugates the one into the other. Distinct points of Teichmüller space with inequivalent markings may
correspond to the same hyperbolic metric, so that Teichmüller space is a ramified cover of the moduli space
of hyperbolic metrics. Markings were introduced into Teichmüller theory in order to resolve the singular
points of moduli spaces, allowing Teichmüller space to be furnished with a smooth manifold structure (c.f.
[Tro92]). However, throughout much of Teichmüller theory, they are often used without explicit reference
being made to them.
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image of a Cauchy hypersurface is still a Cauchy hypersurface. To illustrate this, consider
the Minkowski space, Rd,1, which is defined to be the space of all real (d + 1)-tuplets,
x := (x1, ..., xd+1), furnished with the metric

〈x, y〉d,1 := −x1y1 − · · · − xdyd + xd+1yd+1 .

This space is trivially a maximal, globally hyperbolic spacetime, with Cauchy hypersurface
given by the horizontal hyperplane, Rd × {0}. Consider now its future oriented light cone,

C+ := {x | 〈x, x〉d,1 = 0, xd+1 ≥ 0} .

The interior, Int(C+), of this cone is also a maximal, globally hyperbolic spacetime, with
Cauchy hypersurface given by

H+ := {x | 〈x, x〉d,1 = 1, xd+1 > 0} .

However, the fact that Int(C+) embeds isometrically into Rd,1, does not contradict maxi-
mality, since H+ is not a Cauchy hypersurface of the latter spacetime.

Finally, a globally hyperbolic spacetime is said to be Cauchy compact whenever its
Cauchy hypersurface is compact. Spacetimes possessing all these properties are described
as ghmc (Globally Hyperbolic, Maximal, Cauchy Compact), and it is these that will be
studied in this paper.

GHMC Minkowski spacetimes We henceforth focus on (2+1)-dimensional ghmc space-
times of constant sectional curvature. In order to form a good intuition for what follows, it
is worth reviewing first in some detail the case of flat spacetimes, which we henceforth refer
to as Minkowski spacetimes. The simplest maximal, (2 + 1)-dimensional, globally hyper-
bolic Minkowski spacetime is, of course, the Minkowski space, R2,1, itself. More generally,
consider a convex, open subset, Ω, of R2,1, formed by taking the intersection of the future
sides of all elements of some family of null planes, no two of which are parallel. Every such
Ω is a maximal, globally hyperbolic, Minkowski spacetime with a Cauchy surface which
is complete with respect to the induced metric. Up to reflection in the horizontal plane,
R2 × {0}, all maximal, globally hyperbolic, Minkowski spacetimes with complete Cauchy
surfaces arise in this manner (c.f. [Bar05]).

Consider now the compact case, and let GHMC0 := GHMC0(S) denote the space
of marked ghmc Minkowski spacetimes with Cauchy surface diffeomorphic to S. Ele-
ments of GHMC0 are constructed by taking suitable quotients of convex, open sets of the
type constructed in the preceding paragraph. To see this, observe first that the identity
component of the isometry group of R2,1 is given by PSL(2,R) n R2,1, where the first
component acts linearly, and the second by translation. Consider now a homomorphism,
θ : Π1 → PSL(2,R) n R2,1. When the linear component, θ0 : Π1 → PSL(2,R), of θ is
injective and discrete, there exists a unique open subset, Ω, of R2,1, of the type described
above, over which θ(Π1) acts properly discontinuously (c.f. Theorem 3.4). The quotient of
Ω by this action is then an element of GHMC0. Furthermore, up to reversal of the time
orientation, this accounts for all ghmc Minkowski spacetimes, so that GHMC0 is actually
parametrised by the set of all homomorphisms, θ : Π1 → PSL(2,R) n R2,1, whose linear
component is injective and discrete (c.f. Theorem 3.7). In particular, this parametrisation
furnishes the space, GHMC0, with the structure of a (12g − 12)-dimensional real algebraic
variety.

In particular, this parametrisation of GHMC0 shows that ghmc Minkowski spacetimes
naturally identify with tangent vectors over Teichmüller space. Indeed, by considering the
derivatives of smooth families of homomorphisms of Π1 into PSL(2,R), we see that ev-
ery homomorphism, θ : Π1 → PSL(2,R) n R2,1, whose linear component, θ0, is injective
and discrete, identifies with a unique tangent vector of Teichmüller space2 over the point
determined by θ0. The significance of this correspondence will become apparent presently.

2In fact, the derivative of a smooth family of homomorphisms of Π1 into PSL(2,R) is given by a ho-
momorphism of Π1 into PSL(2,R) n sl(2,R), where, sl(2,R) is the Lie algebra of PSL(2,R), over which
PSL(2,R) acts by the adjoint action. It is therefore homomorphisms into this group which naturally identify
with tangent vectors over Teichmüller space. However, since sl(2,R), together with its Killing form, natu-
rally identifies with R2,1, this twisted product is really the same as the twisted product, PSL(2,R) n R2,1,
justifying the identification given above.
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GHMC anti de Sitter and de Sitter spacetimes We now consider spacetimes of
constant sectional curvature equal to −1, which will henceforth be referred to as anti de
Sitter (AdS) spacetimes. Let GHMC−1 := GHMC−1(S) denote the space of marked ghmc
anti de Sitter spacetimes with Cauchy surface diffeomorphic to S. In order to understand
the structure of this space, consider first (2 + 1)-dimensional anti de Sitter space, which
we denote by AdS3 (c.f. Section 4). The identity component of the isometry group of this
space is given by PSL(2,R) × PSL(2,R). Consider now a homomorphism, θ := (θl, θr) :
Π1 → PSL(2,R) × PSL(2,R). When each of the components, θl and θr, are injective and
discrete, there exists a unique open subset, Ω, of AdS3, having a structure analogous to that
described above for the Minkowski case, over which θ(Π1) acts properly discontinuously
(c.f. Theorem 4.2). The quotient of Ω by this action is then an element of GHMC−1.
Furthermore, this accounts for all ghmc AdS spacetimes, so that GHMC−1 is parametrised
by the set of homomorphisms, θ : Π1 → PSL(2,R)× PSL(2,R), both of whose components
are injective and discrete. In particular, this parametrisation also furnishes GHMC−1 with
the structure of a (12g− 12)-dimensional real algebraic variety.

In a similar manner to the Minkowski case, ghmc anti de Sitter spacetimes naturally
identify with pairs of points in Teichmüller space. Indeed, every homomorphism, θ : Π1 →
PSL(2,R)× PSL(2,R), each of whose two components are injective and discrete, naturally
identifies with a unique pair of points in Teichmüller space. This correspondence, together
with its Minkowski analogue mentioned above, will play a key role in what follows.

For completeness, we consider also spacetimes of constant sectional curvature equal to 1,
which will henceforth be referred to de Sitter (dS) spacetimes. Let GHMC1 := GHMC1(S)
denote the space of marked ghmc de Sitter spacetimes with Cauchy surface diffeomorphic to
S. The global structure of GHMC1 is more complicated than in the Minkowski and anti de
Sitter cases, since there exist ghmc de Sitter spacetimes which are not quotients of invariant
open subsets of de Sitter space. Nonetheless, by restricting attention to what are known
as “quasi-Fuchsian” de Sitter spacetimes, whose moduli space we denote by GHMCqf

1 , we
recover a theory similar to that developed in the Minkowski and anti de Sitter cases, with
corresponding applications to Teichmüller theory.

Teichmüller theory as Lorentzian geometry The correspondences between Teich-
müller space and GHMC0 and GHMC−1 indicated above lead to the following phenomena.
Firstly, many constructions of classical Teichmüller theory involving tangent vectors of Te-
ichmüller space find their counterparts in terms of geometric objects inside ghmc Minkowski
spacetimes. Likewise, many constructions involving pairs of points in Teichmüller space
find their counterparts in terms of geometric objects inside ghmc AdS spacetimes. For ex-
ample, one can associate to every tangent vector over a given point of Teichmüller space,
a unique measured geodesic lamination [Ker85]. In Section 3, it will be shown that this
measured geodesic lamination is naturally constructed in terms of the past boundary of
the corresponding ghmc Minkowski spacetime. Likewise, consider the earthquake theorem
(Theorem 2.5), which says that given any two given points, P1 and P2, of Teichmüller
space, there exists a unique left earthquake, E l, and a unique right earthquake, Er, such
that E l(P1) = P2 and Er(P1) = P2. In Section 4, it will be shown that these earthquakes
correspond to the measured geodesic laminations of the two boundary components of the
convex core of the corresponding ghmc AdS spacetime. Alternatively, consider the theorem
of Schoen and Labourie (Theorem 2.11), which says that given any two points, P1 and P2,
of Teichmüller space, there exists a unique minimal lagrangian diffeomorphism sending P1

into P2. In Section 4, it will also be shown that this map corresponds to the unique maximal
surface in the fundamental class of the corresponding ghmc AdS spacetime, and so on.

Indeed, we will see that ghmc Minkowski, anti de Sitter and de Sitter spacetimes possess
a wealth of geometric structures which reflects the diversity of structures constructed over
Teichmüller space. It is one of our main objectives to provide — in Sections 3, 4 and 5 —
an elementary overview of the key aspects of this geometry, and then to show how various,
disparate elements of modern Teichmüller theory — reviewed in Section 2 — are elegantly
unified within this framework.
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Figure 1: A selection of parametrisations of GHMC0. Each of the spokes of the wheel
represents one of the parametrisations introduced in Section 3.

Scattering problems and ghmc spacetimes By considering constant curvature ghmc
spacetimes as flows inside Teichmüller space, we obtain a good mental framework for organ-
ising open problems and known results. Indeed, consider first a marked ghmc Minkowski
spacetime, M . By Theorem 3.10, there exists a unique foliation, (Σκ)κ∈]0,∞[, of M such
that, for each κ, the leaf, Σκ, is a smoothly embedded, locally strictly convex, spacelike
surface of constant extrinsic curvature equal to κ. Now, if, for each κ, we denote by gκ
the intrinsic metric of the κ’th leaf, then the rescaled family, (κgκ)κ∈]0,∞[, consists only of
hyperbolic metrics, and therefore defines a smooth curve inside Teichmüller space. It is then
natural to ask, for given pairs, 0 < κ1 < κ2, of positive real numbers, and, g1 and g2, of
marked hyperbolic metrics, whether there exists a ghmc Minkowski spacetime interpolating
between (g1, κ1) and (g2, κ2), in the sense that, for each i, the intrinsic metric of its κi’th
leaf corresponds to the point, gi, of Teichmüller space.

Similar problems can be studied by taking limits as κ1 and κ2 converge to 0, to infinity,
or even to each other. Furthermore, other curves in Teichmüller space are obtained by
considering anti de Sitter and de Sitter spacetimes, as well as other geometric invariants of
the leaves, such as their second or third fundamental forms, and so on. Overall, we obtain a
large family of maps, all sending GHMC0, GHMC−1 and GHMCqf

1 into spaces of Teichmüller
data (such as Teichmüller space itself, its cotangent bundle, the space of measured geodesic
laminations, and so on). Suitable combinations of these maps then yield other maps which
take values inside spaces of real dimension (12g − 12). It is then natural to ask whether

these maps parametrise GHMC0, GHMC−1 and GHMCqf
1 . More precisely, we ask whether

they are injective or surjective, and when they are bijective, what their regularity might be
with respect to other parametrisations.

As we will see in Sections 3, 4 and 5, these problems are merely reformulations of
more classical problems of Teichmüller theory concerning the relationship between different
parametrisations. However, this scattering perspective presents a useful tool for visualising
and organising these results. Indeed, a good portion of this part of Teichmüller theory simply
amounts to adding new spokes to “wheels” such as that illustrated for the Minkowski case in
Figure 1, where, here, the centre represents the space, GHMC0, and each spoke represents
a different parametrisation. Similarly, as in Figure 2, we can then consider curves joining
different spokes, which correspond to compositions of different parametrisations, where it
is then natural to ask what the properties of these compositions might be. By approach-
ing the theory in this manner — that is, by thinking in terms of scattering problems and
parametrisations of ghmc lorentz spacetimes — we obtain, not only new results, but also
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Figure 2: Composing different spokes. The parametrisations used here are discussed
in detail in Section 3. Here the map J is given by the almost complex structure of TTrep[S],
and the diagram commutes (c.f. [BS12]).

simpler proofs of known results. Various cases will be discussed in Sections 3, 4 and 5.
Nevertheless, at the time of writing, we still find ourselves presented with a great number
of questions, many of which remain unresolved, or, at the very least, unpublished.

Other perspectives Finally, we refer the reader to the reviews [ABB+07, BBD+12,
Gué15, Bar] for other approaches to this theory. Furthermore, in [KS07, MS09, LS14,
BS09, BBS11, BBS14, BS12, Tou13, BS15, Bru] an analogous theory is developed for space-
times with certain types of singularities which are considered as world lines of particles;
in [BB09a, BB09b, Dan13, CDW14] a theory is developed to study the degeneration of de
Sitter and anti de Sitter spacetimes to Minkowski space; in [SS14], compositions of differ-
ent parametrisations are used to develop various dualities between GHMC0, GHMC−1 and
GHMCqf

1 ; and in [CR10] results of a similar nature are developed using riemannian ambient
spaces. Indeed, in recent years, a rich and active field has blossomed out of Mess’ work, but
we shall not discuss these other ideas further in the current paper.

We are grateful to Athanase Papadopoulos for having invited us to contribute to the
present volume of the “Handbook of group actions”. We are also grateful to Alexis Gilles
for helpful comments on later drafts of this paper, and to Cyril Lecuire and to Giongling Li
for fruitful conversations about the subject. The first author would also like to thank the
Federal University of Rio de Janeiro (UFRJ) for their hospitality during the preparation of
this work.

2 Paths and mid point theorems

2.1 General

Let S be a smooth, compact, oriented surface of hyperbolic type, let g denote its genus, and
let Π1 denote its fundamental group. Let Thol[S], Thyp[S] and Trep[S] denote respectively
its Teichmüller spaces of marked holomorphic structures, marked hyperbolic metrics and
properly discontinuous injective homomorphisms of Π1 into PSL(2,R). These spaces are
naturally endowed with the respective structures of a complex (3g−3)-dimensional manifold,
a real analytic (6g − 6)-dimensional manifold, and a real (6g − 6)-dimensional algebraic
variety. Significantly, although these spaces are naturally diffeomorphic, it is nonetheless
often preferable to maintain the distinction, as properties that are natural for one are not
necessarily natural for the others (c.f. the introduction to [Ker85] for a deeper discussion of
this subtle point).

We first consider paths between different points of these spaces which arise from natural
geometric constructions over Teichmüller space. It turns out that the existence of such paths
can often be neatly expressed in terms of what we will call “mid point” theorems that will
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be introduced presently. We will find that these “mid point” theorems also arise naturally
in the study of moduli spaces of ghmc Minkowski, anti de Sitter and de Sitter spacetimes,
and it is the striking interplay between these two frameworks that forms the basis of this
paper.

2.2 Measured geodesic laminations

The geometric constructs that will be studied in the sequel fall broadly into two classes,
namely those that are real analytic, and those that are not. The non-analytic constructs
will be defined using measured geodesic laminations, and for this reason, we consider it
worthwhile to review this concept in a fair amount of detail (c.f. [PH92] for a thorough
treatment).

Given a hyperbolic metric, g, over S, a geodesic lamination for g is a closed subset, L,
of S that consists of a union of complete, simple, pairwise disjoint geodesics. Elementary
properties of the geometry of hyperbolic metrics show that L has measure zero in S, and
that its complement consists of at most (4g− 4) connected components.

Observe that, for a given geodesic lamination, L, the unit speed geodesic flow of S
defines everywhere locally a flow over L that is unique up to a choice of direction. A
measured geodesic lamination is then defined to be a Radon measure, λ, over S, which is
supported on some geodesic lamination, L, and which is everywhere locally invariant with
respect to the geodesic flow of L. If λ is a measured geodesic lamination, then so too is aλ
for all non-negative real a. Likewise, if λ′ is another measured geodesic lamination, then the
sum, λ+ λ′, is also a measured geodesic lamination if and only if the union, L∪L′, of their
respective underlying geodesic laminations is itself also a geodesic lamination. We therefore
see that the space of measured geodesic laminations is a closed, piecewise linear subspace of
the space of Radon measures over S, where each linear component consists of those measured
geodesic laminations that are supported over a given fixed geodesic lamination (c.f. [Bon01]
or [DW08] for a discussion of piecewise linearity). This space is denoted by ML[S]g, and is
furnished with the topology of weak convergence for Radon measures.

