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ON A NONLINEAR CRITICAL ELLIPTIC EQUATION WITH A
PERTURBED HARDY POTENTIAL

HUSSEIN CHEIKH ALI

ABSTRACT. In this work, we use a minimisation argument to show the existence
of a nontrivial solution to
“Au— Uy =21 inQ
|2
u >0 a.e. in
u=20 in 90

where 2 C R™, n > 3, is a smooth domain.

1. INTRODUCTION

Let 2 be a smooth bounded domain of R™, n > 3, such that 0 € 992. We let
a € C%9(Q) for some 0 €]0,1[ be a Holder continuous function. In this note, we
investigate the existence of weak solutions u € Hg (), u # 0, to the problem

* .
—Au — TQET;)UZUQ -1 inQ

(H)S w>0 a.e. in
u=0 in 092

where 2* := -2 and H} () is the completion of C5°(R2) for the norm u — ||Vul|s.
The exponent 2* is critical from the viewpoint of Sobolev embeddings: H{ () is
continuously embedded in L?(2) for all 1 < ¢ < 2*, and the embedding is compact
if 1 < g < 2*. Such type of equations has been investigated by many authors
since the pioneer work of Brezis-Nirenberg [1] (which is the case a(z) := A|z|? for
some A € R). For the case of nontrivial Hardy potential, without claiming any
exhaustivity, we refer to Jannelli [4], Ruiz-Willem [5] (both for the case 0 € Q), the
recent survey by Ghoussoub-Robert [3] and the references therein.

Concerning terminology, we say that u € H}(Q) is a weak solution to (H) if

/ VuVudzr — @uvdm = / u? “todz for all v € HL(Q).
Q a || Q

This definition makes sense because of the Sobolev embedding H{(Q) — L*(Q)
and the Hardy inequality

_9)2 2
u/ U—deg/|V1}|2d$
4 Jolzl Q

for all v € H}(Q). Since 0 € 99, this classical inequality is improved and one has
2
(1) ’YH(Q)/ U—de < / |Vo|2dz
a |zl Q
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for all v € H}(Q), where
n—2)2 n?
(G
is the best possible constant such that (1) holds. Note that when € is convex,
or more generally when Q C R%} := {z € R"/x; > 0}, then vy (Q2) achieves the
maximal value %2. We refer to Ghoussoub-Robert [2] for discussions and references
about the value of vg ().
In the sequel, we assume that the operator —A — TDETQ) is coercive, that is there
exists ¢ > 0 such that
2
/ (|Vv|2 _ alaj > dx > c/ |Vo|2dz for all v € H} ().
Q Q

|z[?

We investigate weak solutions to (H) as minima of the functional defined for u €
H;(€) \ {0} by

_ JalVulda - Jy o
(fq ul?*dax)

a(©) 1= inf {J2(w)lu € HE@Q\{0}}
In the following D?(R%) is the completion of C§°(R%) for the norm u — ||Vuls.
We prove the following result.
Theorem 1.1. Let Q be a smooth bounded domain of R", n > 3. Let a € C%%(Q)
for some 0 € (0,1). We assume that —A — TS‘? is coercive and that v := a(0) < %2.
We assume that

JiH(u)

a

We define

where )
1 . fR1(|Vv|2f %)dm

— = inf
K(n,y)  weD*2®\0}  ([o, [v]2"de)?
+
Then there exists u € H}(Q)\ {0} that is a weak solution of (H). Moreover, u can

be achieved as a minimizer for pq(£2).
Remark 1. For example, if a(z) = v and v < % we have that —A — T_,ET; is
coercive in R™. More generally, it is necessary and sufficient that v < vy () or

vu () is the Hardy-Sobolev constant.

This note is devoted to the proof of Theorem 1.1.

2. PROOF OF THEOREM 1.1

Let (ur)ren € HE(Q)\{0} be a minimizing sequence for 1,(€), that is JS(uz,) =
1a(Q) +0(1) as k — +o00. Without loss of generality, we can assume that

|lug||3. =1 for all k € N,
and then

2
2) / Vg — “ﬁﬁ;‘k dz = 11a(Q) + o(1) as k — +oo.
Q

Step 1: We claim that (uy)ken is bounded in H{ ().
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Proof. Since the operator is coercive, there exists C' > 0 such that

2
(3) / <|Vuk|2 - “(x);‘k> dz > c/ |V |2dz
Q |z| Q

for all k € N. We combine (2) and (3) to get

0/ Vg 2dz < () + o(1)
Q
as k — +o0. Therefore (u)ren is bounded in Hi (). This proves the claim. O

As a consequence, up to the extraction of a subsequence, there exists u € Hg ()
such that

up — u  converges weakly in  Hj(Q)

up — u  converges strongly in L?(9)

U —> U converges a.e in Q.

We define vy, = uy, — u, we use equation (2) and we get
2
/ |V (vg, 4+ u)|2dx — / Mdm = 114(Q) + o(1).
Q Q

Therefore

/|Vvk|2dx+/ |Vu|2dx—|—2/(Vvk,Vu)dx
Q Q Q

[ a(@)vy . a(z)u? v a(z)vpu r = 0
f, Taptae = St -2 S e = @ 4ot

|2

Since v, — 0 converges weakly in Hg () as k — +o00, we get that

v 2 X U2 T — a(x)vi X — a(x)UQ €T = 0]
(4) /Q|v o +/Q|v 2d /Q Rt /Q o = () + o)

as k — +4o0.

Step 2: We claim that

o i [ e St -

where a(0) = .

Proof. Since a € C%%(Q) then there exists ¢ > 0 such that
la(z) — a(0)| < c|z|? for all z € Q.

[, Gt [ e

This gives

/ (a(z) — a(0)v
Q

jz?

