Relational Concept Analysis

An approach for classifying and mining multi-relational data

Marianne Huchard Montpellier University, LIRMM, France

NORTHEASTERN UNIVERSITY Shenyang 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

Observation

- Relational datasets, multi-dimensional data
- ► A few approaches
 - Data warehouse (OLAP) cube (Gray et al. 2008)
 - Inductive Logic Programming (Dzeroski, 2003)
 - Propositionalization (Kuzelka, O., Zelezný, 2008)
 - Graph pattern mining (Washio and Motoda 2003, Chakrabarti and Faloutsos 2006, Liquiere and Sallantin 1998, Ganter and Kuznetsov 2001, Kuznetsov 2013)

(ロ) (型) (E) (E) (E) (O)

More specific objectives

- Extract patterns from data and relations
- Interconnected classification of entities
- Classification of extracted patterns
- Complementary point of view vs. Graph pattern mining

Outline

Outline

- Formal Concept Analysis
- Relational Concept Analysis

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Applications

A methodology for:

- data analysis, data mining, hierarchical multi-clustering
- knowledge representation (e.g. ontology construction)
- classification, indexation (information retrieval)
- unsupervised learning (based on example description)

ション ふゆ く 山 マ チャット しょうくしゃ

supervised learning (adding classes in description)

Roots:

- lattice theory, Galois connections (Birkhoff, 1940; Barbut & Monjardet, 1970)
- concept lattices (Wille, 1982)

Formal Context

Simplest form: entities with characteristics

	Photo	PhysKeyboard	SquareScreen	FullHDScreen	4Gcapable	LowSAR	HighAutonomy	NFC
BlackberryPassport	×	×	×		×		×	×
BlackberryLeap	×				×		×	×
BlackberryQ5	×	×	×		×			×
iphone6plus	×			×	×		×	×
iphone6	×				×		×	×
NokiaLumia735	×				×		×	×
NokiaLumia930	×			×	×			×
SonyXperiaZ1	×			×	×		×	×
GoogleNexus5	×			×	×	×		×
AsusZE500CL	×				×			×
WikoHighway	×					×		
LGGFlex	×				X	×	X	X

SAR = specific absorption rate - NFC = Near Field Communication

Formal context

Formal Context (O, A, R)

- two finite sets O et A
- binary relation $R \subseteq 0 \times A$.

Mappings associated with R

► Attribute shared by an object set

$$f : \mathcal{P}(O) \rightarrow \mathcal{P}(A)$$

 $X \longmapsto f(X) = \{y \in A \mid \forall x \in X, (x, y) \in R\} = X'$

► Objects sharing an attribute set $g : \mathcal{P}(A) \rightarrow \mathcal{P}(O)$ $Y \longmapsto g(Y) = \{x \in O \mid \forall y \in Y, (x, y) \in R\} = Y'$

Alternative notation for f and g: '

Concept

A formal concept C is a pair (E, I) such that f(E) = I (or equivalently) E = g(I)

 $E = \{ e \in O \mid \forall i \in I, (e, i) \in R \}$ is the *extent* (covered objects)

 $I = \{ i \in A \mid \forall e \in E, (e, i) \in R \}$ is the *intent* (shared attributes)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Concept

A maximal group of objects (object closed set, extent) sharing a maximal group of attributes (attribute closed set, intent)

	Photo	PhysKeyboard	SquareScreen	FullHDScreen	4Gcapable	LowSAR	HighAutonomy	NFC
BlackberryPassport	×	×	×		×		×	×
BlackberryLeap	×				×		×	×
BlackberryQ5	×	×	×		×			×
iphone6plus	×			×	×		X	×
iphone6	×				×		X	×
NokiaLumia735	×				×		X	×
NokiaLumia930	×			×	×			×
SonyXperiaZ1	×			×	×		×	×
GoogleNexus5	×			×	×	×		×
AsusZE500CL	×				×			×
WikoHighway	×					×		
LGGFlex	×				×	×	×	×

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Concept lattice

The concept set C provided with: $(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2$ (or equivalently $I_2 \subseteq I_1$) has a lattice structure