In order to understand constructions involving measured geodesic laminations, it is stan-
dard practice to work with rational laminations. These are measured geodesic laminations
whose underlying geodesic lamination is a disjoint union of finitely many simple closed
curves.3 The simplest rational measured geodesic laminations are weighted geodesics. These
are pairs, λ := (c, a), where c is a simple, closed geodesic, and a is a non-negative real num-
ber, and the corresponding Radon measure is adl, where dl here denotes the 1-dimensional
Hausdorff measure of c. Every rational measured geodesic lamination is trivially a sum of
finitely many measured geodesics, whilst the rational measured geodesic laminations them-
selves form a dense subset of ML[S]g. For this reason, many constructions are first described
explicitly for measured geodesics or for rational measured geodesic laminations, and are then
extended by continuity to the whole of ML[S]g.

The transverse measure is a typical example of a geometric construct defined in this
manner. Consider first a measured geodesic lamination, λ, with underlying geodesic lami-
nation, L. A piecewise C1, immersed curve c : [0, 1] → S is said to be compatible with λ
(or, equivalently, with L) whenever it is transverse to L and, in addition, each of the end
points of all of its C1 components lie in the complement of L. When a compatible curve, c,
is also embedded, its transverse measure is defined by

τ(c, λ) := lim
r→0

λ(Nr(c))

2r
, (1)

where Nr(c) here denotes the neighbourhood of radius r about c. This function is additive
under the action of concatenation of this curves, and via this property extends to a unique
function defined over the space of all immersed, compatible curves. Now, when λ is rational,
this limit is well defined, and counts with appropriate weights the number of times that c
crosses L. More generally,

3Non-rational laminations contain complete, non-compact leaves in their support sets. In order to vi-
sualise this case, it is fundamental to understand that the intersection of any non-compact leaf with any
transverse curve will contain no isolated points (c.f. [Bon01] for a good discussion with figures).
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2.1 Theorem. The limit, τ(c, λ), exists for every measured geodesic lamination, λ, and
for every curve, c, which is compatible with λ. Furthermore, if (λm)m∈N is a sequence of
measured geodesic laminations converging to λ, and if c is compatible with λm for all m,
then

lim
m→+∞

τ(c, λm) = τ(c, λ) .

Conversely, consider a fixed geodesic lamination, L, and let c(L) denote the family of all
immersed curves that are compatible with it. A transverse measure over L is defined to be
a function, τ : c(L)→ [0,∞[, which is constant over each C1 isotopy class in c(L) and which
is additive with respect to concatenation of curves. We now have the following converse to
Theorem 2.1.

2.2 Theorem. Given a geodesic lamination, L, and a transverse measure, τ , there exists
a unique measured geodesic lamination, λ, supported on L such that τ = τ(·, λ).

It follows that measured geodesic laminations can equally well be defined via their trans-
verse measures. In fact, as we will see presently, it is the transverse measures that generally
arise in a natural manner from constructions of Teichmüller theory, and it is for this reason
that the definition in terms of transverse measures is actually more standard (c.f. [Bon01]).

The transverse measure also serves to parametrise the space of measured geodesic lam-
inations in a manner that does not depend on the hyperbolic metric chosen. To see this,
first let 〈Π1〉 denote the set of free homotopy classes in S. For a given measured geodesic
lamination, λ, its mass function, Mg(λ) : 〈Π1〉 → [0,∞[, is defined by

Mg(λ)(〈γ〉) := inf
η∈〈γ〉

τ(η, λ) ,

where 〈γ〉 here denotes a free homotopy class in 〈Π1〉, and η varies over all immersed curves
in 〈γ〉 which are compatible with λ. It turns out that the mass function uniquely defines
the measured geodesic lamination. Indeed,

2.3 Theorem. Mg defines a piecewise linear homeomorphism from ML[S]g onto a closed

subset of [0,∞[〈Π1〉, where the latter is furnished with the topology of pointwise convergence.

When λ is rational, with underlying geodesic lamination, L, Mg(λ)(〈γ〉) counts, with appro-
priate weights, the infimal number of times that an element of the free homotopy class, 〈γ〉,
crosses L. More precisely, if L = c1 ∪ . . . ∪ cm, where c1, . . . , cm are disjoint, simple, closed
geodesics, then

Mg(λ)(〈γ〉) := inf
η∈〈γ〉

m∑
k=1

λ(ck)

l(ck)
#η−1(ck) ,

where λ(ck) here denotes the mass of ck with respect to the measure, λ, l(ck) denotes its
length with respect to the metric, g, #η−1(ck) denotes the cardinality of its preimage under
η, and η varies over all immersed curves in the free homotopy class, 〈γ〉, which are compatible
with λ. Significantly, the concept of mass function is purely topological in the sense that the
image under Mg of the set of rational measured geodesic laminations is independent of the
metric chosen, and since the rational measured geodesic laminations form a dense subset of
ML[S]g, the entire image of Mg is also independent of the metric chosen. Furthermore,

2.4 Theorem. Given two hyperbolic metrics, g and g′, the composition, M−1
g ◦Mg′ , defines

a piecewise linear homeomorphism from ML[S]g′ into ML[S]g.

We denote the image of Mg by ML[S]. This space, which parametrises measured geodesic
lamination independently of the hyperbolic metric chosen, naturally carries the structure of
a piecewise linear manifold of real dimension (6g − 6). We consider ML[S] as the space of
abstract measured geodesic laminations.

8



Figure 3: The earthquake theorem. Here the upper vertex is given by a marked
hyperbolic structure over S. The earthquake maps, Erλ and E lλ, are piecewise continuous,
with discontinuities along the measured geodesic lamination, λ. The curved arrow joining
the lower two vertices corresponds to the earthquake E l2λ.

2.3 Earthquakes and graftings

The two non-analytic constructs defined using measured geodesic laminations are earth-
quakes and graftings. We first consider earthquakes. These are parametrised by ML[S] and
act naturally on Thyp[S]. Consider first a marked hyperbolic metric, g, and a measured
geodesic, λ := (c, a). Supposing that λ is oriented, the left earthquake of g along λ, which
we denote by E lλ(g) := E l(g, λ), is obtained by cutting S along c and regluing after rotating
the left hand side along c in the positive direction by a distance a.4 In fact, this definition is
independent of the chosen orientation of c, since reversing the orientation also exchanges the
left and right hand sides. The operation E l naturally extends to rational measured geodesic
laminations, and then to a unique continuous map from the whole of Thyp[S]×ML[S] into
Thyp[S].

2.5 Theorem (Earthquake theorem, Kerckhoff [Ker85]). For all fixed λ, the map E lλ is a
real analytic diffeomorphism.

The right earthquake operator, Er, is defined in a similar manner by rotating the right
hand sides instead of the left hand sides. In particular, for all λ, the map, Erλ, is the inverse
of E lλ, and it is therefore natural to define the earthquake flow, E : R× Thyp[S]×ML[S]→
Thyp[S], by

Et,λ(g) := E(t, g, λ) :=

{
E ltλ(g), if t ≥ 0, and

Er|t|λ(g) if t < 0 .

For any fixed λ, the map E(·, ·, λ) is real analytic in R×Thyp[S], and, for all s and for all t,

Es,λ ◦ Et,λ = Es+t,λ ,

so that (Et,λ)t∈R constitutes a real analytic group of real analytic diffeomorphisms of Thyp[S].
In particular, for any fixed (g, λ), the earthquake flow through g in the direction of λ defines
an embedded real analytic curve in Thyp[S], and by Theorem 2.5, there is a unique such
curve joining any two points of Teichmüller space. However, we find it more suggestive to
re-express this result in terms of the mid point of this curve, and we thereby obtain our first
“mid point” theorem, which is illustrated schematically in Figure 3.

2.6 Theorem (Earthquake theorem, Thurston, Kerckhoff [Ker83]). Given two marked hy-
perbolic metrics, g1 and g2, there exists a unique marked hyperbolic metric, h, and measured
geodesic lamination, λ, such that

g1 = E(−1, h, λ) = Erλ(h) and

g2 = E(1, h, λ) = E lλ(h) .

2.7 Remark. In fact, this is the manner in which the earthquake theorem is usually ex-
pressed.

4This is the classical Fenchel-Nielsen deformation by a twist of length a along the curve c.
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Graftings are likewise parametrised by ML[S] and map Thyp[S] naturally into Thol[S].
They are defined as follows. Consider first a marked, hyperbolic metric, g, and a weighted
geodesic, λ := (c, a). The grafting of g along λ, which we denote by Gλ(g) := G(g, λ), is the
holomorphic structure obtained by slicing S along c and inserting the cylinder c× [0, a]. As
before, this operation naturally extends to rational measured geodesic laminations, and then
to a unique continuous map from the whole of Thyp[S]×ML[S] into Thol[S]. Furthermore,
this map is at every point real analytic in the first variable (c.f. [SW02]) and tangentiable
in the second (c.f. [DW08]). In fact, we have

2.8 Theorem. For all fixed λ, Gλ is a real analytic diffeomorphism. For all fixed g, the
map λ 7→ G(g, λ) is a bitangentiable homeomorphism.

Earthquakes and graftings are unified as follows. Let H+ be the upper half space in C, let

H+
denote its closure, and define the complex earthquake map, E : H+×Thyp[S]×ML[S]→

Thol[S] by
E(s+ it, g, λ) := Gt,λ ◦ Es,λ(g) .

2.9 Theorem (McMullen [McM98]). For all (g, λ), the map z 7→ E(z, g, λ) defines a holo-

morphic map from H+
into Thol[S].

This map can also be visualised as follows. Consider a marked, hyperbolic metric, g,
a compact geodesic, c, in S, and a marked torus, T , furnished with a flat metric. Let
c′ be a geodesic in the homology class of the first basis element of π1(T ) (which is well
defined by the marking). Upon rescaling the metric of T , we may suppose that c′ has
the same length as c. The complex earthquake of g by T is then obtained by slicing S
along c, T along c′, and by joining the resulting two surfaces together by identifying these
two geodesics. In particular, by varying T over its Teichmüller space, we see how complex
earthquakes continuously interpolate between graftings and earthquakes, and also how the
space of complex earthquakes along a given geodesic identifies with the upper half space,
since this is the natural parametrisation of the Teichmüller space of the marked torus.

Theorem 2.6 is in some sense compatible with the symmetry of the domain of E with
respect to the imaginary axis, and by the same token, we should not expect results analogous
to this theorem for graftings. However, since E is analytic along the boundary of H+, it

nonetheless extends analytically to a neighbourhood of H+
. It seems to us an interesting

problem to determine how far along the negative imaginary axis this analytic continuation
can be developed. Indeed, in the case where λ := (c, a) is a weighted geodesic, this would
correspond heuristically to the supremal conformal modulus of cylinders in the homotopy
class of c that can be removed from S.

2.4 Harmonic maps and minimal lagrangian diffeomorphisms

Given a holomorphic structure, H, and a symmetric 2-form, a, over S, the energy density
of a with respect to H is defined by

E(a|H) := Trh(a) dVolh ,

where h is any Riemannian metric conformal to H and dVolh is its volume form. We readily
verify that this is independent of the metric, h, chosen. The energy of a with respect to H
is then given by

E(a|H) :=

∫
S

E(a|H) =

∫
S

Trh(a) dVolh .

We are interested in critical points of this functional. However, since E is linear in a, this
is only meaningful if we first restrict attention to some subspace. We therefore say that the
2-form, a, is harmonic whenever it is a critical point of E within the subspace {φ∗a}, where
φ here ranges over all smooth diffeomorphisms of S.

Of particular interest to us is the case where a is replaced by the pull-back of some fixed
riemannian metric, g, through some C1-map, f : S → S. We then say that the map, f ,

10



Figure 4: Minimal lagrangian diffeomorphisms. Here the upper vertex is given by a
marked holomorphic structure over S, and the curved arrow joining the two lower vertices
is the unique minimal lagrangian diffeomorphism between these points which preserves the
markings.

is harmonic with respect to (H, g) whenever the form f∗g is harmonic with respect to H.5

The following is a combination of many results [ES64, Har67, Al′68, Sam78, SY78].

2.10 Theorem. Given a marked holomorphic structure, H, and a marked hyperbolic metric,
g, there exists a unique harmonic diffeomorphism, f : (S,H) → (S, g), which preserves the
markings.

Symmetrizing this concept of harmonic diffeomorphisms, Schoen developed the following
notion of minimal lagrangian diffeomorphisms. Given two metrics, g1 and g2, over S, a
diffeomorphism f : S → S is said to be minimal lagrangian with respect to (g1, g2) whenever
its graph is a minimal lagrangian submanifold of the product space, S × S, furnished with
the metric, g12 := π∗1h1 + π∗2h2, and the symplectic form, ω12 := π∗1 dVol1−π∗2 dVol2, where
π1 and π2 are the respective projections onto the first and second components, and dVol1
and dVol2 are the respective volume forms of the metrics, g1 and g2.

The relationship between minimal lagrangian diffeomorphisms and harmonic diffeomor-
phisms becomes clearer when we recall the classical result of minimal surface theory (c.f.
[Oss86]) that says that if X is an immersed surface in the product space S × S, and if H is
the conformal structure of the restriction of g12 to X, then X is minimal if and only if its
coordinate functions are harmonic with respect to H, that is, if and only if the restrictions
to X of π1 and π2 are harmonic. In the case where X is a graph, it naturally identifies with
S, so that the two projections π1 and π2 then yield harmonic maps from (S,H) into (S, g1)
and (S, g2) respectively. Although there may exist minimal graphs which are not lagrangian,
the lagrangian condition ensures uniqueness, yielding the following “mid point” theorem for
harmonic maps, which is illustrated schematically in Figure 4.

2.11 Theorem (Labourie [Lab92b], Schoen [Sch93]). Given two marked hyperbolic metrics,
g1 and g2, there exists a unique minimal lagrangian diffeomorphism, f : (S, g1) → (S, g2),
which preserves the markings.

2.5 Hopf differentials

Before proceeding, it is worth rephrasing Theorems 2.10 and 2.11 in a linear manner. To
this end, we first introduce Hopf differentials as follows. Recall that any real, symmetric
2-form, a, over C decomposes naturally as

a =: φ+ ρ+ φ ,

where ρ is a real-valued (1, 1)-form and φ is a (2, 0)-form which we refer to as the Hopf
form of a (with respect to the complex structure of C). This concept extends to forms over
bundles, so that for a given holomorphic structure, H, and a given symmetric 2-form, a,
we define φ(a|H), the Hopf differential of a with respect to H, to be its (2, 0)-component.

5Usually, in the literature, we say that f is harmonic whenever it is a critical point of the functional
f 7→ E(H|f∗g). Although this is more general than the condition of harmonicity of f∗g, in the case of
interest to us, where the target manifold is 2-dimensional, the two definitions are equivalent.
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The Hopf differential is readily calculated as follows. Let J ∈ Γ(End(TS)) be the complex
structure of H, and for a given point x ∈ S, let (e1, e2) be a basis of TxS such that Je1 = e2.
If (e1, e2) is its dual basis, then

φ(a|H) =
1

4
a(e1 − ie2, e1 − ie2)dzdz ,

where dz := e1 + ie2. Hopf differentials naturally arise in the study of harmonic forms due
to the following result.

2.12 Lemma. The symmetric 2-form, a, is harmonic with respect to H if and only if the
Hopf differential, φ(a|H), is holomorphic with respect to H.

Proof. Indeed, let h be a riemannian metric conformal to H. Consider an exponential chart
about a point x in S. Recall that the form a is harmonic if and only if

ωk := hij(2aki;j − aij;k) = 0 ,

where the subscript “;” here denotes covariant differentiation with respect to the Levi-Civita
covariant derivative of h. On the other hand, ∂φ(a|H)(0) = ψdzdzdz, where

ψ = (a11;1 − a22;1 + 2a12;1) + (a11;2 − a22;2 − 2a12;1)i = ω1 − iω2 ,

and the result follows.

Lemma 2.12 allows us to restate the results of the previous section in the language of
Hopf differentials. First, recall that the cotangent bundle to Thol[S] naturally identifies
with the space of all pairs (H, φ), where H is a marked holomorphic structure and φ is
a quadratic holomorphic differential with respect to H (c.f. [FK92]). Theorem 2.10 now
yields a well defined map Φ : Thol[S] × Thyp[S] → T∗ Thol[S]. Indeed, for all H and for all
g, Φ(H, g) = φ(f∗g|H), where f : (S,H) → (S, g) is the unique harmonic diffeomorphism
which preserves the markings.

