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ON A NONLINEAR CRITICAL ELLIPTIC EQUATION WITH A PERTURBED HARDY POTENTIAL

In this work, we use a minimisation argument to show the existence of a nontrivial solution to

where Ω ⊂ R n , n ≥ 3, is a smooth domain.

Introduction

Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω. We let a ∈ C 0,θ ( Ω) for some θ ∈]0, 1[ be a Hölder continuous function. In this note, we investigate the existence of weak solutions u ∈ H 1 0 (Ω), u ≡ 0, to the problem (H)

   -∆u -a(x) |x| 2 u = u 2 -1 in Ω u ≥ 0 a.e. in Ω u = 0 in ∂Ω
where 2 := 2n n-2 and H 1 0 (Ω) is the completion of C ∞ c (Ω) for the norm u → ∇u 2 . The exponent 2 is critical from the viewpoint of Sobolev embeddings: H 1 0 (Ω) is continuously embedded in L q (Ω) for all 1 ≤ q ≤ 2 , and the embedding is compact if 1 ≤ q < 2 . Such type of equations has been investigated by many authors since the pioneer work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] (which is the case a(x) := λ|x| 2 for some λ ∈ R). For the case of nontrivial Hardy potential, without claiming any exhaustivity, we refer to Jannelli [START_REF] Jannelli | The Role played by Space Dimensions in Elliptic Critical Problems[END_REF], Ruiz-Willem [START_REF] Ruiz | Elliptic problems with critical exponents and Hardy potentials[END_REF] (both for the case 0 ∈ Ω), the recent survey by Ghoussoub-Robert [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: Extremals and critical dimensions[END_REF] and the references therein.

Concerning terminology, we say that

u ∈ H 1 0 (Ω) is a weak solution to (H) if Ω ∇u∇vdx - Ω a(x) |x| 2 uvdx = Ω u 2 * -1 vdx for all v ∈ H 1 0 (Ω).
This definition makes sense because of the Sobolev embedding H 1 0 (Ω) → L 2 (Ω) and the Hardy inequality (n -2) 2 4 4 . We refer to Ghoussoub-Robert [START_REF] Ghoussoub | On the Hardy-Schrödinger operator with a boundary singularity[END_REF] for discussions and references about the value of γ H (Ω).

Ω v 2 |x| 2 dx ≤ Ω |∇v| 2 dx for all v ∈ H 1 0 (Ω). Since 0 ∈ ∂Ω,
In the sequel, we assume that the operator -∆ -a(x) |x| 2 is coercive, that is there exists c > 0 such that

Ω |∇v| 2 - a(x)v 2 |x| 2 dx ≥ c Ω |∇v| 2 dx for all v ∈ H 1 0 (Ω).
We investigate weak solutions to (H) as minima of the functional defined for u ∈ H 1 0 (Ω) \ {0} by

J Ω a (u) := Ω |∇u| 2 dx -Ω a(x)u 2 |x| 2 dx Ω |u| 2 dx 2 2
.

We define

µ a (Ω) := inf J Ω a (u)|u ∈ H 1 0 (Ω)\{0} . In the following D 1,2 (R n + ) is the completion of C ∞ 0 (R n + )
for the norm u → ∇u 2 . We prove the following result.

Theorem 1.1. Let Ω be a smooth bounded domain of R n , n ≥ 3. Let a ∈ C 0,θ (Ω) for some θ ∈ (0, 1). We assume that -∆ -a(x) |x| 2 is coercive and that γ := a(0) < n 2 4 . We assume that µ a (Ω) < 1 K(n, γ) where

1 K(n, γ) := inf u∈D 1,2 (R n + )\{0} R n + (|∇v| 2 -γv 2 |x| 2 )dx ( R n + |v| 2 dx) 2 2
.

Then there exists u ∈ H 1 0 (Ω) \ {0} that is a weak solution of (H). Moreover, u can be achieved as a minimizer for µ a (Ω).

Remark 1. For example, if a(x) = γ and γ < (n-2) 2 4 we have that -∆ -a(x) |x| 2 is coercive in R n . More generally, it is necessary and sufficient that γ < γ H (Ω) or γ H (Ω) is the Hardy-Sobolev constant.
This note is devoted to the proof of Theorem 1.1.

Proof of Theorem

1.1 Let (u k ) k∈N ∈ H 1 0 (Ω)\{0} be a minimizing sequence for µ a (Ω), that is J Ω a (u k ) = µ a (Ω) + o(1) as k → +∞. Without loss of generality, we can assume that u k 2 2 * = 1 for all k ∈ N, and then (2) Ω |∇u k | 2 - a(x)u 2 k |x| 2 dx = µ a (Ω) + o(1) as k → +∞.
Step 1: We claim that (u k ) k∈N is bounded in H 1 0 (Ω).

