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ON A NONLINEAR CRITICAL ELLIPTIC EQUATION WITH A

PERTURBED HARDY POTENTIAL

HUSSEIN CHEIKH ALI

ABSTRACT. In this work, we use a minimisation argument to show the existence
of a nontrivial solution to −∆u− a(x)

|x|2 u = u2?−1 in Ω

u ≥ 0 a.e. in Ω
u = 0 in ∂Ω

where Ω ⊂ Rn, n ≥ 3, is a smooth domain.

1. Introduction

Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ ∂Ω. We let
a ∈ C0,θ(Ω̄) for some θ ∈]0, 1[ be a Hölder continuous function. In this note, we
investigate the existence of weak solutions u ∈ H1

0 (Ω), u 6≡ 0, to the problem

(H)

 −∆u− a(x)
|x|2 u = u2?−1 in Ω

u ≥ 0 a.e. in Ω
u = 0 in ∂Ω

where 2? := 2n
n−2 and H1

0 (Ω) is the completion of C∞c (Ω) for the norm u 7→ ‖∇u‖2.

The exponent 2? is critical from the viewpoint of Sobolev embeddings: H1
0 (Ω) is

continuously embedded in Lq(Ω) for all 1 ≤ q ≤ 2?, and the embedding is compact
if 1 ≤ q < 2?. Such type of equations has been investigated by many authors
since the pioneer work of Brezis-Nirenberg [1] (which is the case a(x) := λ|x|2 for
some λ ∈ R). For the case of nontrivial Hardy potential, without claiming any
exhaustivity, we refer to Jannelli [4], Ruiz-Willem [5] (both for the case 0 ∈ Ω), the
recent survey by Ghoussoub-Robert [3] and the references therein.

Concerning terminology, we say that u ∈ H1
0 (Ω) is a weak solution to (H) if∫

Ω

∇u∇vdx−
∫

Ω

a(x)

|x|2
uvdx =

∫
Ω

u2∗−1vdx for all v ∈ H1
0 (Ω).

This definition makes sense because of the Sobolev embedding H1
0 (Ω) ↪→ L2?

(Ω)
and the Hardy inequality

(n− 2)2

4

∫
Ω

v2

|x|2
dx ≤

∫
Ω

|∇v|2dx

for all v ∈ H1
0 (Ω). Since 0 ∈ ∂Ω, this classical inequality is improved and one has

(1) γH(Ω)

∫
Ω

v2

|x|2
dx ≤

∫
Ω

|∇v|2dx
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for all v ∈ H1
0 (Ω), where

(n− 2)2

4
< γH(Ω) ≤ n2

4
is the best possible constant such that (1) holds. Note that when Ω is convex,
or more generally when Ω ⊂ Rn+ := {x ∈ Rn/ x1 > 0}, then γH(Ω) achieves the

maximal value n2

4 . We refer to Ghoussoub-Robert [2] for discussions and references
about the value of γH(Ω).

In the sequel, we assume that the operator −∆ − a(x)
|x|2 is coercive, that is there

exists c > 0 such that∫
Ω

(
|∇v|2 − a(x)v2

|x|2

)
dx ≥ c

∫
Ω

|∇v|2dx for all v ∈ H1
0 (Ω).

We investigate weak solutions to (H) as minima of the functional defined for u ∈
H1

0 (Ω) \ {0} by

JΩ
a (u) :=

∫
Ω
|∇u|2dx−

∫
Ω
a(x)u2

|x|2 dx(∫
Ω
|u|2?dx

) 2
2?

.

We define
µa(Ω) := inf

{
JΩ
a (u)|u ∈ H1

0 (Ω)\{0}
}
.

In the following D1,2(Rn+) is the completion of C∞0 (Rn+) for the norm u 7→ ‖∇u‖2.
We prove the following result.