2.13 Theorem (Wolf [Wol89]). Φ is a real analytic diffeomorphism.

Now let Ψ : T∗ Thol[S]→ Thol[S]× Thyp[S] denote the inverse of Φ. The existence part
of Theorem 2.11 is now restated in the form of a partial “mid point” theorem as follows.

2.14 Theorem. Given two marked hyperbolic metrics, g1 and g2, there exists a marked
holomorphic structure, H, and a holomorphic quadratic differential, φ, such that{

Ψ(H, φ) = g1 and

Ψ(H,−φ) = g2 .

2.6 Labourie fields

It is the lagrangian property in Theorem 2.11 that ensures uniqueness. Since this has no
straightforward interpretation in terms of Hopf differentials, we now introduce the more
refined notion of Labourie fields. First, recall that if g is any riemannian metric with Levi-
Civita covariant derivative, ∇, then a symmetric endomorphism field, A : TS → TS, is said
to be a Codazzi field whenever

(∇XA)Y = (∇YA)X ,

for all vector fields X and Y . The Codazzi field, A, is then said to be a Labourie field
whenever, in addition, it is positive definite, and

Det(A) = 1 .

Labourie fields are characterised by the following useful result.
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2.15 Lemma. Let g be a riemannian metric, let A : TS → TS be a positive definite
endomorphism field, and let H be the holomorphic structure of g(A·, ·). Any two of the
following imply the third :

1. A is a Codazzi field,

2. Det(A) is constant, and

3. φ(g|H) is a holomorphic quadratic differential.

Proof. Denote h := g(A·, ·). Using the notation of Lemma 2.12, with g in place of a, by the
Koszul formula, we obtain

ωk = −2gkph
pqhij(hiq:j − hij:q)− gkphpqhijhij:q ,

where the subscript “:” here denotes covariant differentation with respect to the Levi-Civita
covariant derivative of g. Thus,

ψ = −2(α1 − iα2)− gkphpq(Det(A):1 − iDet(A):2) ,

where
αk = gkph

pqhij(hiq:j − hij:q) .

Since α vanishes if and only if A is a Codazzi field, the result follows.

In particular, Labourie fields possess the following symmetry property.

2.16 Corollary. If A is a Labourie field of g, then A−1 is a Labourie field of the riemannian
metric g(A·, A·).

Now let Lab Thyp[S] be the space of all pairs (g,A), where g is a marked hyperbolic
metric and A is a Labourie field of g. This is a smooth, non-linear bundle over Thyp[S]
with typical fibre of real dimension (6g−6) (c.f. [Lab92a]). The application, Φ, constructed
in the previous section now yields a map A : Thol[S] × Thyp[S] → Lab Thyp[S] defined as
follows. Given a marked holomorphic structure, H, with complex structure, J , and a marked
hyperbolic metric, g, with complex structure J0, we define A(H, g) := −J0f∗J , where f :
(S,H) → (S, g) is the unique harmonic diffeomorphism which preserves the marking, and
f∗ denotes its push forward operation. It is relatively straightforward to verify that this is
indeed a Labourie field. Theorem 2.13 is now restated as

2.17 Theorem. A is a real analytic diffeomorphism.

Sketch of proof. It suffices to show how to map between Lab Thyp[S] and T∗Thol[S]. Given
a point, (g,A) in Lab Thyp[S], let H to be the marked holomorphic structure conformal to
g(A·, ·), and let φ to be the Hopf differential of g with respect to H. By Lemma 2.15, φ is
a quadratic holomorphic differential, and (H, φ) is the point of T∗ Thol[S] corresponding to
(g,A). Conversely, given a point (H, φ) in T∗Thol[S], let g be the unique marked hyperbolic
metric such that Φ(H, g) = (H, φ), let f : (S,H) → (S, g) be the unique harmonic diffeo-
morphism which preserves the marking, and let A ∈ Γ(End(TS)) be such that Det(A) = 1
and g(A·, ·) is conformal to H. By Lemma 2.15, A is a Labourie field of g, and (g,A) is the
point of Lab Thyp[S] corresponding to (H, φ).

Using Labourie fields, we now transform Theorem 2.11 into another “mid-point” theorem,
which is illustrated schematically in Figure 5. Observe, in particular, that, by Corollary 2.16,
the following statement is in fact symmetric.

2.18 Theorem (Labourie field theorem, Labourie [Lab92b], Schoen [Sch93]). Given two
marked hyperbolic metrics, g1 and g2, there exists a unique Labourie field, A, and a unique
diffeomorphism f : S → S which preserves the markings such that

f∗g2 = g1(A·, A·) .
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Figure 5: The Labourie field theorem. Here the upper vertex is given by the Labourie
field, A, and the curved arrow joining the two lower vertices is the unique diffeomorphism,
f , which preserves the marking such that f∗g2 = g1(A·, A·).

2.7 Landslides and rotations

Landslides, which were introduced by Bonsante, Mondelo & Schlenker in [BMS13], are
parametrised by R × Thyp[S] and act naturally on Thyp[S]. They are defined as follows.
Consider a marked hyperbolic metric, g. Given another marked hyperbolic metric, h, and a
real number, t, define the metric gt,h over S by

gt,h(U, V ) := g
(
e(t/2)J0AU, e(t/2)J0AV

)
,

where J0 is the complex structure of g, and A is the unique Labourie field of h with respect
to g that is furnished by Theorem 2.18. In fact, denoting J := J0A, we readily determine
that J2 = − Id, so that gt,h can also be expressed in the following manner.

gt,h(U, V ) = g (cos(t/2)J0U − sin(t/2)AU, cos(t/2)J0V − sin(t/2)AV ) .

We now have,

2.19 Lemma. For all g and for all (t, h), the metric gt,h is hyperbolic.

Proof. Indeed, denote At := e(t/2)J0A. Let ∇ denote the Levi-Civita covariant derivative
of g. Since A is a Codazzi field, d∇At = 0, and it follows that the Levi-Civita covariant
derivative, ∇t, of gt is given by

∇tX = A−1
t ∇(AtX) .

Bearing in mind that g is hyperbolic, the Riemann curvature tensor of gt is therefore given
by

RtXY Z = RXYAtZ = 〈X,AtZ〉Y − 〈Y,AtZ〉X ,

and the result now follows since Det(A) = 1.

We now define Lt,h(g) := L(t, g, h) := gt,h, and we call it the landslide of g along (t, h).
For any given g and h, the orbit, L(·, g, h), defines a closed curve in Thyp[S] of period

2π, and since L(0, g, h) = g and L(π, g, h) = h, we consider it as a circle upon which g and
h are diametrically opposite points. It turns out that this “landslide flow” shares many of
the properties of the earthquake flow already discussed in Section 2.3 (c.f. [BMS13] and
[BMS15]). In particular, given a marked, hyperbolic metric, h, consider its mass function,
M(h) ∈ [0,∞[Γ1 , defined by

M(h)(〈γ〉) := inf
η∈〈γ〉

lh(η) ,

where 〈γ〉 here denotes a free homotopy class in 〈Π1〉, η varies over all closed curves in this
free homotopy class, and lh(η) denotes its length with respect to the metric, h.

2.20 Theorem (Bonsante–Mondello–Schlenker [BMS13]). Let g be a marked hyperbolic
metric, let (hm) be a sequence of marked hyperbolic metrics, and let (θm) be a sequence of
positive real numbers. If (θmM(hm))m∈N converges pointwise to Mg(λ), then

lim
m→∞

L(θm, g, hm) = E lλ(g) .
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Figure 6: Landslides and rotations. Here the landslide of g along (t, h) is shown to
coincide with the rotation of g by an angle of t about the marked holomorphic structure of
the metric g(A·, ·), where A is the unique Labourie field of h with respect to g furnished by
Theorem 2.18.

In analogy to the case of earthquakes, it is natural to ask whether there exists a land-
slide flow between two given hyperbolic metrics, and in [BMS13], Bonsante, Mondello &
Schlenker provide the affirmative answer in the form of the following “mid point” theorem
for landslides.

2.21 Theorem (Landslide theorem, Bonsante–Mondello–Schlenker [BMS13]). Given t ∈
]− π, π[, and two marked, hyperbolic metrics, g1 and g2, there exists a unique pair, h+ and
h−, of marked hyperbolic metrics such that

g1 = L(−t, h+, h−) = L−t,h−(h+) , and
g2 = L(t, h+, h−) = Lt,h−(h+) .

A more intuitively appealing approach to landslides is given by rotations, which are de-
fined as follows. Given a marked hyperbolic metric, g, and a marked holomorphic structure,
H, let φ be the unique Hopf differential of g with respect to H furnished by Theorem 2.13.
Now, given a real number, t, define Rt,H(g) := R(t, g,H) to be the unique marked, hyper-
bolic metric whose Hopf differential with respect to H is eitφ, see Figure 6. We call this the
rotation of g by an angle t about H. Landslides and rotations are completely equivalent.
Indeed,

2.22 Theorem. For all (t, g, h),

L(t, g, h) = R(t, g,H) ,

where H is the marked holomorphic structure of the metric g(A·, ·), and A is the unique
Labourie field of h with respect to g given by Theorem 2.18.

This correspondence is illustrated in Figure 6. In particular, whilst the corresponding result
for landslides is less straightforward to state, it is easy to see that the composition of two
rotations about a given marked holomorphic structure,H, is another rotation about the same
marked holomorphic structure. Theorem 2.21, is thus restated as follows, and is illustrated
schematically in Figure 7.

2.23 Theorem (Rotation theorem, Bonsante–Mondello–Schlenker [BMS13]). Given t ∈]−
π, π[, and two marked hyperbolic metrics, g1 and g2, there exists a unique marked hyperbolic
metric, h, and a unique marked holomorphic structure, H, such that

g1 = R−t,H(h) = R(−t, h,H) , and
g2 = Rt,H(h) = R(t, h,H) .

15



Figure 7: The rotation theorem. Here the upper vertex is given by a marked holomor-
phic structure over S, and the curved arrow joining the two lower vertices corresponds to a
rotation of angle 2t about this point.

3 Minkowski space

3.1 Minkowski spacetimes

Minkowski space, which will be denoted by R2,1, is defined to be the space of all real triplets,
x := (x1, x2, x3), furnished with the metric6

〈x, y〉2,1 := −x1y1 − x2y2 + x3y3 .

An important object for the study of this space is the unit pseudosphere, defined to be the
locus of all vectors of norm-squared equal to 1. This hyperboloid consists of two isometric
connected components, and the future oriented component is identified with 2-dimensional
hyperbolic space, that is

H2 = {x | 〈x, x〉2,1 = 1, x3 > 0} .

The isometry group of Minkowski space is O(2, 1) n R2,1, where O(2, 1) acts linearly, and
R2,1 acts by translation. By considering the action of O(2, 1) on the unit pseudosphere, we
see that this group consists of 4 connected components which are determined by whether
they preserve or reverse the orientation, and whether they preserve or exchange the two
connected components of the unit pseudosphere. In particular, the identity component of
O(2, 1) identifies with the group of orientation preserving isometries of H2, that is, PSL(2,R).

Let S be a closed surface of hyperbolic type. In all that follows, an equivariant immersion
of S into R2,1 is a pair, (e, θ), where e is an immersion of the universal cover, S̃, of S into
R2,1, which is locally strictly convex (LSC) in the sense that its shape operator is everywhere
positive definite, and θ : Π1 → PSL(2,R)nR2,1 is a homomorphism such that, for all γ ∈ Π1,

e ◦ γ = θ(γ) ◦ e ,

where Π1 acts on S̃ by deck transformations. The homomorphism, θ, will henceforth be
referred as the holonomy of the equivariant immersion. Two equivariant immersions, (e, θ)
and (e′, θ′), will be considered equivalent whenever there exists a homeomorphism, φ, of S
which is homotopic to the identity, and an element, α, of PSL(2,R) nR2,1 such that

e′ = α ◦ e ◦ φ̃ , and

θ′ = αθα−1 ,

where φ̃ : S̃ → S̃ is a lifting of φ. Throughout the sequel, by abuse of terminology, the
equivalence class, [e, θ], of (e, θ) will also be referred to as an equivariant immersion, and,
furthermore, will be identified with the representative element, (e, θ), whenever convenient.

Of repeated use throughout the sequel will be the following result (c.f. for example
[BGM05])7.

6Throughout this text, in keeping with the notation of theoretical physics, spatial directions will have
negative sign and temporal directions will have positive sign.

7Naturally, the fundamental theorem of surface theory is better known in the riemannian case (c.f.
[Spi79]). The only difference between the two is the formula for K, which in the riemannian case is given
by K = c + Det(A).
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3.1 Theorem (Fundamental theorem of surface theory — lorentzian case). Let S be a
surface, let g be a riemannian metric over S, and let K be its sectional curvature. If c ∈ R
is a real number, and if A is a Codazzi field such that K = c − Det(A), then there exists
an isometric, spacelike immersion, e : S → M c, whose shape operator is given by A, where
M c here denotes the model lorentzian spacetime of constant sectional curvature equal to c.
Furthermore, e is unique up to composition by isometries of M c.

The set of homomorphisms which arise as holonomies of equivariant immersions is char-
acterised in a straightforward manner in terms of Teichmüller data. Indeed, given an equiv-
ariant immersion, [e, θ], its holonomy, θ, defines a tangent vector to Trep[S] as follows.
Consider first the linear component, θ0, of θ, which sends Π1 into PSL(2,R). Since the
equivariant immersion, e, is spacelike, it is actually an embedding, and is even a complete
graph over a plane (c.f. [ABB+07]). From this simple fact, we deduce

3.2 Theorem (Mess [Mes07]). The homomorphism, θ0, is injective, and its image, θ0(Π1),
acts properly discontinuously on H2.

Indeed, let Ne : S̃ → H2 be the future oriented, unit, normal vector field over e. This map,
which will henceforth be referred to as the Gauss map of e, is θ0-equivariant in the sense
that for all γ ∈ Π1,

Ne ◦ γ = θ0(γ) ◦Ne .

It follows by local strict convexity that Ne is at every point a local diffeomorphism, and
since Π1 acts cocompactly on S̃, and since the latter is simply connected, a straightforward
argument shows that Ne is actually a global diffeomorphism. In particular, θ0 is injective
and θ0(Π1) acts properly discontinuously on H2, as desired.

It follows that the quotient, H2/θ0(Π1), is a compact hyperbolic surface, so that θ0

indeed defines a point of Trep[S]. Furthermore, if (e′, θ′) is another equivariant immersion
in the same equivalence class, then the linear component, θ′0, of its holonomy is conjugate
to θ0. It therefore defines the same point of Trep[S], so that the point of Teichmüller space
determined by θ is indeed a function of the equivalence class, [e, θ], only.

The tangent vector above this base point is defined via the translation component, τ , of
θ. Indeed, τ satisfies the following cocycle condition,

τ(γγ′) = τ(γ) + θ0(γ)τ(γ′) ,

where γ and γ′ are arbitrary elements of Π1. This means that τ defines a class in the
cohomology group, H1

θ0
(Π1,R2,1). However, since R2,1 itself identifies with the Lie algebra,

sl(2,R), this is the same as the cohomology group, H1
Ad ◦θ0(Π1, sl(2,R)), which is known

to identify with the tangent space to Trep[S] at the point [θ0] (c.f. [Gol84]). Furthermore,
suppose that (e′, θ′) is another equivariant immersion in the same equivalence class whose
holonomy, θ′, has the same linear component as θ. Then θ′ only differs from θ by conjugation
by a translation, and so τ ′ only differs from τ by addition of a coboundary. It therefore
defines the same class in H1

Ad ◦θ0(Π1, sl(2,R)), so that the tangent vector to Teichmüller
space determined by θ is also a function of the equivalence class, [e, θ], only.

In summary, Theorem 3.2 refines to

3.3 Theorem (Mess [Mes07]). The homomorphism, θ0, is injective, and its image, θ0(Π1),
acts properly discontinuously on H2. Furthermore, the translation component, τ , is a θ0-
cocycle, so that the holonomy, θ, defines a point of T Trep[S]. In particular, this point only
depends on the equivalence class, [e, θ], of (e, θ).