Proof. Since the operator is coercive, there exists C > 0 such that

Ω |∇u k | 2 - a(x)u 2 k |x| 2 dx ≥ C Ω |∇u k | 2 dx (3)
for all k ∈ N. We combine ( 2) and (3) to get

C Ω |∇u k | 2 dx ≤ µ a (Ω) + o(1)
as k → +∞. Therefore (u k ) k∈N is bounded in H 1 0 (Ω). This proves the claim.

As a consequence, up to the extraction of a subsequence, there exists u ∈ H 1 0 (Ω) such that

u k u converges weakly in H 1 0 (Ω) u k → u converges strongly in L 2 (Ω) u k → u converges a.e in Ω.
We define v k = u k -u, we use equation ( 2) and we get

Ω |∇(v k + u)| 2 dx - Ω a(x)(v k + u) 2 |x| 2 dx = µ a (Ω) + o(1).
Therefore

Ω |∇v k | 2 dx + Ω |∇u| 2 dx + 2 Ω (∇v k , ∇u)dx - Ω a(x)v 2 k |x| 2 dx - Ω a(x)u 2 |x| 2 dx -2 Ω a(x)v k u |x 2 | dx = µ a (Ω) + o(1).
Since v k 0 converges weakly in H 1 0 (Ω) as k → +∞, we get that ( 4)

Ω |∇v k | 2 dx + Ω |∇u| 2 dx - Ω a(x)v 2 k |x| 2 dx - Ω a(x)u 2 |x| 2 dx = µ a (Ω) + o(1)
as k → +∞.

Step 2: We claim that

(5) lim k→+∞ Ω a(x)v 2 k |x| 2 dx - Ω a(0)v 2 k |x| 2 dx = 0
where a(0) = γ.

Proof. Since a ∈ C 0,θ ( Ω) then there exists c > 0 such that

|a(x) -a(0)| ≤ c|x| θ for all x ∈ Ω.
This gives

Ω a(x)v 2 k |x| 2 dx - Ω a(0)v 2 k |x| 2 dx = Ω (a(x) -a(0))v 2 k |x| 2 ≤ Ω |a(x) -a(0)|v 2 k |x| 2 dx ≤ c Ω |x| θ v 2 k |x| 2 dx.
We let δ > 0 to be fixed later. We have that

Ω a(x)v 2 k |x| 2 dx - Ω a(0)v 2 k |x| 2 dx ≤ c B(0,δ) |x| θ v 2 k |x| 2 dx + c Ω\B(0,δ) |x| θ v 2 k |x| 2 dx = I 1 (k) + I 2 (k)
as k → +∞. Concerning I 1 (k), we use the Hardy inequality (1) to get

I 1 (k) = c B(0,δ) |x| θ v 2 k |x| 2 dx ≤ δ θ B(0,δ) v 2 k |x| 2 dx ≤ c γ H (Ω) δ θ Ω |∇v k | 2 dx for all k ∈ N. Therefore, since (v k ) k is bounded in H 1 0 (Ω), we get that (6) I 1 (k) ≤ c 1 δ θ
for all k ∈ N. Concerning I 2 (k), we have that

I 2 (k) = c Ω\B(0,δ) |x| θ v 2 k |x| 2 dx ≤ c 2 δ θ-2 Ω\B(0,δ) v 2 k dx for all k ∈ N. Since v k → 0 strongly in L 2 , we get that (7) lim k→∞ I 2 (k) = 0.
Let > 0 be a positive number. Since lim δ→0 c 1 δ θ = 0, there exists δ > 0 such that c 1 δ θ < 2 , and then (6) yields I 1 (k) < 2 for all k ∈ N. Moreover, it follows from (7) that there exists k 0 such that

I 2 (k) < 2 for all k > k 0 . Then, Ω a(x)v 2 k |x| 2 dx - Ω a(0)v 2 k |x| 2 dx ≤ 2 + 2 = for all k > k 0 . Therefore, lim k→∞ Ω a(x)v 2 k |x| 2 dx - Ω a(0)v 2 k |x| 2 dx = 0.
This proves the claim.

Step 3: We claim that u 2 2 * = 1. Proof. We have

(8) u 2 2 * µ a (Ω) ≤ Ω |∇u| 2 dx - Ω a(x)u 2 |x| 2 dx.
It follows from Ghoussoub-Robert [[2], Proposition 4.3] that for any > 0, there exists C > 0 such that

v 2 2 * ≤ (K(n, γ) + ) Ω |∇v| 2 - γv 2 |x| 2 dx + C Ω v 2 dx for all v ∈ H 1 0 (Ω). When k → +∞, v k → 0 in L 2 (Ω), we then get that (9) v k 2 2 * ≤ (K(n, γ) + ) Ω |∇v k | 2 - γv 2 k |x| 2 dx + o(1).
We combine (4), ( 5), ( 8) and ( 9) and to get