Theorem 1.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3. Let a ∈ C0,θ(Ω)

for some θ ∈ (0, 1). We assume that −∆− a(x)
|x|2 is coercive and that γ := a(0) < n2

4 .

We assume that

µa(Ω) <
1

K(n, γ)

where

1

K(n, γ)
:= inf

u∈D1,2(Rn
+)\{0}

∫
Rn

+
(|∇v|2 − γv2

|x|2 )dx

(
∫
Rn

+
|v|2?dx)

2
2?

.

Then there exists u ∈ H1
0 (Ω) \ {0} that is a weak solution of (H). Moreover, u can

be achieved as a minimizer for µa(Ω).

Remark 1. For example, if a(x) = γ and γ < (n−2)2

4 we have that −∆ − a(x)
|x|2 is

coercive in Rn. More generally, it is necessary and sufficient that γ < γH(Ω) or
γH(Ω) is the Hardy-Sobolev constant.

This note is devoted to the proof of Theorem 1.1.

2. Proof of Theorem 1.1

Let (uk)k∈N ∈ H1
0 (Ω)\{0} be a minimizing sequence for µa(Ω), that is JΩ

a (uk) =
µa(Ω) + o(1) as k → +∞. Without loss of generality, we can assume that

‖uk‖22∗ = 1 for all k ∈ N,
and then

(2)

∫
Ω

|∇uk|2 −
a(x)u2

k

|x|2
dx = µa(Ω) + o(1) as k → +∞.

Step 1: We claim that (uk)k∈N is bounded in H1
0 (Ω).



NONLINEAR CRITICAL EQUATION WITH A PERTURBED HARDY POTENTIAL 3

Proof. Since the operator is coercive, there exists C > 0 such that∫
Ω

(
|∇uk|2 −

a(x)u2
k

|x|2

)
dx ≥ C

∫
Ω

|∇uk|2dx(3)

for all k ∈ N. We combine (2) and (3) to get

C

∫
Ω

|∇uk|2dx ≤ µa(Ω) + o(1)

as k → +∞. Therefore (uk)k∈N is bounded in H1
0 (Ω). This proves the claim. �

As a consequence, up to the extraction of a subsequence, there exists u ∈ H1
0 (Ω)

such that

uk ⇀ u converges weakly in H1
0 (Ω)

uk → u converges strongly in L2(Ω)

uk → u converges a.e in Ω.

We define vk = uk − u, we use equation (2) and we get∫
Ω

|∇(vk + u)|2dx−
∫

Ω

a(x)(vk + u)2

|x|2
dx = µa(Ω) + o(1).

Therefore ∫
Ω

|∇vk|2dx+

∫
Ω

|∇u|2dx+ 2

∫
Ω

(∇vk,∇u)dx

−
∫

Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(x)u2

|x|2
dx− 2

∫
Ω

a(x)vku

|x2|
dx = µa(Ω) + o(1).

Since vk ⇀ 0 converges weakly in H1
0 (Ω) as k → +∞, we get that

(4)

∫
Ω

|∇vk|2dx+

∫
Ω

|∇u|2dx−
∫

Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(x)u2

|x|2
dx = µa(Ω) + o(1)

as k → +∞.

Step 2: We claim that

(5) lim
k→+∞

[∫
Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(0)v2
k

|x|2
dx

]
= 0

where a(0) = γ.

Proof. Since a ∈ C0,θ(Ω̄) then there exists c > 0 such that

|a(x)− a(0)| ≤ c|x|θ for all x ∈ Ω.