The converse problem of recovering an equivariant immersion from its holonomy is more
involved. Indeed, it is straightforward to show that perturbations of equivariant immersions
yield entire continua of inequivalent equivariant immersions with the same holonomy, so
that the problem is clearly highly degenerate. However, this degeneracy can be removed by
studying, instead of the immersion itself, the ambient space in which it lies. In fact, every
equivariant immersion is contained in a well defined ghmc Minkowski spacetime. More
precisely,
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3.4 Theorem (Mess [Mes07]). Given a representation, θ : Π1 → PSL(2,R) n R2,1, whose
linear component, θ0, is injective and acts properly discontinuously over H2, there exists a
unique future complete, convex subset, Ω+

θ , of Minkowski space which is maximal with respect
to inclusion, and over the interior of which θ acts freely and properly discontinuously.

3.5 Remark. Here a spacetime is said to be future (resp. past) complete whenever every
future oriented (resp. past oriented) causal geodesic can be extended indefinitely.

3.6 Remark. In fact, Mess constructs a unique, maximal, invariant convex subset, Ωθ, in
the projective space, RP3. Its intersection with R2,1 then consists of two connected com-
ponents, one of which, denoted by Ω+

θ , is future complete, and the other of which, denoted
by Ω−θ , is past complete. However, reflection through the origin maps Ω−θ into Ω+

θ′ , where
θ′ : Π1 → PSL(2,R) n R2,1 is the homomorphism whose linear part, θ′0, is equal to θ0, and
whose translation component, τ ′, is equal to −τ . For this reason, it will be sufficient in all
that follows to consider only the future complete component.

The quotient, Ω+
θ /θ(Π1), is a future complete, ghmc Minkowski spacetime. Furthermore,

since any compact, LSC Cauchy surface in a given ghmc Minkowski spacetime lifts to an
equivariant immersion in R2,1, it turns out that every future complete, ghmc Minkowski
spacetime actually arises in this manner. In other words, we have constructed two maps
which send the space, GHMC0, of future-complete, ghmc Minkowski spacetimes into spaces
of Teichmüller data (c.f. Tables 1 and 2), and Theorems 3.3 and 3.4 now yield

Map Description Codomain
Θ0 The linear component of the holonomy Trep[S]

Table 1: Maps taking values in spaces of real dimension (6g− 6).

Map Description Codomain
Θ The entire holonomy T Trep[S]

Table 2: Maps taking values in spaces of real dimension (12g− 12).

3.7 Theorem. The map, Θ, defines a bijection from GHMC0 into T Trep[S].

In particular, this yields a parametrisation of GHMC0 by T Trep[S], and it is this parametri-
sation that is used to furnish GHMC0 with the structure of a real algebraic variety.

3.2 Laminations and trees

The inverse problem of reconstructing the equivariant immersion from its holonomy becomes
clearer when our attention shifts from the homomorphism, θ, to its invariant set, Ω+

θ . Fur-
thermore, by showing that certain geometric objects associated to Ω+

θ are unique, we obtain
new functions from GHMC0 into spaces of Teichmüller data, which suggest other poten-
tial parametrisations for this space. In this section, we consider the non-smooth geometric
objects that are associated to Ω+

θ . The first is a measured geodesic lamination over the
hyperbolic surface, H2/θ0(Π1). It is constructed using the generalised Gauss map of Ω+

θ .
This is a set-valued function defined as follows. Consider first an arbitrary closed, future
complete convex subset, X, of R2,1. Given a boundary point, p, of X, any plane passing
through p is said to be a supporting plane to X at that point whenever X lies entirely to
one side of it. The set, G(p), is then defined to be the set of all future oriented, timelike,
unit vectors which are normal to some spacelike supporting plane to X at p. In particular,
G(p) is a (possibly empty) subset of the future component of the unit pseudosphere, which,
we recall, identifies with H2.
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In order to understand the geometry of the generalised Gauss map, it is useful to first
consider configurations of null planes. To this end, let C+ be the positive light cone,

C+ := {x | 〈x, x〉2,1 = 0, x3 > 0} ,

and let PC+ be its projective quotient. Observe that any geodesic, c, in H2 is the intersection
of H2 with a unique timelike plane, P . The intersection of P with C+ then defines two
distinct rays which project down to two distinct points in PC+. By identifying these points
with the end points of the geodesic, c, we see how PC+ naturally identifies with the ideal
boundary of H2.

Now consider a null plane, P1, in R2,1. Its null direction, N1, is the ray in C+ given by
the intersection of a suitable translate of itself with C+. Furthermore, if X is the half-space
corresponding to the future of P1, then for any p ∈ P1, the image, G(p), of the generalised
Gauss map of X at the point, p, is empty.

Now let P2 be another null plane which is not parallel to P1. The intersection of these
two planes is a complete, spacelike geodesic, Γ, normal to both N1 and N2. Furthermore,
if X now denotes the future complete, convex set determined by the intersections of the
respective futures of these two planes, then the image, G(p), of its generalised Gauss map
at any point of Γ is the complete geodesic in H2 whose end points at infinity are N1 and N2.

Finally, let P3 be a third null plane which is not parallel to Γ. The three planes, P1, P2

and P3 then intersect in a single point, p, say, and if X now denotes the future complete
convex set determined by the intersection of their three respective futures, then the image,
G(p), of its generalised Gauss map at the point, p, is the ideal triangle in H2 with end points
N1, N2 and N3.

Now, since the invariant set, Ω+
θ , is maximal, its generalised Gauss map behaves much

like that of a finite configuration of null planes. In particular, its boundary, ∂Ω+
θ , is made

up of three types of points. When p is a face point, G(p) is empty, when p is an edge point,
G(p) is a complete geodesic in H2, and when p is a vertex point, G(p) is an ideal polygon
in H2, possibly with infinitely many sides. The union of all complete geodesics which are
images of edge points now defines a geodesic lamination, L, over H2. Furthermore, since it is
invariant under the action of θ0(Π1), it projects to a lamination over the surface, H2/θ0(Π1).

The construction of the transverse measure over this lamination is a bit more subtle,
and relies on the observation that any point, p, of H2 not lying in L has a unique preimage
in ∂Ω+

θ . With this in mind, the mass of any short transverse curve, c, with end points
not in L is first approximated by the Minkowski distance in R2,1 between the preimages
of these two end points, and the mass of an arbitrary curve, c, compatible with L, is now
determined in the usual manner by summing over short segments and taking a limit. Since
this transverse measure is also invariant under the action of θ0(Π1), we thereby obtain a
measured geodesic lamination over the surface, H2/θ0(Π1). An analogous construction also
associates a measured geodesic lamination to the past-complete invariant set, Ω−θ . In this
manner, we obtain two maps taking values in a space of Teichmüller data of real dimension
(6g− 6) (c.f. Table 3).

Map Description Codomain

L± The measured geodesic lamination of ∂Ω±θ ML[S]

Table 3: Maps taking values in spaces of real dimension (6g− 6).

In particular, the pair (Θ0,L
±) also parametrises the space of future-complete, ghmc

Minkowski spacetimes. Indeed,

3.8 Theorem (Mess [Mes07]). The map (Θ0,L
+) defines a bijection from GHMC0 into

Trep[S]×ML[S].

In order to visualise how the set Ω+
θ is recovered from the lamination, consider first the

case of a single, complete geodesic, c, in H2, weighted by a positive real number, a. When H2

is identified with the unit pseudosphere in R2,1, the geodesic, c, is given by its intersection
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with a timelike plane, P , whose normal we denote by N . The future convex set, Ω+
c,a, is

then constructed by slicing the interior of the future cone, C+, along P , translating one of
the components by a distance, a, in the direction of N , and filling in the “V”-shaped region
between the two. In fact, this set coincides, up to translation, with the intersection of all the
future sides of all lightlike planes which lie in the past of the segment [0, aN ]. In addition, it
is worth observing that, in the same manner that hyperbolic space is the locus of all points
in the interior of the future cone, C+, which lie at unit distance from the origin, the locus of
all points in Ω+

c,a lying at unit distance from the segment, [0, aN ], coincides with a grafting
of a cylinder of length, a, along the geodesic, c, as outlined in Section 2.3. In particular, as
with graftings, this construction extends continuously to the space of all measured geodesic
laminations, thereby yielding Theorem 3.8.

Consider now the pair (L−, L+). We show that this map defines a partial parametrisation
of GHMC0. First, let Fuc0 denote the space of Fuchsian ghmc Minkowski spacetimes, that is,
those spacetimes in GHMC0 whose holonomy has vanishing translation component. Observe
that, for all such spacetimes, the invariant set, Ωθ, is simply the interior of the future cone,
C+, and so the corresponding measured geodesic lamination is trivial. In particular, the
whole of Fuc0 is mapped by (L−, L+) to the same point, (0, 0), of ML[S] × ML[S]. We
now describe the image of this map. We say that a pair (λ−, λ+), of measured geodesic
laminations fills S whenever every connected component of the complement of the union
of their respective supports lifts to a bounded polygon in H2. Equivalently (c.f. [Ser12]),
(λ−, λ+) fills S whenever there exists ε > 0 such that

M−(〈γ〉) +M+(〈γ〉) > ε ,

for every non-trivial free homotopy class, 〈γ〉, in 〈Π1〉, where M− and M+ denote respec-
tively the mass functions of λ− and λ+. We denote by

ML[S]×fill ML[S]

the subset of ML[S]×ML[S] consisting of those pairs of laminations which fill S.

3.9 Theorem (Bonsante–Schlenker [BS12]). The map, (L+,L−) defines a bijection from
GHMC0 \Fuc0 into ML[S]×fill ML[S].

Finally, consider the mass function, Mλ, of some measured geodesic lamination, λ. Recall
that Mλ maps free homotopy classes in 〈Π1〉 into [0,∞[. Now, consider a minimal, short
action8, α, of Π1 on a real tree, T (c.f. [CM87]), and let Dα : 〈Π1〉 → [0,∞[ be its
displacement function, that is, for every conjugacy class, 〈γ〉, in 〈Π1〉, Dα(〈γ〉) is the infimal
displacement, d(x, α(γ) · x), as x ranges over all points, x, of T . Recall (c.f. [Hat88]), that,
as with measured geodesic laminations and their mass functions, minimal, short actions of
Π1 on real trees are also uniquely defined up to isometry by their displacement functions.
Now, although it is not known which functions arise as mass functions of measured geodesic
laminations or as displacement functions of minimal, short actions on real trees, it is a
remarkable fact (c.f. [Sko96]), that the two coincide, that is, a function, f : 〈Π1〉 → [0,∞[,
is the mass function of some measured geodesic lamination if and only if it is the displacement
function of some minimal, short action on some real tree. In this manner, we obtain a natural
duality between the space of measured geodesic laminations and the space of minimal, short
actions on real trees which associates to a given measured geodesic lamination, λ, the unique
minimal, short action, α, whose displacement function is equal to the mass function of λ.

It turns out that the minimal, short action on a real tree is, in fact, the easiest object
to visualise in the above construction. Indeed, consider again the three planes, P1, P2 and
P3, introduced above. Let X12 denote the convex set defined by the intersections of the
respective futures of P1 and P2, and define the pseudometric, d, over its boundary, ∂X12,
by

d(x, y) = inf
γ
l(γ) ,

8Recall that an action of Π1 on a real tree, T , is said to be minimal whenever it contains no invariant
proper subtree, and is said to be short whenever the stabilizer of any isometric copy of R in T is abelian.
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where γ ranges over all continuous curves in ∂X12 starting at x and ending at y, and l(γ)
denotes its length with respect to the Minkowski metric. It is a straightforward matter
to show that the metric space, ∂X12/ ∼, obtained by identifying points separated by zero
distance is naturally isometric to the geodesic, Γ, defined by the intersection of P1 with P2.
Furthermore, performing the same construction on the boundary of the set, X123, defined by
the intersection of the respective futures of P1, P2 and P3, yields a metric space, ∂X123/ ∼,
which is isometric to the union of the edges of the polyhedron, ∂X123. More generally,
applying this construction to the boundary of Ω+

θ yields a real tree, over which θ(Π1) acts
in a minimal, short manner.

We therefore obtain another map taking values in a space of Teichmüller data of real
dimension (6g − 6), even though it is, in fact, completely equivalent to the function, L,
defined above (c.f. Table 4).

Map Description Codomain

T The minimal, short action of θ on the real tree ∂Ω+
θ / ∼ RT[S]

Table 4: Maps taking values in spaces of real dimension (6g− 6). Here RT[S] denotes the
space of minimal, short actions of Π1 on real trees.

3.3 Smooth parametrisations

Our starting point for constructing smooth parametrisations of GHMC0 is the following
result.

3.10 Theorem (Barbot–Béguin–Zeghib [BBZ11]). Let θ : π1(S) → PSL(2,R) n R2,1 be a
homomorphism whose linear component, θ0, is injective and acts properly discontinuously
over H2. For all κ > 0, there exists a unique smooth, spacelike, LSC surface, Σκ, which is
embedded in Ω+

θ , is invariant under the action of θ, and has constant extrinsic curvature
equal to κ. Furthermore, the family of all such surfaces foliates Ω+

θ as κ varies over the
interval ]0,∞[.

The foliations constructed here yield various families of maps taking values in spaces of
Teichmüller data. Indeed, for κ > 0, consider the space-like, LSC, embedded surface, Σκ,
in Ω+

θ furnished by Theorem 3.10, and let Iκ, IIκ and IIIκ be its first, second and third
fundamental forms respectively. The form, κIκ, defines a marked hyperbolic metric over
Σκ, thereby yielding a point in Thyp[S]. The form, IIIκ, defines another marked hyperbolic
metric over Σκ. However, this metric actually concides with the pull back through the
Gauss map of the metric over H2, and since the Gauss map is equivariant with respect to
the linear component, θ0, of the holonomy, the point that it defines in Teichmüller space
actually coincides with the point already defined by the map, Θ0, given in Section 4.1, above.
Next, by local strict convexity, the form, IIκ, also defines a marked metric over Σκ, but since
this metric has no clear curvature properties, we consider it rather as defining a marked
holomorphic structure in Thol[S]. The same constructions also apply to the past complete
invariant set, Ω−θ . We therefore have two pairs of maps, each taking values in spaces of
Teichmüller data of real dimension (6g− 6) (c.f. Table 5).

Map Description Codomain

I±κ The constant curvature metric of Iκ in Ω±θ Thyp[S]
II±κ The holomorphic structure of IIκ in Ω±θ Thol[S]

Table 5: Maps taking values in spaces of real dimension (6g− 6).

These maps are complemented to maps taking values in spaces of Teichmüller data of real
dimension (12g−12) as follows. First, the shape operator, Aκ, of Σκ defines a Labourie field
of Iκ, so that the pair (Iκ, Aκ) yields a point of Lab Thyp[S]. Likewise, the Hopf differential,
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φκ, of Iκ with respect to the conformal structure of IIκ is a quadratic holomorphic differential,
so that the pair (IIκ, φκ) yields a point of T∗ Thol[S]. In summary, we have two maps taking
values in spaces of Teichmüller data of real dimension (12g− 12) (c.f. Table 4.1).

Map Description Codomain
Aκ The metric Iκ together with the Labourie field Aκ Lab Thyp[S]

Φκ
The holomorphic structure of IIκ in Ω+

θ

together with the Hopf differential of Iκ
T∗Thol[S]

Table 6: Maps taking values in spaces of real dimension (12g− 12).

3.11 Theorem. For all κ, the map, Aκ, defines a real analytic diffeomorphism from
GHMC0 into Lab Thyp[S].

Sketch of proof. Consider a hyperbolic metric, g, and a Labourie field, A. By the fundamen-
tal theorem of surface theory (Theorem 3.1), there exists a locally strictly convex equivariant
immersion e : (S̃, κ−1g) → R2,1 ,with shape operator equal to

√
κA, which is unique up to

isometries of R2,1. This yields a real analytic inverse of (Iκ,Aκ), and the result follows.

3.12 Theorem. For all κ, Φκ defines a real analytic diffeomorphism from GHMC0 into
T∗ Thol[S].

Sketch of proof. Indeed, observe that Φκ ◦A−1
κ coincides with Φ ◦ A−1, where Φ and A are

defined as in Sections 2.5 and 2.6 respectively. The result now follows by Theorems 2.13,
2.17 and 3.11.