Ω |∇v k | 2 dx + Ω |∇u| 2 dx - Ω a(x)v 2 k |x| 2 dx - Ω a(x)u 2 |x| 2 dx = µ a (Ω) + o(1) Ω |∇u| 2 dx - Ω a(x)u 2 |x| 2 dx = µ a (Ω) - Ω |∇v k | 2 dx + Ω a(x)v 2 k |x| 2 dx + o(1) u 2 2 * µ a (Ω) ≤ µ a (Ω) - Ω |∇v k | 2 dx + Ω a(x)v 2 k |x| 2 dx + o(1) ( u 2 2 * -1)µ a (Ω) ≤ - Ω |∇v k | 2 dx + Ω a(x)v 2 k |x| 2 dx + o(1) (1 -u 2 2 * )µ a (Ω) ≥ Ω |∇v k | 2 dx - Ω a(x)v 2 k |x| 2 dx + o(1) ≥ Ω |∇v k | 2 dx - Ω a(0)v 2 k |x| 2 dx + o(1) (1 -u 2 2 * )µ a (Ω) ≥ 1 (K(n, γ) + ) v k 2 2 * + o(1) (10) as k → +∞, since a(0) = γ. It follows from Brezis-Lieb that u k 2 2 * = v k 2 2 * + u 2 2 * + o(1) as k → +∞. Since u k 2 2 * = 1, we get (11) 1 = v k 2 2 * + u 2 2 * + o(1)
. Inequality (10) and ( 11) yield

(1 -u 2 2 * )µ a (Ω) ≥ 1 (K(n, γ) + ) (1 -u 2 2 * ) (1 -u 2 2 * )(µ a (Ω) - 1 (K(n, γ) + ) ) ≥ 0.
Since µ a (Ω) < 1 K(n,γ) , then there exists > 0 such that µ a (Ω) - Step 4: We claim that u is a minimizer for µ a (Ω).

Proof. Equation ( 4) rewrites ( 12)

Ω |∇u| 2 dx - Ω a(x)u 2 |x| 2 dx = µ a (Ω) - Ω |∇v k | 2 dx + Ω a(x)v 2 k |x| 2 dx + o(1).
Equation [START_REF] Ruiz | Elliptic problems with critical exponents and Hardy potentials[END_REF] gives

Ω |∇v k | 2 dx - Ω a(x)v 2 k |x| 2 dx = Ω |∇v k | 2 dx - Ω a(0)v 2 k |x| 2 dx + o(1)
as k → +∞. Then, combining (9) with (12), we get that

Ω |∇u| 2 dx - Ω a(x)u 2 |x| 2 dx ≤ µ a (Ω) - 1 K(n, γ) + v k 2 2 * + o(1) ≤ µ a (Ω) + o(1)
as k → +∞. Therefore, since u 2 2 * = 1, we get

(13) Ω |∇u| 2 dx -Ω a(x)u 2 |x| 2 dx u 2 2 * ≤ µ a (Ω).
Combining (13) with the definition of µ a (Ω), we get that

µ a (Ω) = Ω |∇u| 2 dx -Ω a(x)u 2 |x| 2 dx u 2 2 .
Therefore, u is a minimizer of µ a (Ω) and the claim is proved.

Step 5: We claim that, up to multiplying by a positive constant, u is a weak solution to (H).

Proof. Indeed, since u is a minimum for µ a (Ω), it is a critical point of J Ω a and then, using that u 2 = 1, we may as well assume that u ≥ 0 on Ω (otherwise we replace u by |u| in the minimization process) and we get that

Ω ∇u∇vdx - Ω a(x) |x| 2 uvdx = µ a (Ω) Ω |u| 2 * -2 uvdx for all v ∈ H 1 0 (Ω),
and u is a weak solution to equation

-∆u - a(x) |x| 2 u = µ a (Ω)u 2 -1 in H 1 0 (Ω).
We define u = kũ where k := µ a (Ω)

-1

(2 -2) . As one checks, ũ is still a minimizer of J Ω a and ũ is a weak solution to (H). This proves the claim and Step 5.

Remark 2. It follows from the above analysis that u k → u strongly in H 1 0 (Ω). Indeed, we use equation (4), the coercivity of the operator and that u is minimun to conclude that as k → +∞. Since v k → 0 strongly in L 2 (Ω), we get that v k → 0 strongly in H 1 0 (Ω). Therefore u k → u strongly in H 1 0 (Ω).
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 112 Since u k u converges weakly in H 1 0 (Ω) as k → +∞, we have that u 2 2 * ≤ lim inf u k = 1. Therefore, we get that u 2 2 * = 1. This proves the claim.

Ω

  |∇v k | 2 dx -Ω a(x)v 2 k dx |x| 2 dx = o(1)and thenΩ |∇v k | 2 dx ≤ o(1)