This gives ∣∣∣∣∫
Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(0)v2
k

|x|2
dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(a(x)− a(0))v2
k

|x|2

∣∣∣∣
≤

∫
Ω

|a(x)− a(0)|v2
k

|x|2
dx

≤ c

∫
Ω

|x|θv2
k

|x|2
dx.
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We let δ > 0 to be fixed later. We have that∣∣∣∣∫
Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(0)v2
k

|x|2
dx

∣∣∣∣ ≤ c

∫
B(0,δ)

|x|θv2
k

|x|2
dx+ c

∫
Ω\B(0,δ)

|x|θv2
k

|x|2
dx

= I1(k) + I2(k)

as k → +∞. Concerning I1(k), we use the Hardy inequality (1) to get

I1(k) = c

∫
B(0,δ)

|x|θv2
k

|x|2
dx ≤ δθ

∫
B(0,δ)

v2
k

|x|2
dx ≤ c

γH(Ω)
δθ
∫

Ω

|∇vk|2dx

for all k ∈ N. Therefore, since (vk)k is bounded in H1
0 (Ω), we get that

(6) I1(k) ≤ c1δθ

for all k ∈ N. Concerning I2(k), we have that

I2(k) = c

∫
Ω\B(0,δ)

|x|θv2
k

|x|2
dx ≤ c2δ

θ−2

∫
Ω\B(0,δ)

v2
kdx

for all k ∈ N. Since vk → 0 strongly in L2, we get that

(7) lim
k→∞

I2(k) = 0.

Let ε > 0 be a positive number. Since limδ→0 c1δ
θ = 0, there exists δ > 0 such that

c1δ
θ < ε

2 , and then (6) yields I1(k) < ε
2 for all k ∈ N. Moreover, it follows from (7)

that there exists k0 such that I2(k) < ε
2 for all k > k0. Then,∣∣∣∣∫

Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(0)v2
k

|x|2
dx

∣∣∣∣ ≤ ε

2
+
ε

2
= ε

for all k > k0. Therefore,

lim
k→∞

[∫
Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(0)v2
k

|x|2
dx

]
= 0.

This proves the claim. �

Step 3: We claim that ‖u‖22∗ = 1.

Proof. We have

(8) ‖u‖22∗µa(Ω) ≤
∫

Ω

|∇u|2dx−
∫

Ω

a(x)u2

|x|2
dx.

It follows from Ghoussoub-Robert [[2], Proposition 4.3] that for any ε > 0, there
exists Cε > 0 such that

‖v‖22∗ ≤ (K(n, γ) + ε)

∫
Ω

(
|∇v|2 − γv2

|x|2

)
dx+ Cε

∫
Ω

v2dx

for all v ∈ H1
0 (Ω). When k → +∞, vk → 0 in L2(Ω), we then get that

(9) ‖vk‖22∗ ≤ (K(n, γ) + ε)

∫
Ω

(
|∇vk|2 −

γv2
k

|x|2

)
dx+ o(1).

We combine (4), (5), (8) and (9) and to get∫
Ω

|∇vk|2dx+

∫
Ω

|∇u|2dx−
∫

Ω

a(x)v2
k

|x|2
dx−

∫
Ω

a(x)u2

|x|2
dx = µa(Ω) + o(1)
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Ω

|∇u|2dx−
∫

Ω

a(x)u2

|x|2
dx = µa(Ω)−

∫
Ω

|∇vk|2dx+

∫
Ω

a(x)v2
k

|x|2
dx+ o(1)

‖u‖22∗µa(Ω) ≤ µa(Ω)−
∫

Ω

|∇vk|2dx+

∫
Ω

a(x)v2
k

|x|2
dx+ o(1)

(‖u‖22∗ − 1)µa(Ω) ≤ −
∫

Ω

|∇vk|2dx+

∫
Ω

a(x)v2
k

|x|2
dx+ o(1)

(1− ‖u‖22∗)µa(Ω) ≥
∫

Ω

|∇vk|2dx−
∫

Ω

a(x)v2
k

|x|2
dx+ o(1)

≥
∫

Ω

|∇vk|2dx−
∫

Ω

a(0)v2
k

|x|2
dx+ o(1)

(1− ‖u‖22∗)µa(Ω) ≥ 1

(K(n, γ) + ε)
‖vk‖22∗ + o(1)(10)

as k → +∞, since a(0) = γ. It follows from Brezis-Lieb that

‖uk‖22∗ = ‖vk‖22∗ + ‖u‖22∗ + o(1)

as k → +∞. Since ‖uk‖22∗ = 1, we get

(11) 1 = ‖vk‖22∗ + ‖u‖22∗ + o(1).