Certain pairs of data taking values inside spaces of Teichmüller data of real dimension
(6g− 6) also yield parametrisations of GHMC0. Indeed,

3.13 Theorem (Labourie). For all κ, and for all ε ∈ {−,+}, (Iεκ,Θ0) defines a bijection
from GHMC0 into Thyp[S]× Trep[S].

Proof. First observe that, by the discussion following Theorem 3.10, (Iεκ,Θ0) identifies with
(Iεκ, III

ε
κ). However, the maps (Iεκ, III

ε
κ) ◦ A−1

κ is precisely the inverse of the map given by
the Labourie field theorem (Theorem 2.18), and the result follows.

3.14 Theorem (Labourie). For all κ, and for all ε ∈ {−,+}, (Iεκ, II
ε
κ) defines a real analytic

diffeomorphism from GHMC0 into Thyp[S]× Thol[S].

Proof. The map (Iεκ, II
ε
κ)◦A−1

κ coincides with A−1, where A is the map given in Section 2.6.
The result now follows by Theorems 2.17 and 3.11.

Finally, we remark that the classical Weyl problem in Minkowski space, as yet unresolved
at the time of writing, also admits a straightforward expression in the current framework.
Indeed,

3.15 Question (Weyl problem). For κ, κ′ > 0, does (I+
κ , I
−
κ′) define a bijection from GHMC0

into Thyp[S]× Thyp[S]?

Other data can also be extracted using different existence results. However, these are not
necessarily so regular, or do not necessarily interact so well with the invariant set, Ω+

θ . For
example, foliations can be constructed using surfaces of constant mean curvature, although
the foliation thereby obtained is not necessary contained in Ω+

θ (c.f., for example, [ABBZ12]
and the references therein). Likewise, in [FV13], foliations are constructed using surfaces of
constant mean radius of curvature although, in this case, the surfaces constructed are not
necessarily even smooth. Nonetheless, the unique surface of zero mean radius of curvature
can be used to construct a bijection between GHMC0 and the space of traceless Codazzi
tensors on S, which in turn canonically identifies with TTrep[S] (c.f. [Laf83, BS15]).
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4 Anti de Sitter space

4.1 Definition of anti de Sitter space

Anti de Sitter space, which we denote by AdS3, is defined to be the projective quotient of
the unit pseudosphere in R2,2, that is

AdS3 :=
{
x | x2

1 + x2
2 − x2

3 − x2
4 = 1

}
/ {± Id} .

This space carries a natural group structure which plays an important role in its study. This
structure can be visualised by introducing the matrix

J =

(
−1

1

)
,

and defining the bilinear form over End(R2) by

〈A,B〉2,2 = −1

2
Tr(AtJBJ) .

Indeed, since this form is non-degenerate with signature (2, 2), and since, for every matrix,
A,

〈A,A〉2,2 = Det(A) ,

it follows that AdS3 naturally identifies with the group PSL(2,R).
The form 〈·, ·〉2,2 restricts to a (2, 1)-form over the Lie algebra, sl(2,R), so that the

latter identifies with Minkowski space, which was studied in detail in the preceding chapter.
Furthermore, a straightforward calculation reveals that the unit pseudosphere in sl(2,R)
coincides with the locus of all matrices, M , whose square is equal to (− Id). In particular, the
matrix J itself is an element of this unit pseudosphere, and therefore distinguishes a preferred
component which we identify with H2. By considering this as the future component, we see
that J defines a time orientation over AdS3. We also use this matrix to define a spatial
orientation. Indeed, the multiplications by J on the left and on the right define two right
angled rotations of the tangent space of H2 at the point J . Choosing multiplication on the
left, we thus obtain a spatial orientation of H2 at this point, which extends uniquely to the
whole of AdS3.

The isometry group of AdS3 coincides with PO(2, 2), that is, the projective quotient of
O(2, 2). This group has two connected components, determined by whether they preserve
or reverse the orientation, and its identity component identifies with the Cartesian product,
PSL(2,R) × PSL(2,R). Indeed, observe first that PSL(2,R) acts on itself transitively and
isometrically by multiplication on the left and on the right. This yields a natural embedding
of PSL(2,R) × PSL(2,R) into PO(2, 2) which sends the pair (M,N) to the map A 7→
MAN−1. Consider now the stabiliser subgroup of Id in the identity component of PO(2, 2).
Since this subgroup acts by orientation preserving isometries which send the J-component
of the unit pseudosphere to itself, it actually coincides with the adjoint action of PSL(2,R)
on sl(2,R). The assertion now follows, since this adjoint action is none other than the action
of the diagonal subgroup of PSL(2,R)× PSL(2,R) on this Lie algebra.

Consider now a spacelike, LSC, equivariant immersion, [e, θ], in AdS3. By the preceed-
ing discussion, the holonomy, θ, decomposes as θ =: (θl, θr), where each of θl and θr are
homomorphisms into PSL(2,R). In order to understand the properties of these two ho-
momorphisms, we introduce the future oriented, unit, normal vector field, Ne, over e. By
composing this vector field with e−1, we obtain the left and right Gauss maps,

Nl,e(p) := e(p)−1Ne(p) , and

Nr,e(p) := Ne(p)e(p)
−1 .

These maps both take values in the subspace, H2, of sl(2,R). Furthermore, since the im-
mersion, e, is spacelike and LSC, they are both local diffeomorphisms, and a straightfor-
ward topological argument shows that they define global diffeomorphisms from the universal
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cover, S̃, of S into H2 which are each equivariant with respect to the respective actions by
conjugation of θr and θl on sl(2,R). That is, for all γ ∈ Π1, and for all p ∈ S̃,

Nl,e(γ · p) = θr(γ)Nl,e(p)θr(γ)−1, and

Nr,e(γ · p) = θl(γ)Nr,e(p)θl(γ)−1 .

We thus obtain,

4.1 Theorem (Mess [Mes07]). The homomorphisms, θl and θr, are injective and their
images act properly discontinuously on H2, so that the holonomy, θ, defines a point of
Trep[S]× Trep[S].

In particular, since two homomorphisms, θ and θ′, lie in the same conjugacy class if and
only if the same holds for their respective left and right components, the point ([θl], [θr]) of
Trep[S]× Trep[S] determined by θ actually depends on the equivalence class, [e, θ], only.

As in the Minkowski case, the converse problem of recovering the equivariant immersion
from the holonomy is easiest understood once we see that every equivariant immersion is
actually contained inside a well defined ghmc AdS spacetime. However, to properly state
the result, we first require a good notion of convexity for subsets of AdS3. To this end,
consider 3-dimensional, real projective space, RP3. It follows from the definition that AdS3

projects diffeomorphically onto an open subset of RP3. Recall now that a homogeneous,
convex cone, Λ, in R2,2 is a (closed) convex subset which is invariant under the action of
the dilatation group. A closed subset of RP3 is then said to be convex whenever it is the
projective quotient of some homogeneous, convex cone, and a closed subset of AdS3 is said
to be convex whenever it is convex in RP3.

There is also a notion of duality for convex subsets of RP3 which is constructed in terms
of the metric, 〈·, ·〉2,2, and which plays an important role in what follows. Indeed, given a
homogeneous, convex cone, Λ, in R2,2, its dual cone is defined by

Λ∗ :=
{
x ∈ R2,2 | 〈x, y〉2,2 ≤ 0 ∀y ∈ Λ

}
.

Λ∗ is another homogeneous, convex cone, whose own dual yields Λ again. This concept
of duality also applies to convex subsets of projective space, since these are equivalent to
homogeneous convex cones,

We now have,

4.2 Theorem (Mess [Mes07]). Given two homomorphisms, θl, θr : π1(S) → PSL(2,R),
which are injective and which act properly discontinuously on H2, there exists a unique
convex subset, Ωθ, of AdS3 which is maximal with respect to inclusion, and over the interior
of which θ := (θl, θr) acts freely and properly discontinuously.

In contrast to the Minkowski case, the set Ωθ is neither future nor past complete. How-
ever, by maximality, it contains its dual, which we refer to as its Nielsen kernel, and which
we denote by Kθ. The complement of Kθ in Ωθ consists of 2 connected components, one,
denoted by Ω+

θ , which lies in the future, and another, denoted by Ω−θ , which lies in the past
(c.f. Figure 8).

The quotient, Ωθ/θ(Π1), is a ghmc AdS spacetime. Furthermore, since any compact,
LSC Cauchy surface in a given ghmc AdS spacetime lifts to an equivariant immersion in
AdS3, we see that every ghmc AdS spacetime arises in this manner. In other words, we have
two maps which send the moduli space, GHMC−1, of ghmc AdS spacetimes into spaces of
Teicmüller data of real dimension (6g − 6) (c.f. Table 7). Theorems 4.1 and 4.2 therefore
yield

4.3 Theorem (Mess, [Mes07]). The map (Θl,Θr) defines a bijection from GHMC−1 into
Trep[S]× Trep[S].

In particular, it is this parametrisation of GHMC−1 which we use to furnish this space with
the structure of a real algebraic variety.
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Figure 8: The structure of a ghmc AdS spacetime. Anti de Sitter space can be
realised in a projective chart as the interior of a one-sheeted hyperboloid in R3 plus a disk
at infinity. Ωθ and Kθ both meet the boundary of anti de Sitter space along a Jordan
curve, Γθ, and Kθ is, in fact, the convex hull of this curve. The intrinsic metric of ∂K±θ is
hyperbolic, and its singular set defines a measured geodesic lamination. The intrinsic metric
of ∂Ω±θ is a real tree, over which Π1 acts in a minimal, short manner.

Map Description Codomain
Θl The left component of the holonomy Trep[S]
Θr The right component of the holonomy Trep[S]

Table 7: Maps taking values in spaces of real dimension (6g− 6).

4.2 Mess’ construction

It is worth reviewing Mess’ construction in some detail for the insight it provides into the
structure of anti de Sitter space. First, let Ĉ be the light cone in R2,2, that is

Ĉ :=
{
x | x2

1 + x2
2 = x2

3 + x2
4

}
,

and let C be its projective quotient in RP3. This subset is a torus whose complement consists
of two connected components, one of which we have already identified with AdS3, and the
other of which identifies with a copy of AdS3 whose semi-riemannian metric has reversed
sign. In particular, the subset, C, can be viewed as the boundary at infinity of AdS3.

The lorentzian metric over R2,2 restricts to a degenerate metric over Ĉ, having one null
direction, namely, the radial direction, one positive direction, and one negative direction.
However, since the radial direction is collapsed by projection onto RP3, this degenerate
metric projects down to a conformal class of non-degenerate metrics of signature (1, 1) over
the torus, C. That is, C, carries a natural conformal Minkowski structure.

The conformal Minkowski structure of C yields two smooth, transverse distributions over
this torus, given at each point by its two lightlike directions. Furthermore, these distributions
integrate into two transverse foliations of C by lightlike circles. Indeed, recalling first that
R2,2 identifies with End(R2), consider a non-zero, lightlike vector, A, in Ĉ, together with
the two planes, 〈A, JA〉, with generators A and JA, and 〈A,AJ〉, with generators A and
AJ . These two planes consist of lightlike vectors only, and thus project onto circles in C,
which meet transversally at a unique point, namely the projective image of A. The two
foliations are now obtained by taking the families of all such circles. We call the foliation
defined by planes of the form, 〈A, JA〉, the left foliation of C, and we call the other foliation
its right foliation.9 In particular, if Sl and Sr are fixed leaves of the left and right foliations

9We observe in passing that the operation of matrix transposition exchanges these two foliations.

25



respectively, then there is a canonical, smooth parametrisation of C by the cartesian product,
Sl × Sr.

An alternative and pleasing presentation of these foliations also arises upon consideration
of the affine chart of RP3 obtained by projecting radially onto the subspace, E := {x1 = 1}.
Indeed, in this chart, AdS3 projects onto the region,

{
x2

2 − x2
3 − x2

4 < 1
}

, and Ĉ projects
onto the one sheeted hyperboloid,{

x2
2 − x2

3 − x2
4 = −1

}
.

Since lightlike planes in R2,2 project onto lightlike lines in E, it now follows that the double
foliation of C projects onto the classical double ruling of the one sheeted hyperboloid in R2,1

by lightlike lines.
Consider again the parametrisation of C by Sl × Sr. The circles, Sl and Sr are the

respective projective spaces of the planes 〈A,AJ〉 and 〈B, JB〉, for some non-trivial degen-
erate matrices, A and B. Consider now the action of PSL(2,R) × PSL(2,R) on C, and, in
particular, its effect on the left and right foliations. A straightforward calculation shows
that multiplication on the left by an element of PSL(2,R) preserves each leaf of the left
foliation, and thus leaves the right coordinate in Sl × Sr invariant. Likewise, multiplication
on the right preserves each leaf of the right foliation, thereby leaving the left coordinate in
Sl×Sr invariant. In this manner, we see how the parametrisation of C by Sl×Sr separates
the two components of PSL(2,R)× PSL(2,R).

Furthermore, let (e1, e2) be the canonical basis of R2, and let Φ : R2 → 〈A, JA〉 be the
linear map given by

Φ(e1) := A , and

Φ(e2) := JA .

For a given element, M , of PSL(2,R), denoting by ML its action by multiplication on the
left on the invariant plane, 〈A, JA〉, we readily obtain

Φ−1MLΦ = M .

In other words, Φ defines a projective linear diffeomorphism from RP1 into Sl, which conju-
gates the action of PSL(2,R). The same observation also holds for Sr, so that the product,
Sl×Sr, actually identifies with RP1×RP1 over each component of which PSL(2,R) acts in
the usual manner.

The completion of Mess’ construction is now straightforward. Indeed, suppose that θl
and θr satisfy the hypotheses of Theorem 4.2. In particular, they both extend to homeo-
morphisms, θ̂l : ∂∞Π1 → Sl and θ̂r : ∂∞Π1 → Sr. The image of (θ̂l, θ̂r) is a Jordan curve,
Γθ, in C, which actually coincides with the closure of the set of all attractive and repulsive
fixed points of θ(γ), as γ ranges over all non-trivial elements of Π1. Furthermore, since it is
a graph over each of Sl and Sr, it is spacelike. The curve, Γθ, has a well defined convex hull,
Kθ, in RP3, which is, in fact, contained in AdS3, and its dual, Ωθ, is the desired maximal,
invariant convex set.

4.3 Laminations and trees

We now turn our attention to the non-smooth geometric objects associated to Ωθ. These
will be contained in the union of Ω+

θ and Ω−θ . Furthermore, since the time orientation is
readily reversed — say, by replacing the matrix, J , with (−J) — it suffices for the moment
to consider only the future component, Ω+

θ . The boundary of this set itself consists of two
components. The first, which we denote by ∂Ω+

θ , is the intersection of Ω+
θ with ∂Ωθ, and

the second, which we denote by ∂K+
θ , is the intersection of Ω+

θ with ∂Kθ.
The measured geodesic lamination of Ω+

θ is determined by the boundary component,
∂K+

θ . In order to visualise the construction, consider first a timelike, unit vector, B1, in R2,2.
Observe that B1 projects to an element of AdS3, which we also denote by B1. Furthermore,
its orthogonal complement defines a spacelike, totally geodesic, embedded submanifold of
AdS3 isometric to H2. In particular, at every point, A, of this subset, the vector B1 also
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defines a future oriented, unit, timelike tangent vector to AdS3 which is orthogonal to this
submanifold at this point. By abuse of terminology, we denote this subspace by B⊥1 and we
refer to it is the spacelike plane orthogonal to B1.

Consider now another element, B2, of AdS3, chosen such that B⊥1 and B⊥2 intersect along
a shared, spacelike geodesic, Γ, which, in particular, divides each of B⊥1 and B⊥2 into two
half-spaces with geodesic boundaries. Let X12 be the intersection of the respective pasts
of B⊥1 and B⊥2 .10 The boundary, ∂X12, of X12 consists of two spacelike, totally geodesic
components which meet along Γ, one of which is a half-space in B⊥1 , and the other of which
is a half-space in B⊥2 . Recall that the intrinsic metric of ∂X12 is defined by

d(x, y) := inf
γ
l(γ) ,

where γ ranges over all continuous curves in ∂X12 starting at x and ending at y, and l(γ)
denotes its length with respect to the Minkowski metric, 〈·, ·〉2,2. It is now a straightforward
matter to show that ∂X12, furnished with this metric, is isometric to H2, and that the
bending locus, Γ, is a complete geodesic in this space.