Every concept pair has a lower bound and an upper bound

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Implication rule: For A_1 and A_2 two attribute sets (itemsets) $A_1 \Rightarrow A_2$ iff $f(A_1) \subseteq f(A_2)$ When $(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2)$ $I_1 \Rightarrow I_2$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

୬ ବର

AOC-poset

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

AOC-poset

Complexity of conceptual structures

Formal context (O, A, R)

- two finite sets O and A
- binary relation $R \subseteq 0 \times A$

Concept lattice #concepts $< 2^{min(|A|,|O|)}$

Reached with the lattice of all subsets of *E*, where *E* is *O* if |O| = min(|A|, |O|) (otherwise, *E* is *A*)

AOC-poset

#concepts < |A| + |O|

Reached if |A| = |O| and every attribute is shared by several distinct objects (a bipartite crown graph for ex.)

FCA and complex data

By transforming multi-valued contexts into binary contexts (scaling) or by using a general Galois connection,

- many-valued contexts (integers, floats, terms, structures, symbolic objects, etc.) (Ganter / Wille, Polaillon, ...)
- fuzzy descriptions (Belohlavek, Yahia et al., ...)
- hierarchies on values (Godin et al., Carpineto et Romano, ...)
- logical description (Chaudron et al., Ferré et al., ...)
- graphs (Liquière, Prediger / Wille, Ganter / Kuznetsov, ...)

- pattern structures (Ganter and Kuznetsov,)
- etc.

> A unique classification centered on a unique object set

Relational Concept Analysis (RCA)

- Extends the purpose of FCA for taking into account object categories and links between objects
- Main principles:
 - a relational model based on the entity-relationship model
 - integrate relations between objects as relational attributes
 - iterative process
- RCA provides a set of interconnected lattices
- Produced structures can be represented as ontology concepts within a knowledge representation formalism such as description logics (DLs).

Joint work with:

A. Napoli, C. Roume, M. Rouane-Hacène, P. Valtchev

A simple entity-relationship model to introduce RCA

Relational Context Family

object-attribute contexts

- Pizza
- Ingredient
- object-object context(s)
 - has-topping \subseteq Pizza \times Ingredient

(ロ) (型) (E) (E) (E) (O)

A RCF \mathcal{F} is a pair (K, R) with:

- K is a set of object-attribute contexts $K_i = (O_i, A_i, I_i)$
- ▶ *R* is a set of object-object contexts $R_j = (O_k, O_l, I_j)$,
 - (O_k, O_l) are the object sets of formal contexts $(K_k, K_l) \in K^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $I_j \subseteq O_k \times O_l$
- K_k is the source/domain context
- ► *K_I* is the *target/range context*.
- we may have $K_k = K_l$.

RCF / object-attributes contexts

Pizza	thin	thick	calzone
okonomi			×
alberginia		×	
margherita	×		
languedoc	×		
four-cheeses	×		
three-cheeses	×		
frutti-di-mare	×		
quebec		×	
regina	×		
hawai		×	
lorraine	×		
kebab			×

Ingredient	fruit-vegetable	meat	fish	dairy	cereal-leguminous	veg-oil
tomato-sauce	×					
cream				×		
tomato	×					
basilic	×					
olive	×					
olive oil						×
soy	×					
mushroom	×					
eggplant	×					
onion	×					
pepper	×					
ananas	×					
mozza				×		
goat-cheese				×		
emmental				×		
fourme-ambert				×		
squid			×			
shrimp			×			
mussels			×			
ham		×				
bacon		×				
chicken		×				
maple-sirup	×					
corn			. √ A		×	
					_	_

haa tamaina dhamata sawaa damama damata daalii aliya didaa ai daay damahaama da

RCF / object-object context / part 1

has-topping	tomato-sauce	cream	tomato	basilic	olive	olive oil	soy	mushroom	eggplant	onion	pepper	ananas
okonomi	×					×	×	×				
alberginia	×					×	×		×	×		
margherita	×		×	×	×	×						
languedoc	×		×	×	×	×				×	×	
four-cheeses		×										
three-cheeses		×										
frutti-di-mare	×				×	×						
quebec	×											
regina	×							×				
hawai	×											×
lorraine		×								×		
kebab	×		×		×					×		