Inequality (10) and (11) yield

(1− ‖u‖22∗)µa(Ω) ≥ 1

(K(n, γ) + ε)
(1− ‖u‖22∗)

(1− ‖u‖22∗)(µa(Ω)− 1

(K(n, γ) + ε)
) ≥ 0.

Since µa(Ω) < 1
K(n,γ) , then there exists ε > 0 such that µa(Ω)− 1

K(n,γ)+ε < 0, and

therefore

‖u‖22∗ ≥ 1.

Since uk ⇀ u converges weakly in H1
0 (Ω) as k → +∞, we have that ‖u‖22∗ ≤

lim inf ‖uk‖22∗ = 1. Therefore, we get that

‖u‖22∗ = 1.

This proves the claim. �

Step 4: We claim that u is a minimizer for µa(Ω).

Proof. Equation (4) rewrites

(12)

∫
Ω

|∇u|2dx−
∫

Ω

a(x)u2

|x|2
dx = µa(Ω)−

∫
Ω

|∇vk|2dx+

∫
Ω

a(x)v2
k

|x|2
dx+ o(1).

Equation (5) gives∫
Ω

|∇vk|2dx−
∫

Ω

a(x)v2
k

|x|2
dx =

∫
Ω

|∇vk|2dx−
∫

Ω

a(0)v2
k

|x|2
dx+ o(1)

as k → +∞. Then, combining (9) with (12), we get that∫
Ω

|∇u|2dx−
∫

Ω

a(x)u2

|x|2
dx ≤ µa(Ω)− 1

K(n, γ) + ε
‖vk‖22∗ + o(1)

≤ µa(Ω) + o(1)
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as k → +∞. Therefore, since ‖u‖22∗ = 1, we get

(13)

∫
Ω
|∇u|2dx−

∫
Ω
a(x)u2

|x|2 dx

‖u‖22∗
≤ µa(Ω).

Combining (13) with the definition of µa(Ω), we get that

µa(Ω) =

∫
Ω
|∇u|2dx−

∫
Ω
a(x)u2

|x|2 dx

‖u‖22?

.

Therefore, u is a minimizer of µa(Ω) and the claim is proved. �

Step 5: We claim that, up to multiplying by a positive constant, u is a weak
solution to (H).

Proof. Indeed, since u is a minimum for µa(Ω), it is a critical point of JΩ
a and then,

using that ‖u‖2? = 1, we may as well assume that u ≥ 0 on Ω (otherwise we replace
u by |u| in the minimization process) and we get that∫

Ω

∇u∇vdx−
∫

Ω

a(x)

|x|2
uvdx = µa(Ω)

∫
Ω

|u|2
∗−2uvdx for all v ∈ H1

0 (Ω),

and u is a weak solution to equation

−∆u− a(x)

|x|2
u = µa(Ω)u2?−1 in H1

0 (Ω).

We define u = kũ where k := µa(Ω)
−1

(2?−2) . As one checks, ũ is still a minimizer of
JΩ
a and ũ is a weak solution to (H). This proves the claim and Step 5. �

Remark 2. It follows from the above analysis that uk → u strongly in H1
0 (Ω).

Indeed, we use equation (4), the coercivity of the operator and that u is minimun
to conclude that ∫

Ω

|∇vk|2dx−
∫

Ω

a(x)v2
kdx

|x|2
dx = o(1)

and then ∫
Ω

|∇vk|2dx ≤ o(1)

as k → +∞. Since vk → 0 strongly in L2(Ω), we get that vk → 0 strongly in
H1

0 (Ω). Therefore uk → u strongly in H1
0 (Ω).
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