Consider now a third element, B3, of AdS3, chosen in such a manner that the spacelike
planes, B⊥1 , B⊥2 and B⊥3 have trivial intersection. Let X123 be the intersection of the
respective pasts of these three planes. As before, ∂X123, furnished with its intrinsic metric,
is isometric to H2, and there will be two of the three curves, Γ12, Γ13 and Γ23, which define
complete, non-intersecting geodesics in this space.

Now, since Kθ is a convex hull, it behaves much like the intersection of the respective
pasts of a finite configuration of spacelike planes, no three of which share a common point in
AdS3. In particular, ∂K+

θ , furnished with its intrinsic metric, is isometric to H2, and since it
is invariant under the action of θ(Π1), it defines a compact, hyperbolic surface, ∂K+

θ /θ(Π1).
The measured geodesic lamination is now constructed using supporting planes. Indeed,

given a convex set, X, and a boundary point, A, a spacelike plane, B⊥, passing through A
is said to be a supporting plane to X at that point whenever X lies entirely to one side of
it. Once again, since Kθ is a convex hull, any supporting plane to its boundary, ∂K+

θ , meets
this set, either along a complete geodesic, or along an ideal polygon. The lamination, L, of
∂K+

θ is then defined to be the union of all complete geodesics determined by intersections
of ∂K+

θ with supporting hyperplanes. As in the case of a finite configuration of spacelike
planes, no two of these geodesics intersect in ∂K+

θ , so that this set is indeed a lamination.
Given a convex subset, X, of AdS3, and a boundary point, A, an element, B, of AdS3 is

said to be a supporting normal to X at A whenever the spacelike plane, B⊥, is a supporting
plane to X at that point. It is a straightforward matter to show that if A is a point of ∂K+

θ

not lying on the lamination, L, then ∂K+
θ has a unique supporting normal at that point.

Now, given a short curve, c, in ∂K+
θ , with end points not in L, its mass is approximated by

the length of the shortest spacelike curve in AdS3 joining the respective supporting normals
of these two end points, and the mass of an arbitrary curve, c, compatible with L, is now
determined in the usual manner by summing over short segments and taking a limit. In this
way, we define a transverse measure over L which yields a measured geodesic lamination
over ∂K+

θ . In particular, since it is trivially invariant under the action of θ(Π1), it defines a
measured geodesic lamination over the hyperbolic surface, ∂K+

θ /θ(Π1). We thus obtain two
pairs of maps, each taking values in spaces of Teichmüller data of real dimension (6g − 6)
(c.f. Table 8).

Map Description Codomain

I±0 The intrinsic metric of ∂K±θ Thyp[S]
L± The measured geodesic lamination of ∂K±θ ML[S]

Table 8: Maps taking values in spaces of real dimension (6g− 6).

10Technically, since AdS3 is not causal, the past of a given spacelike plane, P , is not globally defined.
However, since we are only concerned with what happens in a neighbourhood of P , this is resolved in one
of two different ways: either by working in the universal cover of AdS3, which is causal, or by working in a
small causal neighbourhood of P .
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We now have the following scattering type result.

4.4 Theorem (Mess [Mes07]). For each ε ∈ {+,−}, the map (Iε0,L
ε) defines a bijection

from GHMC−1 into Thyp[S]×ML[S].

In order to visualise how the set, Ωθ, is recovered from the metric and the lamination, we
first recall a general result of convex sets. A subset, Σ, of AdS3 is said to be a convex surface
whenever it is a relatively open subset of the boundary of some convex subset, X, which
has non-trivial interior. We then say that Σ is pleated whenever it has the property that for
every p ∈ Σ, there exists a relatively open geodesic segment in AdS3 which is contained in Σ
and which passes through p. Finally, we say that Σ is future or past oriented depending on
whether its outward pointing supporting normals are future or past oriented. In particular,
∂K+

θ and ∂K−θ are both pleated convex surfaces, ∂K+
θ is future oriented, and ∂K−θ is past

oriented.

4.5 Theorem. If Σ is a complete, future (resp. past) oriented, pleated convex surface in
Ωθ which is invariant with respect to the action of θ(Π1), then Σ coincides with ∂K+

θ (resp.
∂K−θ ).

Proof. Indeed, Σ is a convex surface in RP3 whose boundary is Γθ. Since Σ is pleated, it
is a boundary component of the convex hull of Γθ (c.f. Theorem 4.18 of [Smi15]), and the
result follows.

The set, Ωθ, is now recovered from the metric and the lamination by constructing a
pleated convex surface. In order to see this, consider first the case of an isometric embedding,
e : H2 → AdS3, and a complete, weighted geodesic, (Γ, a), in H2. The image of e is a spacelike
plane, B⊥1 , say. We bend B⊥1 along Γ as follows. Consider the locus of all points, B, in
AdS3 such that B⊥ contains Γ, and observe that this is also a complete, spacelike geodesic,
and it contains B1. Now let B2 be a point lying at a distance, a, along this geodesic from
B1, and, as before, let X12 be the intersection of the respective pasts of B⊥1 and B⊥2 . We
now call ∂X12 the bending of e along Γ by the hyperbolic angle, a. Observe, in particular,
that in contrast to circular angles, which are bounded in absolute value by π, hyperbolic
angles can be arbitrarily large. As with graftings, this construction extends continuously to
all measured geodesic laminations, and, by identifying the resulting pleated convex surface
with ∂K+

θ , we thereby obtain the desired inverse of (I+
0 ,L

+).
Finally, the minimal, short action of θ(Π1) on a real tree is determined by the boundary

component, ∂Ω+
θ , of Ω+

θ . Indeed, let d be the pseudo-metric over ∂Ω+
θ given by the infimal

lengths of continuous curves in ∂Ω+
θ with respect to the Minkowski metric, 〈·, ·〉2,2. Identify-

ing points separated by zero distance yields a quotient space, ∂Ω+
θ / ∼. As in the Minkowski

case, this quotient is a real tree, and the induced action of θ(Π1) is minimal and short. In
this manner, we obtain another pair of maps taking values in a space of Teichmüller data
of real dimension (6g − 6) (c.f. Table 9), although, since the tree, ∂Ω±θ / ∼, is dual to the

Map Description Codomain

T± The minimal, short action of θ on the real tree ∂Ω+
θ / ∼ RT[S]

Table 9: Maps taking values in spaces of real dimension (6g− 6).

measured geodesic lamination, L±, these maps do not actually yield any new information.

4.4 Earthquakes

Theorems 4.3 and 4.4 have a nice interpretation in terms of Teichmüller theory. To see this,
we first introduce the left and right generalised Gauss maps, Nl and Nr, as follows. Given
a convex set, X, and a boundary point, A, of this set, define

Nl(A) :=
{
A−1B | B a supporting normal to ∂K+

θ at A
}
, and

Nr(A) :=
{
BA−1 | B a supporting normal to ∂K+

θ at A
}
.
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In order to understand the geometry of these maps, consider first two spacelike planes, B⊥1
and B⊥2 , in AdS3 which intersect along a shared spacelike geodesic, Γ. As before, let X12

be the intersection of their respective pasts, and consider the actions of Nl and Nr over the
boundary, ∂X12, of this set. Since ∂X12 has a unique supporting normal at every point, A,
not lying on Γ, both Nl and Nr define local isometries of the complement of Γ in ∂X12 into
the future component, H2, of the unit pseudosphere in sl(2,R). However, at every point,
A, of Γ, ∂X12 has an entire continuum of supporting normals which are all contained in
the intersection of H2 with the plane in R2,2 spanned by B1 and B2. Furthermore, since
A ∈ AdS3 acts isometrically on R2,2,

dH2(A−1B1, A
−1B2) = dH2(B1A

−1, B2A
−1) = dAdS3(B1, B2) .

Thus, upon checking the orientations, we see that Nl and Nr define respectively left and
right earthquakes of strength dAdS3(B1, B2) along Γ from ∂X12 into H2.

Consider now the left and right Gauss maps of ∂K+
θ . Since Nl and Nr are equivariant

with respect to θr and θl, respectively, it follows that the right earthquake along the measured
geodesic lamination, L, sends the point of Teichmüller space determined by X/θ(Π1) to the
point determined by H2/θl(Π1), whilst the left earthquake along this measured geodesic
lamination sends this point to the point determined by H2/θr(Π1). We thereby recover the
well known earthquake theorem.

2.6 Theorem (Earthquake theorem, Thurston, Kerckhoff [Ker83]). Given two marked hy-
perbolic metrics, g1 and g2, there exists a unique marked hyperbolic metric, h, and measured
geodesic lamination, λ, such that

g1 = E(−1, h, λ) = Erλ(h) and

g2 = E(1, h, λ) = E lλ(h) .

4.6 Remark. In fact, any two of Theorems 4.3, 4.4 and 2.6 imply the third.

This construction is illustrated by Figure 9.

Figure 9: The earthquake theorem I. The upper vertex is here a future oriented, pleated
convex surface, and the curved arrow joining the lower vertices is an earthquake given by
twice the measured geodesic lamination of this pleated surface.

Theorem 2.6 is not symmetric in h1 and h2. Indeed, when the order of these two points
is reversed, we obtain another point, h′ ∈ Thyp[S], and another measured geodesic lamina-
tion, λ′. However, by reversing the time orientation of AdS3, it follows by uniqueness that
the marked hyperbolic metric, h′, and the measured geodesic lamination, λ′, are precisely
those determined by the past boundary component, ∂K−θ , of Kθ. This yields the situation
illustrated in Figure 10.

4.5 Fixed point theorems and other results

Consider the pair (L+,L−). As in the Minkowski case, this map is not surjective, taking
values instead in ML[S]×fill ML[S], which we recall is the subset of ML[S]×ML[S] consisting
of those pairs that fill S (c.f. Section 3.2). Denoting by Fuc−1 the space of Fuchsian AdS
spacetimes, that is, those spacetimes in GHMC−1 whose holonomies have equal left and
right components, we now have
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Figure 10: The earthquake theorem II. The lower vertex is here a past oriented, pleated
convex surface, and the curved arrow joining the upper vertices is an earthquake given by
twice the measured geodesic lamination of this pleated surface.

4.7 Theorem (Bonsante–Schlenker [BS12]). The map (L+,L−) defines a surjection from
GHMC−1 \Fuc−1 onto ML[S]×fill ML[S].

4.8 Remark. In [Mes07], Mess asks whether this map is a bijection.

In particular, given a pair (λ+, λ−) of measured geodesic laminations which fills S, there
exists a homomorphism, θ := (θl, θr), such that the diagram in Figure 11 commutes. In
other words, Theorem 4.7 is equivalent to the following fixed point theorem of Teichmüller
theory.

Figure 11: The double earthquake theorem. Here the upper vertex is a future oriented,
pleated convex surface with measured geodesic lamination, λ+, and the lower vertex is a
past oriented, pleated convex surface with measured geodesic lamination, λ−. The curved
arrows joining the middle vertices are earthquakes given by 2λ+ and 2λ− respectively.

4.9 Theorem (Bonsante–Schlenker [BS12]). Given any pair, (λ, µ) of measured geodesic
laminations which fills S, the compositions E lλ ◦ E lµ and Erλ ◦ Erµ both have fixed points in
Thyp[S].

In a similar vein, we have,

4.10 Theorem (Diallo [Dia13, Dia14]). The map (I+
0 , I
−
0 ) defines a surjection from GHMC−1

onto Thyp[S]× Thyp[S].

4.11 Remark. It is not known whether this map is a bijection.

In particular, given a pair (g+, g−) of hyperbolic metrics, there exists a homomorphism,
θ := (θl, θr), such that the diagram in Figure 12 commutes.

Earthquake symmetries (c.f. [BMS15]) present a nice interpretation of Theorem 4.10
within the framework of classical Teichmüller theory, and are defined as follows. First,
by Theorem 2.6, for all g ∈ Thyp[S], the earthquake maps, E lg : λ 7→ E l(g, λ) and Erg :
λ 7→ Er(g, λ), define bijections from ML[S] into Thyp[S]. The left earthquake symmetry
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Figure 12: The earthquake symmetry theorem. Here the upper vertex is a future
oriented, pleated convex surface with intrinsic metric, g+, and the lower vertex is a past
oriented, pleated convex surface with intrinsic metric, g−. The curved arrows joining the
middle vertices are earthquakes.

of Thyp[S] about the metric, g, is then defined by ESlg := E lg ◦ (Erg )−1. In other words,

h′ = ESlg(h) whenever there exists a measured geodesic lamination, λ, such that Erλ(g) = h

and E lλ(g) = h′. The right earthquake symmetry is defined in a similar manner by ESrg :=

Erg ◦ (E lg)−1. As their names suggest, the two maps, ESlg and ESrg, are both involutions of
Thyp[S] with g as their unique fixed points. Theorem 4.10 is now equivalent to the following
fixed point theorem.

4.12 Theorem (Diallo [Dia13, Dia14]). For any pair, (g, h), of marked, hyperbolic metrics,
the compositions, ESlg ◦ ES

l
h and ESrg ◦ ES

r
h, both have fixed points in Thyp[S].

Other scattering type theorems arise naturally from existing results. Indeed,

4.13 Theorem ([ABB+07]). For α ∈ {l, r} and ε ∈ {+,−}, the map (Θα, I
ε
0) defines a

bijection from GHMC−1 into Trep[S]× Thyp[S].

Proof. It suffices to consider the case (Θl, I
+
0 ), as the remaining cases are proven in a similar

manner. Let H : Trep[S]→ Thyp[S] be the canonical identification, and define Ψ : Trep[S]×
Thyp[S]→ Trep[S]× Trep[S] by

Ψ([θ], g) := ([θ], (H−1ESgH)([θ])).

It follows by the earthquake theorem (Theorem 2.5) that Ψ is a bijection. However,

(Θl, I
+
0 ) = Ψ−1 ◦ (Θl,Θr),

and the result now follows by Theorem 4.3.

A similar argument yields,

4.14 Theorem ([ABB+07]). For α ∈ {l, r} and ε ∈ {+,−}, the map (Θα, L
ε) defines a

bijection from GHMC−1 into Trep[S]×ML[S].

4.6 Smooth parametrisations

Our starting point for constructing smooth parametrisations of GHMC−1 is the following
result.

4.15 Theorem (Barbot–Béguin–Zeghib [BBZ11]). Let θl, θr : π1(S) → PSL(2,R) be ho-
momorphisms which are injective and which act properly discontinuously on H2. For all
κ > 0, there exists a unique, smooth, spacelike, LSC surface Σ±κ , which is embedded in Ω±θ ,
is invariant under the action of θ := (θl, θr), and has constant extrinsic curvature equal to
κ. Furthermore, the family of all such surfaces foliates Ω±θ as κ varies over the interval
]0,∞[.
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Maps taking values in spaces of Teichmüller data are constructed using Theorem 4.15
as follows. For κ > 0, consider the spacelike, LSC, embedded surface, Σ±κ , in Ω±θ which is
invariant with respect to θ and which has constant extrinsic curvature equal to κ. Let I±κ , II±κ
and III±κ be its first, second and third fundamental forms respectively. The form, (1 +κ)I±κ ,
defines a hyperbolic metric over Σ±κ . Furthermore, if we denote by N the future oriented,
unit, normal vector field over Σ±κ , then we can show that N itself defines an equivariant
immersion in Ω∓θ which, in fact, parametrises Σ∓1/κ, so that κ−1(1 + κ)III±κ also defines a

hyperbolic metric over Σ+
κ . Next, by convexity, II±κ is also positive definite, and therefore

also defines a metric over Σκ, but since it has no clear curvature properties, we consider it
rather as defining a point in Thol[S]. In summary, we have three pairs of maps, each taking
values in spaces of Teichmüller data of real dimension (6g− 6) (c.f. Table 10).

Map Description Codomain
I±κ The first fundamental form of Σ±κ Thyp[S]
II±κ The second fundamental form of Σ±κ Thol[S]

III±κ
The third fundamental form of Σ±κ
(The first fundamental form of Σ∓1/κ) Thyp[S]

Table 10: Maps taking values in spaces of real dimension (6g− 6).

These maps are complemented to maps taking values in spaces of Teichmüller data of
real dimension (12g − 12) as follows. First, the shape operator, A±κ , of Σ±κ defines, up to
a constant factor, a Labourie field of I±κ , whilst its inverse, (A±κ )−1, defines a Labourie
field of III±κ , so that the pairs (I±κ , A

±
κ ) and (III±κ , (A

±
κ )−1) define points of Lab Thyp[S].