RCF / object-object context / part 2

has-topping	mozza	goat-cheese	emmental	fourme-ambert	squid	shrimp	mussels	ham	bacon	chicken	maple-sirup	corn
okonomi												
alberginia												
margherita	×											
languedoc	×											
four-cheeses	×	×	×	×								
three-cheeses	×	×	×									
frutti-di-mare	×				×	×	×					
quebec	×							×			×	×
regina	×								×			
hawai	×							×				
lorraine			×						×			
kebab			×							×		

RCA - Initial Lattice building

At the beginning, only the object-attribute contexts are used to build the foundation of the concept lattice family

Then we use the current classification of ingredients by their categories and the relation to refine the classification on pizzas.

Given an object-object context $R_j = (O_k, O_l, I_j)$, There are different relevant schemas between an object of domain O_k and concepts formed on O_l , that will be represented by relational attributes.

- E. g. (scaling operators)
 - Existential: an object is linked (by R_j) to at least one object of the extent of a concept
 - Universal: an object is linked (by R_j) only to objects of the extent of a concept

RCA - Existential relational attributes

margherita has one topping in Concept_10 extent: **mozza**. It has other links to other concept extents.

∃has-topping.Concept_10 is assigned to margherita

RCA - Existential relational attributes

Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i .

	I	I	0	1	oncept_7	oncept_5	oncept_6	oncept_8	oncept_9	oncept_10	oncept_11	oncept_12
	-	÷	Ū,		Ŭ	Ŭ.	Ŭ	Ŭ.	Ŭ.	Ŭ	Ŭ.	Ŭ
Pizza	thi	thic	calz		ping	ping	ping	ping	ping	ping	ping	ping
okonomi			×		do	do	do	do	do	do	đ	do
alberginia		\times			s-t	s-t	s-t	s-t	s-t	s-t	s-t	s-t
margherita	×				ha	ha	ha	ha	ha	ha	ha	ha
languedoc	×			has-topping	m	т	т	т	т	т	т	т
four-cheeses	×			okonomi		х	х					×
three-cheeses	×			alberginia		×	×					×
frutti-di-mare	×			margherita		х	х			×		×
quebec		×		languedoc		×	×			×		×
regina	×			four-cheeses		x				×		
hawai		×		three-cheeses		×				×		
lorraine	×			frutti-di-mare		×	×		×	×		×
kebab			×	quebec		x	x	x		×	×	
				regina		×	×	×		×		
				hawai		х	х	х		x		
				lorraine		×	×	×		×		
				kebab		х	×	х	ĺ	×		

Relational Concept Family / exists

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Relational Concept Family / exists

Concept_21: pizzas with at least one topping in dairy Concept_18: pizzas with at least one topping in meat have at least one meat topping \Rightarrow have at least one dairy topping

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

three-cheese has topping in and only in Concept_10 extent.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\forall \exists has-topping.Concept_10 \text{ is assigned to three-cheese}$

RCA - Universal relational attributes

Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i

					oncept_7	oncept_5	oncept_6	oncept_8	oncept_9	oncept_10	oncept_11	oncept_12
Pizza	thin	thick	calzone		ping. C	ping. C	ping. Co	ping. Co	ping. C	ping. C	ping. C	ping. C
okonomi			×		to d	fo	top	top	to b	to l	to	to b
alberginia		\times			-se	-se	-SE	-SE	-se	-se	-se	-se
margherita	×				Ë.	Ë	Ë	Ϋ́	Ë	Ë.	l Ř	Ë
languedoc	×			has-topping	\geq	≥	\geq	\geq	\geq	⊳		\geq
four-cheeses	×			okonomi		x						
three-cheeses	×			alberginia		х						
frutti-di-mare	×			margherita		x						
quebec		\times		languedoc		x						
regina	×			four-cheeses		x				×		
hawai		\times		three-cheeses		х				×		
lorraine	×			frutti-di-mare		x						
kebab			×	quebec		x			İ			
				regina		×						
				hawai		×						
				lorraine		x						
				kebab		х						

Relational Concept Family / forall

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relational Concept Family / forall

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Concept_13: pizzas with only dairy topping Concept_1: thin pizzas have only dairy topping \Rightarrow thin