[ lee) a0t
o JoP

0,2
c/ 2] dex.
o lz|

IN
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We let 6 > 0 to be fixed later. We have that
2 002 0,2 0,2
/a(:v);kdx_/ a( );)kdx’ C/ i gkdIH/ l2l"0% 4,
o |7 o |zl B(0,5) |z| O\B(0,6) |z
Li(k) + I>(k)
as k — +oo. Concerning I1(k), we use the Hardy inequality (1) to get

IN

0,2 2
L) = c/ 2] dexg(s"/ Zk oy < —< 59/ V| 2d
B(0,s) 17l B(0,5) 7] () Jo
for all k € N. Therefore, since (vg)x is bounded in H}(Q), we get that
(6) Il (k‘) < 6159

for all k € N. Concerning I(k), we have that
0,2
I>(k) :c/ 2] dex < 0259*2/ vidz
Q\B(0,5) |z Q\B(0,5)
for all k € N. Since v, — 0 strongly in L?, we get that
(7) lim Ir(k) = 0.
k—o0

Let € > 0 be a positive number. Since limg_.g c16? = 0, there exists ¢ > 0 such that
c16? < §, and then (6) yields I; (k) < § for all k € N. Moreover, it follows from (7)
that there exists kg such that Iy(k) < § for all k > ko. Then,

/ DL 1 _ / a0
o |zl o ||
for all £ > kg. Therefore,

2 2
lim {/ a(x);}k dr — / a(O);)k dz] =0.
k—oo [ Jo |7 o ||

This proves the claim. (I

<

€
2

Step 3: We claim that ||u

2. =1
Proof. We have
(8) I

It follows from Ghoussoub-Robert [[2], Proposition 4.3] that for any € > 0, there
exists C. > 0 such that

2
2 11a() S/ |Vu|2dx—/ a(z)u dz.
o Q

]2

2
2 < () 4o [ (1voP - T ) dov o [ vas
Q | Q

lv
for all v € H}(Q). When k — +00, v — 0 in L?(Q2), we then get that

'UZ
) JoulB. < G0+ [ (190 = 28} o+ o),

We combine (4), (5), (8) and (9) and to get
2 2
/|Vvk|2dm—|—/ |Vu|2d:r—/ a(x)vkdx—/ a(sc)g dr = pq(Q)+o(1)
Q Q Q o |z

|2
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/Q|Vu|2dx—/9a(ﬁ;ﬂdx = ua(Q)—/ |Vvk\2dm+/ﬂ (| |) Edz + of1)
/|Vv \de+/ ale)of Edx + o(1)

a3 pa(Q) <
|z[?
(-~ Dpal) < —/ oo+ [ e o)
Q
- ulna@ 2 [ [Vaar— [ 42 f“kd +o(1)
Q
2, [ al0)vf
> |Vug|“dx Edz + o(1)
Q o |z?
1
10 1= Jul3)ma(Q) > o |log]l3- +o(1
10 -l > gl o)
as k — 400, since a(0) = v. It follows from Brezis-Lieb that
lurll- = llowll3+ + [ull3. +o(1)
as k — +o00. Since |lug||3. =1, we get
(11) 1= o3 + llull3- + o(1).
Inequality (10) and (11) yield
1
T —ull2)pa() > —— (1 — ||ul3
1
1-— 2V (e (Q) = —+——) > 0.
(1= Jlullz-)(1a(€2) E, )+€)) >
Since pq () < m, then there exists € > 0 such that u, () — m <0, and

therefore

Julz. > 1.

Since uj, — wu converges weakly in H}(Q) as k — 400, we have that |jul]3. <
lim inf ||ug||3. = 1. Therefore, we get that
2
[ullz- = 1.
This proves the claim. (]

Step 4: We claim that w is a minimizer for p,(£2).

Proof. Equation (4) rewrites

(12) /|Vu|d /Q (f2 = (0 /|W|dgc+/Q (||):kdx+o()

Equation (5) gives

Vo, |2dz — ;’kd Vo |2dz a(0 );’kd +o(1)
/ /Q || / /Q |z|

as k — +o00. Then, combining (9) with (12), we get that
2
1
Vqua:—/de o () — ————— vk ||3. + o(1
< pa() +o(1)

IA
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as k — +oo. Therefore, since ||ul|2. = 1, we get

Jo |Vul?dz — [, a(zf;ﬁ dx

(13) - < 1a(9).

[ull3-

Combining (13) with the definition of 11, (£2), we get that

xT u2
1a(Q) = Jo |VulPda — J; “pdo

[ull3.

Therefore, u is a minimizer of u,(2) and the claim is proved. (Il

Step 5: We claim that, up to multiplying by a positive constant, u is a weak
solution to (H).

Proof. Indeed, since u is a minimum for 11, (12), it is a critical point of Ji? and then,
using that ||ul|2» = 1, we may as well assume that v > 0 on Q (otherwise we replace
u by |u| in the minimization process) and we get that

a(z)

/ VuVoudr — / —5 uvdr = ,ua(Q)/ [ul> “2uvdz for all v € HY(Q),
Q a lz| Q

and u is a weak solution to equation

—Au — @u = o () " in HL(Q).

||

We define u = ki where k := p,(€Q) @7, As one checks, 4 is still a minimizer of
JS and 7 is a weak solution to (H). This proves the claim and Step 5. (]

Remark 2. It follows from the above analysis that uy — u strongly in H}(Q).
Indeed, we use equation (4), the coercivity of the operator and that u is minimun
to conclude that

a(x)vide
A |V |*dz — /Q (|l|§dx =o(1)

and then
/ |V |2dz < o(1)
Q

as k — 4oo. Since vy — 0 strongly in L*(Y), we get that vy — 0 strongly in
H} (). Therefore u, — u strongly in HZ ().
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