Likewise, the Hopf differential, φ±κ , of I±κ with respect to the conformal structure of II±κ
defines a holomorphic quadratic differential, so that the pair (II±κ , φ

±
κ ) yields a point of

T∗ Thol[S]. We thus have three pairs of maps taking values in spaces of Teichmüller data of
real dimension (12g− 12) (c.f. Table 11).

Map Description Codomain

A±I,κ
The first fundamental form of Σ±κ
together with the Labourie field, A±κ

Lab Thyp[S]

Φ±κ
The second fundamental form of Σ±κ
together with the Hopf differential φ±κ

T∗ Thol[S]

A±III,κ
The third fundamental form of Σ±κ
together with the inverse of the Labourie field, A±κ

Lab Thyp[S]

Table 11: Maps taking values in spaces of real dimension (12g− 12).

We readily show that these maps parametrise GHMC−1. Indeed,

4.16 Theorem. The maps A±I,κ and A±III,κ define real analytic diffeomorphisms from GHMC−1

into Lab Thyp[S].

Sketch of proof. Consider a hyperbolic metric, g, and a Labourie field, A. By the fundamen-
tal theorem of surface theory (Theorem 3.1), there exists an LSC equivariant immersion,
e : (S̃, (1 + κ)−1g) → AdS3, with shape operator equal to

√
κA, which is unique up to

isometries of AdS3. This yields a real analytic inverse of A±I,κ, and since A±III,κ is equivalent

to A∓I,1/κ, it also yields a real analytic inverse of A±III,κ, and the result follows.

4.17 Theorem. The map Φ±κ defines a real analytic diffeomorphism from GHMC−1 into
T∗Thol[S].

Proof. Indeed, I±κ ◦(A
±
κ )−1 coincides with Φ◦A−1, where Φ and A are defined as in Sections

2.5 and 2.6 respectively. The result now follows by Theorems 2.13, 2.17 and 4.16.
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4.7 Landslides, rotations and more symmetries

In order to interpret Theorem 4.15 in terms of classical Teichmüller theory, consider again the
spacelike, LSC, embedded surface, Σ+

κ . Let A be its shape operator, and let g := (1 + κ)I+
κ

be its hyperbolic metric, where I+
κ is its first fundamental form. If Nl and Nr are its left

and right Gauss maps respectively, and if h denotes the hyperbolic metric of H2, then a
straightforward calculation yields (c.f. [KS07, Bar]),

N∗l h := g

(
cos(t)J0 + sin(t)

1√
κ
A, cos(t)J0 + sin(t)

1√
κ
A

)
, and (2)

N∗r h := g

(
cos(t)J0 − sin(t)

1√
κ
A, cos(t)J0 − sin(t)

1√
κ
A

)
, (3)

where J0 is the complex structure of g compatible with the orientation, and t satisfies,

tan(t) =
√
κ .

It follows that Nr and Nl define landslides from Σ+
κ into H2/θl(Π1) and H2/θr(Π1) respec-

tively, so that Theorem 4.15 therefore yields the following “landslide theorem”.

2.21 Theorem (Landslide theorem, Bonsante–Mondello–Schlenker [BMS13]). Given t ∈
]− π, π[, and two marked, hyperbolic metrics, g1 and g2, there exists a unique pair, h+ and
h−, of marked hyperbolic metrics such that

g1 = L(−t, h+, h−) = L−t,h−(h+) , and
g2 = L(t, h+, h−) = Lt,h−(h+) .

Proof. Let κ := tan(t/2)2. Consider two marked hyperbolic metrics, g1, g2 ∈ Thyp[S].
Denote θl := H−1(g1) and θr := H−1(g2), where H : Trep[S] → Thyp[S] is the canonical
identification. Define

(h+, h−) = (I+
κ , III

+
κ ) ◦ (Θl,Θr)

−1(θl, θr).

It follows from 2 that h+ and h− yield the desired landslide, thus proving existence. To
prove uniqueness, let A be the Labourie field of h+ with respect to h−. By the fundamental
theorem of surface theory (Theorem 3.1), there exists an equivariant immersion of S̃ into
AdS3 whose metric is (1+κ)−1h+ and whose shape operator is

√
κA. Since this immersion is

invariant with respect to (θl, θr), the result now follows by uniqueness in Theorem 4.15.

Since landslides and rotations are equivalent, Theorem 2.21 can also stated as follows.

2.23 Theorem (Rotation theorem, Bonsante–Mondello–Schlenker [BMS13]). Given t ∈]−
π, π[, and two marked hyperbolic metrics, g1 and g2, there exists a unique marked hyperbolic
metric, h, and a unique marked holomorphic structure, H, such that

g1 = R−t,H(h) = R(−t, h,H) , and
g2 = Rt,H(h) = R(t, h,H) .

This result is illustrated in Figure 13.
Other results of scattering type yield new fixed point theorems in Teichmüller theory.

Indeed, consider the pair (I+
κ , I
−
κ′). We have,

4.18 Theorem (Bonsante–Mondello–Schlenker [BMS15]). For all κ, κ′ > 0, the map (I+
κ , I
−
κ′)

defines a surjection from GHMC−1 onto Thyp[S] × Thyp[S]. Furthermore, when κκ′ = 1,
this map is bijection.

4.19 Remark. In the general case, it is not known whether this map is a bijection.

Thus, given a pair (g+, g−) of marked hyperbolic metrics, there exists a homomorphism,
θ := (θl, θr) such that the diagram in Figure 14 commutes.

In analogy to the case of Theorem 4.7 and 4.10, rotation symmetries (c.f. [BMS15])
present a nice interpretation of Theorem 4.18 within the framework of Teichmüller theory.
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Figure 13: The rotation theorem. Here, the upper vertex is an equivariant immersion
of constant extrinsic curvature equal to κ := tan(t/2)2 whose second fundamental form has
the conformal class of H, and the curved arrow joining the lower vertices is a rotation of
angle 2t about H.

Figure 14: The rotation symmetry theorem. Here the upper vertex is a future oriented
equivariant immersion of constant extrinsic curvature equal to κ whose intrinsic metric is
(up to a factor) equal to g+, and the lower vertex is a past oriented equivariant immersion of
constant extrinsic curvature equal to κ′ whose intrinsic metric is (also up to a factor) equal
to g−.
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Figure 15: Minimal lagrangian diffeomorphisms. The upper vertex is a maximal
surface, and the curved arrow joining the lower two vertices is a minimal lagrangian diffeo-
morphism

They are defined as follows. First, by Theorem 2.23, given t ∈]−π, π[, and a marked hyper-
bolic metric, g ∈ Thyp[S], the maps, Rg,t : H 7→ R(t, g,H) and Rg,−t : H 7→ R(−t, g,H), de-
fine bijections from Thol[S] into Thyp[S]. The positive rotation symmetry of magnitude 2t of
Thyp[S] about the marked hyperbolic metric, g, is then defined by RS+

g,t := Rg,t◦(Rg,−t)−1.

In other words, h′ = RS+
g,t(h) whenever there exists a marked holomorphic structure, H,

such that R(−t, g,H) = h and R(t, g,H) = h′. The negative rotation symmetry of magni-
tude 2t is defined in a similar manner by RS−g,t := Rg,−t ◦ (Rg,t)−1. As their names suggest,

the two maps, RS+
g,t and RS−g,t are both involutions of Thyp[S] with g as their unique fixed

point. We now see that Theorem 4.18 is equivalent to the following fixed point theorem of
classical Teichmüller theory.

4.20 Theorem (Bonsante–Mondello–Schlenker [BMS15]). For any t, t′ ∈]0, π[, and for any
pair (g, g′) of marked hyperbolic metrics, the compositions, RS+

g,t ◦ RS
+
g′,−t′ and RS−g,t ◦

RS−g′,−t′ , both have fixed points in Thyp[S]. Furthermore, when t+ t′ = π, these fixed points
are unique.

Other scattering type results readily follow from existing results.

4.21 Theorem. For all α ∈ {l, r}, for all ε ∈ {+,−}, and for all κ < −1, the map (Θα, I
ε
κ)

defines a bijection from GHMC−1 into Trep[S]× Thyp[S].

Proof. It suffices to consider the case (Θl, I
+
κ ), as the remaining three cases are proven in

a similar manner. Let H : Trep[S] → Thyp[S] be the canonical identification, and define
Ψ : Trep[S]× Thyp[S]→ Trep[S]× Trep[S] by

Ψ([θ], g) := ([θ], (H−1RSg,tH)([θ])),

where t := 2arctan(
√
κ). By the rotation theorem (Theorem 2.23), Ψ is a bijection. However,

(Θl, I
+
κ ) = Ψ−1 ◦ (Θl,Θr),

and the result now follows by Theorem 4.3.

In a similar manner, we obtain.

4.22 Theorem. For all α ∈ {l, r}, for all ε ∈ {+,−}, and for all κ < −1, the map (Θα, II
ε
κ)

defines a bijection from GHMC−1 into Trep[S]× Thyp[S].

Finally, we observe that invariant surfaces may also be constructed subject to other
curvature conditions. For example, in [BBZ07], foliations by surfaces of constant mean
curvature are constructed. Of particular interest is

4.23 Theorem (Barbot–Béguin–Zeghib [BBZ07]). There exists a unique space-like maximal
surface Σmax(θ) in Ω which is invariant under the action of θ(π1(S)).

A straightforward calculation reveals that in this case, the composition Nl◦N−1
r is a minimal

Lagrangian diffeomorphism. This is illustrated in Figure 15. In particular (c.f. [KS07]), we
recover

2.11 Theorem (Labourie [Lab92b], Schoen [Sch93]). Given two marked hyperbolic metrics,
g1 and g2, there exists a unique minimal lagrangian diffeomorphism, f : (S, g1) → (S, g2),
which preserves the markings.
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5 De Sitter space

5.1 De Sitter space

De Sitter space, which will be denoted by dS3, is defined to be the projective quotient of
the one sheeted hyperboloid in R3,1, that is,

dS3 :=
{
x | x2

1 − x2
2 − x2

3 − x2
4 = −1

}
/ {± Id} .

Although de Sitter space is orientable, it is not time orientable. Its isometry group identifies
with PO(3, 1), that is, the projective quotient of O(3, 1). This group has 2 connected
components, determined by whether they preserve or reverse the orientation, and its identity
component identifies with PSO(3, 1).

The study of equivariant immersions in de Sitter space is less straightforward than in the
two preceding cases, mainly because, here, equivariant immersions are not always embedded.
For this reason, we will introduce below the class of quasi-Fuchsian immersions. Since all
equivariant immersions in this class are embedded, the corresponding moduli spaces present
structures similar to those studied in Sections 3 and 4. For the didactic purposes of this
paper, we will not consider equivariant immersions outside this class, but the reader should
understand that a far richer theory nontheless exists for non-quasi-Fuchsian equivariant
immersions (c.f. [Sca99, Mes07, ABB+07]).

In order to define quasi-Fuchsian immersions, we first study how PSO(3, 1) acts on the
Riemann sphere. Recall the projective model introduced in Section 4.1. It follows from the
definition that dS3 projects diffeomorphically onto an open subset of RP3. Consider now
the light cone,

Ĉ :=
{
x | x2

1 = x2
2 + x2

3 + x2
4

}
,

and let C be its projective quotient. This subset is a smoothly embedded sphere whose
complement consists of two connected components. One of these components identifies with
dS3, as we have already seen. The other identifies with hyperbolic space, H3. Indeed, recall
that hyperbolic space can be defined as the projective quotient of the unit pseudosphere in
R3,1, that is,

H3 :=
{
x | x2

1 − x2
2 − x2

3 − x2
4 = 1

}
/ {± Id} ,

which naturally projects diffeomorphically onto an open subset of RP3. In this manner, we
see that C naturally identifies as the boundary both of dS3 and of H3.

The Minkowski metric over R3,1 restricts to a degenerate metric over Ĉ having one
null direction, namely the radial direction, and two spacelike directions. Since the radial
direction is collapsed by projection onto RP3, this degenerate metric projects to a conformal
class of non-degenerate metrics over C, giving this submanifold the holomorphic structure of
the Riemann sphere. Furthermore, the group, PSO(3, 1), acts faithfully on C by conformal
maps. It therefore embeds naturally as a subgroup of the Möbius group, PSL(2,C), and
since these Lie groups are both connected, have the same dimension, and have the same
fundamental groups, this embedding is, in fact, an isomorphism.

Consider now a homomorphism, θ : Π1 → PSO(3, 1). This homomorphism is said
to be quasi-Fuchsian whenever it preserves each of the two connected components of the
complement of some Jordan curve, Γθ, in C, and acts properly discontinuously on each of
these components. Suppose that Γθ is oriented, and let Clθ and Crθ be the components of
its complement in C which lie respectively to its left and to its right. The two quotients
Clθ /θ(Π1) and Crθ /θ(Π1) then each define marked compact Riemann surfaces of genus g,
that is, points of Thol[S]. Furthermore, if θ′ : Π1 → PSO(3, 1) is another homomorphism
such that θ′ = αθα−1, for some α ∈ PSO(3, 1), then θ′ preserves each of α(Clθ) and α(Crθ),
and acts properly discontinuously on each of these sets, so that it is also a quasi-Fuchsian ho-
momorphism. Since the quotient surfaces, α(Clθ)/θ

′(Π1) and α(Crθ)/θ
′(Π1), are conformally

equivalent to Clθ /θ(Π1) and Crθ /θ(Π1) respectively, we see that the point of Thol[S]×Thol[S]
defined by θ only depends on its conjugacy class.

In this manner, we obtain two maps from the space of quasi-Fuchsian homomorphisms
into a space of Teichmüller data of real dimension (6g − 6) (c.f. Table 12). Bers’ theorem
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Map Description Codomain

Hl/r The holomorphic structure to the left/right of Γθ Thol[S]

Table 12: Maps taking values in spaces of real dimension (6g− 6).

tells us that these maps parametrise the space of quasi-Fuchsian homomorphisms up to
conjugation.

5.1 Theorem (Bers [Ber60]). (Hl,Hr) defines a bijection between the space of conjugacy
classes of quasi-Fuchsian homomorphisms of Π1 into PSO(3, 1) and Thol[S]× Thol[S].

An equivariant immersion, [e, θ], in dS3 is now said to be quasi-Fuchsian whenever it is
embedded and its holonomy, θ, is quasi-Fuchsian. The theory of quasi-Fuchsian equivariant
immersions is now developed in the same way as before. Significantly, not all equivariant
immersions with quasi-Fuchsian holonomy are themselves actually quasi-Fuchsian. Indeed,
given a quasi-Fuchsian equivariant immersion, [e, θ], a large family of non-embedded equivari-
ant immersions with the same holonomy can be constructed by so called grafting operations,
although these are essentially the only ones (c.f. [Gol87]).

As in the preceding two sections, the converse problem of recovering the quasi-Fuchsian
equivariant immersion from the holonomy is studied in terms of ghmc de Sitter spacetimes.
We first require a good notion of convex subsets for de Sitter space. In the present con-
text, it will be useful to say that a subset, X, of dS3 is convex whenever it coincides with
the intersection of dS3 with some convex subset, X̂, of RP3. Likewise, duality of convex
subsets of RP3 is defined with reference to the Minkowski metric, 〈·, ·〉3,1, so that, given a
homogeneous convex cone, Λ, in R3,1, its dual cone is given by,

Λ∗ := {y | 〈y, x〉3,1 ≤ 0 ∀x ∈ Λ} ,

and this notion of duality projects to a notion of duality for convex subsets of RP3.
We now have

5.2 Theorem. Given a quasi-Fuchsian homomorphism, θ : Π1 → PSO(3, 1), there exists
a unique convex subset, Ωθ, of dS3, which is maximal with respect to inclusion, over the
interior of which θ acts freely and properly discontinuously.

In fact, Ωθ is the intersection of dS3 with a convex subset of RP3 which contains the
closure of H3. As usual, it is defined via its dual, Kθ, which we henceforth refer to as its
Nielsen kernel, and which is simply the convex hull in H3 of the invariant Jordan curve,
Γθ. Ωθ itself has two disjoint connected components, each of which intersects C along the
closure of one of the connected components of the complement of Γθ. Let Ωlθ and Ωrθ be
the components lying to the left and right of Γθ respectively (c.f. Figure 16). Each of
these components now carries a well defined time orientation for which it is future complete.
Observe that reversing the orientation of Γθ exchanges Ωlθ and Ωrθ, so that it is sufficient for
much that follows to consider only Ωlθ.

The quotient, Ωlθ/θ(Π1), is a future-complete ghmc dS spacetime, and we say that a ghmc
dS spacetime is quasi-Fuchsian whenever it can be constructed in this manner. We denote
the space of quasi-Fuchsian ghmc dS spacetimes by GHMCqf

1 . By Theorem 5.2, this space
is parametrised by a certain subset of the space of homomorphisms of Π1 into PSO(3, 1),
and since the image is an open set (c.f. the Ehresmann–Thurston theorem [Gol06]), we use

this parametrisation to furnish GHMCqf
1 with the structure of a complex manifold.

5.2 Laminations and trees

As usual, measured geodesic laminations are constructed using the boundary of the Nielsen
kernel, Kθ. In order to visualise this construction, consider first a spacelike, unit vector, x1,
in R3,1. Observe that x1 projects to an element of dS3. Furthermore, the intersection of its
orthogonal complement with H3 is a totally geodesic embedded submanifold, isometric to
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Figure 16: The structure of a ghmc de Sitter spacetime. De Sitter space can be
realised in a projective chart as the exterior of the unit ball in R3 plus a copy of RP2 at
infinity. The interior of this unit ball identifies with hyperbolic space, and its boundary
identifies with the Riemann sphere. Ωθ contains the unit ball, whilst Kθ is contained within
it. They both meet the boundary of the unit ball along a Jordan curve, Γθ. Kθ is, in fact,
the convex hull of this curve. The intrinsic metric of ∂K±θ is hyperbolic, and its singular set
is a measured geodesic lamination. The intrinsic metric of ∂Ωθ is a real tree.

H2. In addition, at every point of this subspace, x1 defines a tangent line to H3 which is
normal to this subspace at this point. By abuse of terminology, we denote this subspace by
x⊥1 , and we refer to it as the plane orthogonal to x1.

Consider now another spacelike vector, x2, in R3,1, chosen so that x⊥1 and x⊥2 intersect
along a shared geodesic, Γ12. Observe that this geodesic divides each of x⊥1 and x⊥2 into two
half-planes with geodesic boundary. Let X12 be one of the four connected components of
the complement of the union of x⊥1 and x⊥2 in H3. The boundary of this set is the union
of two half-planes, one in x⊥1 , and one in x⊥2 , which meet along Γ12. Recall now that the
intrinsic metric of ∂X12 is defined by

d(x, y) := inf
γ
l(γ) ,

where γ ranges over all continuous curves in ∂X12 starting at x and ending at y, and l(γ) is
its length with respect to the Minkowski metric 〈·, ·〉3,1. It is now a straightforward matter
to show that ∂X12, furnished with this metric, is isometric to H2, and that the bending
locus, Γ12, is a complete geodesic.

Consider now a third element, x3, chosen in such a manner that the planes, x⊥1 , x⊥2 and
x⊥3 have trivial intersection in H3. The complement of the union of these three planes has at
least one connected component, which we will denote by X123, which meets each one of the
planes, x⊥1 , x⊥2 and x⊥3 . As before, its boundary, ∂X123, furnished with the intrinsic metric,
is isometric to H2, and two of the three curves, Γ12, Γ13 and Γ23, will define complete,
non-intersecting geodesics in this space.

Now, since Kθ is a convex hull, it behaves much like the intersection of a finite config-
uration of spacelike planes, no three of which share a common point in H3. In particular,
the boundary component, ∂Kl

θ, furnished with the intrinsic metric, is isometric to H2, and
since it is invariant under the action of θ(Π1), it defines a compact, hyperbolic surface,
∂Kl

θ /θ(Π1).
As before, the measured geodesic lamination is now constructed using supporting planes.

Indeed, given a convex set, X, in H3 and a boundary point, x, a plane, y⊥, passing through
x is said to be a supporting plane to X at that point whenever X lies entirely to one
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side of it. Since Kθ is a convex hull, any supporting plane to ∂Kl
θ meets this set either

along a complete geodesic or along a non-trivial ideal polygon (with possibly infinitely many
sides). The lamination, Ll, of ∂Kl

θ, is now defined to be the union of all complete geodesics
determined by intersections of this set with supporting hyperplanes. In analogy to the case
of a finite configuration of geodesics, no two geodesics in Ll intersect, so that this set is
indeed a lamination.

Given a convex subset, X, of H3, and a boundary point, x, an element, y, of dS3 is said
to be a supporting normal to X at x whenever the plane, y⊥, is a supporting plane to X at
this point. It is a straightforward matter to show that if z is a point of ∂Kl

θ not lying on
the lamination Ll, then ∂Kl

θ has a unique supporting normal at that point. Now, given a
short curve, c, in ∂Kl

θ, with end points not in Ll, its mass is approximated by the length of
the shortest spacelike curve in dS3 joining the respective supporting normals of its two end
points, and the mass of an arbitrary curve, c, compatible with L is now determined in the
usual manner by summing over short segments and taking a limit. This defines a measured
geodesic lamination, λ, over ∂Kl

θ. Since λ is invariant under the action of θ(Π1), it projects

to a measured geodesic lamination over the hyperbolic surface, ∂Kl
θ /θ(Π1). Likewise, as in

the Minkowski and anti de Sitter cases, the minimal, short action of θ(Π1) on a real tree
is determined by the intrinsic metric of the boundary component, ∂Ωlθ of Ωθ. In summary,
bearing in mind that the same constructions also apply to the right hand sides, ∂Kr

θ and
∂Ωrθ, of Kθ and Ωθ, respectively, we obtain three pairs of maps, each taking values in spaces
of Teichmüller data of real dimension (6g− 6) (c.f. Table 13).

Map Description Codomain

Il/r∞ The intrinsic metric of ∂K
l/r
θ Thyp[S]

Ll/r The measured geodesic lamination of ∂K
l/r
θ ML[S]

Tl/r The minimal, short action of θ on the real tree ∂Ω
l/r
θ RT[S]

Table 13: Maps taking values in spaces of real dimension (6g− 6).

The relationship between Il/r∞ , Ll/r and Hl/r can be illustrated via the generalised Gauss
map, N , defined as follows. Consider a convex set, X, in H3. Let x be a boundary point of
X, and let y ∈ dS3 be a supporting normal to X at this point. Let νX(x, y) be the end-point
in C of the geodesic leaving X at x in the direction of y. Observe that νX(x, y) can also
be defined in the following manner, more compatible with our projective viewpoint. Let
P := 〈x, y〉 be the linear plane in R3,1 generated by x and y. The intersection of P with the
light cone, Ĉ, defines two distinct lines, which project to distinct points, z− and z+, in C.
Without loss of generality, z+ lies on the opposite side of the plane, y⊥, as X, and we set
νX(x, y) := z+. The generalised Gauss map of X is now defined by

N(x) := {νX(x, y) | y a supporting normal to X at x} .

In order to understand the geometry of N , consider first an element, y1, in dS3. Observe
that y⊥1 intersects C along a circle. Let D1 be one of the connected components of the
complement of this circle. Let X1 be the connected component of the complement of y⊥1 in
H3 which lies on the other side of y⊥1 from D1, and let N be the generalised Gauss map of
X1. Since ∂X1 has a unique supporting normal at every point, x, the map, N , defines a
diffeomorphism from ∂X1 into D1, which is, in fact, holomorphic.

Now consider another element, y2, of dS3, such that y⊥2 meets y⊥1 along a shared geodesic,
Γ. With D2 and X2 defined as before, denote X12 := X1 ∩X2, and let N be its generalised
Gauss map. Since ∂X12 has a unique supporting normal at every point, x, not lying on Γ, N
defines a holomorphic diffeomorphism from the complement of Γ in ∂X12 into the symmetric
difference, D1∆D2, of D1 and D2. However, at every point, x, of Γ, ∂X12 has an entire
continuum of supporting normals. The set, N(x), is a circular arc in C. Furthermore these
circular arcs trace out the intersection, D1 ∩ D2, as x moves along Γ. In this way, we see
that N identifies with the grafting map sending the hyperbolic structure of ∂X12 into the
conformal structure of D1 ∪D2.
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More generally, let Hl/r /θ(Π1). Since Kθ behaves like the intersection of a finite configu-
ration of half spaces in H3, we now see that the generalised Gauss map, N , of the boundary

component, ∂K
l/r
θ , defines the grafting map along the measured geodesic lamination, L

l/r
θ ,

which sends the marked hyperbolic metric, I
l/r
∞ , into the marked holomorphic structure,

H
l/r
θ .

We now obtain scattering type results for dS3. First, we have

5.3 Theorem. The map (Il∞, I
r
∞) defines a surjection from GHMCqf

1 onto Thyp[S]×Thyp[S].

5.4 Remark. This theorem is considered as part of the folklore by experts in the field. In
[EM06], Epstein & Marden indicate that it follows from a theorem of Sullivan. The only
complete proof that we are aware of is provided by Slutskiy in [Slu14], following the work,
[Lab92a], of Labourie.

Consider now the map (Ll,Lr). For r > 0, let ML[S]r ⊆ ML[S] be the set of those measured
geodesic laminations all of whose compact leaves have weight strictly less than r. Surpris-
ingly, this is not an open condition over ML[S], and it is not known whether ML[S]r is itself

an open set (c.f. [BO04]). However, it is straightforward to show that (Ll,Lr) takes values
in ML[S]π ×fill ML[S]π. Now let Fuc1 denote the space of Fuchsian ghmc dS spacetimes.
This is the set of all spacetimes in GHMC1 whose holonomy preserves a circle in C, or,
equivalently, whose holonomy is conjugate to a homomorphism taking values in PSL(2,R).

5.5 Theorem (Bonahon–Otal [BO04]). The map (Ll,Lr) defines a surjection from GHMCqf
1 \Fuc1

onto ML[S]π ×fill ML[S]π.

5.6 Remark. It has been conjectured by Thurston that this map is injective. In particular,
by invariance of the domain, this would imply openness of the set ML[S]π ×fill ML[S]π.

Finally, we recall the following two scattering type results of Lecuire.

5.7 Theorem (Lecuire [Lec06]). The maps (Il∞,L
r) and (Ir∞,L

l) defines surjections from

GHMCqf
1 onto Thyp[S]×ML[S]π.

5.8 Theorem (Lecuire [Lec06]). The maps (Hl,Lr) and (Hr,Ll) define surjections from

GHMCqf
1 onto Thol[S]×ML[S]π.

5.3 Smooth parametrisations

Our starting point for the construction of smooth parametrisations of GHMC−1 is the fol-
lowing result.

5.9 Theorem (Labourie [Lab91]). Let θ : Π1 → PSO(3, 1) be quasi-Fuchsian. For all
κ ∈]1,∞[, and for each α ∈ {l, r}, there exists a unique, smooth, spacelike, LSC surface, Σακ
which is embedded in Ωαθ , which is invariant under the action of θ, and which has constant
extrinsic curvature equal to κ. Furthermore, the family of all such surfaces foliates ∂Ωθ as
κ varies over the interval ]1,∞[.

Maps taking values in spaces of Teichmüller data are constructed as follows. For κ ∈]1,∞[
and α ∈ {l, r}, consider the spacelike, LSC, embedded surface, Σακ , in Ωαθ which is invariant
with respect to θ and which has constant extrinsic curvature equal to κ. Let Iακ , IIακ and
IIIακ be its first, second and third fundamental forms respectively. The forms, (κ − 1)−1Iακ
and κ−1(κ− 1)IIIακ , each define marked hyperbolic metrics over Σακ , thus defining points in
Thyp[S]. Next, by convexity, IIακ is also positive definite, and therefore also defines a metric
over Σακ , but since this metric has no clear curvature properties, we consider it rather as
defining a point in Thol[S]. In summary, we have three pairs of maps, each taking values in
spaces of Teichmüller data of real dimension (6g− 6) (c.f. Table 14).

These maps are complemented to maps taking values in spaces of Teichmüller data of real
dimension (12g−12) as follows. First, the shape operator, Aακ , of Σακ defines, up to a constant
factor, a Labourie field of Iακ , whilst its inverse (Aακ)−1, defines a Labourie field of IIIακ , so
that the pairs, (Iακ ,A

α
κ) and (IIIακ , (A

α
κ)−1), define points of Lab Thyp[S]. Likewise, the Hopf
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Map Description Codomain

Il/rκ The first fundamental form of Σ
l/r
κ Thyp[S]

IIl/rκ The second fundamental form of Σ
l/r
κ Thol[S]

IIIl/rκ The third fundamental form of Σ
l/r
κ Thyp[S]

Table 14: Maps taking values in spaces of real dimension (6g− 6).

differential, φακ , of Iακ with respect to the conformal structure of IIακ defines a holomorphic
quadratic differential, so that the pair (IIακ , φ

α
κ) yields a point of T∗Thol[S]. We thus have

three pairs of maps taking values in spaces of Teichmüller data of real dimension (12g− 12)
(c.f. Table 15).

Map Description Codomain

A
l/r
I,κ

The first fundamental form of Σ
l/r
κ

together with the Labourie field, A
l/r
κ

Lab Thyp[S]

Φ
l/r
κ

The second fundamental form of Σ
l/r
κ

together with the Hopf differential φ
l/r
κ

T∗Thol[S]

A
l/r
III,κ

The third fundamental form of Σ
l/r
κ

together with the Labourie field, A
l/r
κ

Lab Thyp[S]

Table 15: Maps taking values in spaces of real dimension (12g− 12).

It follows from existing results that these maps parametrise GHMCqf
1 . Indeed,

5.10 Theorem. For each α ∈ {l, r}, the maps Aα
I,κ and Aα

III,κ define real analytic diffeo-

morphisms from GHMCqf
1 onto open subsets of Lab Thyp[S] containing the zero section.

5.11 Remark. We are not aware of any explicit descriptions of the images of these maps.

Sketch of proof. Consider a hyperbolic metric, g, a Labourie field, A, and a real number,
κ > 1. By the fundamental theorem of surface theory (Theorem 3.1), there exists an LSC
equivariant immersion e : (S̃, (κ−1)−1g)→ dS3, with shape operator equal to

√
κA, which is

unique up to isometries of dS3. This yields a real analytic inverse of Aα
I,κ. The real analytic

inverse of Aα
III,κ is constructed in a similar manner using equivariant immersions into H3,

and the result follows.

5.12 Theorem. For each α ∈ {l, r}, the map Φακ defines a real analytic diffeomorphism

from GHMCqf
1 onto an open subset of T∗ Thol[S].

5.13 Remark. We are not aware of any explicit description of the image of this map.

Proof. Indeed, observe that Φακ ◦(Aα
I,κ)−1 coincides with Φ◦A−1, where Φ and A are defines

as in Sections 2.5 and 2.6 respectively. The result now follows by Theorems 2.13, 2.17 and
5.10.

Finally, considering pairs of maps taking values in spaces of Teichmüller data of real
dimension (6g− 6), we have the following two scattering type results.

5.14 Theorem (Schlenker [Sch06]). For all κ > 0, the map, (Ilκ, I
r
κ), defines a bijection

from GHMCqf
1 into Thyp[S]× Thyp[S].

5.15 Theorem (Labourie [Lab92a]). For all κ > 0, the map, (IIIlκ, III
r
κ), defines a bijection

from GHMCqf
1 into Thyp[S]× Thyp[S].
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[LS14] Cyril Lecuire and Jean-Marc Schlenker. The convex core of quasifuchsian mani-
folds with particles. Geom. Topol., 18(4):2309–2373, 2014.

[McM98] Curtis T. McMullen. Complex earthquakes and Teichmüller theory. J. Amer.
Math. Soc., 11(2):283–320, 1998.

[Mes07] Geoffrey Mess. Lorentz spacetimes of constant curvature. Geom. Dedicata, 126:3–
45, 2007.

[MS09] Sergiu Moroianu and Jean-Marc Schlenker. Quasi-Fuchsian manifolds with parti-
cles. J. Differential Geom., 83(1):75–129, 2009.

[O’N83] Barrett O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied
Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
York, 1983. With applications to relativity.

[Oss86] Robert Osserman. A survey of minimal surfaces. Dover Publications, Inc., New
York, second edition, 1986.

[PH92] R. C. Penner and J. L. Harer. Combinatorics of train tracks, volume 125 of Annals
of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992.

[Rin09] Hans Ringström. The Cauchy problem in general relativity. ESI Lectures in Math-
ematics and Physics. European Mathematical Society (EMS), Zürich, 2009.
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