A variety of scaling operators to tune the results

Operator	Attribute form	Condition
Universal (narrow)	∀ <i>r</i> .c	$r(o) \subseteq Ext(c)$
Universal strict	∀∃ <i>r</i> . <i>c</i>	$r(o) \subseteq Ext(c)$ and $r(o) eq \emptyset$
Universal-percent	$\forall \exists \geq n\% r.c$	$ r(o) \cap Extent(C) \ge n r(o) /100)$
Covers	\supseteq r.c	$r(o) \supseteq Ext(c)$
Covers-percent	\supseteq \geq <i>n</i> % <i>r</i> . <i>c</i>	$ r(o) \cap Extent(C) \ge n Extent(C) /100)$
Existential (wide)	∃ r.c	$r(o) \cap Ext(c) eq \emptyset$
Universal strict	∀∃ <i>r</i> . <i>c</i>	$r(o)\subseteq Ext(c)$ and $r(o) eq \emptyset$
Qualif. card.	\geq n r.c	$r(o) \subseteq Ext(c)$ and $ r(o) \ge n$
restriction		
Card. restriction	$\geq n r. \top_{\mathcal{L}}$	$ r(o) \geq n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Entity-Relationship diagram

- General ER diagram may present cycle/circuits between classes/objects
- Scaling operators are assigned to relations: ∃ prefers ∀∃ has-topping ∀∃ has-category ∀∃ is-produced-by

RCA schema

(ロ)、

Credit X. Dolques

Interconnected lattices

Example of possible learned knowledge

- ► $\forall \exists has-category.Vegetable \Leftrightarrow \forall \exists is-produced-by.Organic farmers$
- A subgroup of organic farmers prefer at least one pizza with only vegan topping ingredients and produced only by organic farmers

Analysis of pizza data

 \exists prefers $\forall \exists$ has-topping $\forall \exists$ has-category $\forall \exists$ is-produced-by

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Analysis of pizza data - object-atribute contexts

								- Ja	Ingredient
								5	tomato-sauce
			ue u				e	-fa	cream
	.⊆	j .ž	zo				Ē	l a	onion
Pizza	문	다	C I				fa	fi	bacon
forest		×					÷Ë	ē	salmon
occitane			×				ga		soy-cream
three-cheese	×			P	eople		2	8	mozza
four-cheese	×			A	medeo		×		goat-cheese
lorraine	X			A	mine		×		emmental
arctic		×		C	yril			×	fourme-ambert
				M	larianne	е	×		eggplant
				P	etko			×	mushroom
	-	Cate fruit- meat fish	gory vegetal	ble	× × mediterranean	< vegan		× vegetarian	
	ľ	dairy			X			X	

(ロ)、

Analysis of pizza data - object-object contexts

prefers	forest	00	citane	th	ree-ch	eese	four	-cheese	e le	orraine	ar	ctic
Amedeo	×											
Amine			×									
Cyril								×		×		
Marianne					×							×
Petko												×
has-topping	tomato-sauce	cream	onion	bacon	salmon	soy-cream	mozza	goat-cheese	emmental	fourme-ambert	eggplant	mushroom
forest						×						×
occitane	×		×								×	
three-cheese	×						×	×	×			
four-cheese	×	×					×	×	×	×		
lorraine		×	×	×			×					
arctic	×	×			×		×					

Analysis of pizza data - object-object contexts

eggplant

mushroom

is-p	produced-by	Amedeo	Amine	Cyril	Mariar	ine	Petko
tor	nato-sauce	×	×				
cre	am			×			
oni	ion	×					
bao	con			×			
sal	mon				×		×
soy	-cream		×				
mo	zza				×		×
goa	at-cheese						×
em	imental				×		×
fou	ırme-ambert				×		×
egg	gplant		×				
mu	Ishroom	X					
	has-category	/ fruit-	vegetable	meat	fish	dai	ry
	has-category tomato-sauc	/ fruit-	vegetable ×	meat	fish	dai	ry
	has-category tomato-sauc cream	/ fruit- ce	vegetable ×	meat	fish	dai ×	ry
	has-category tomato-sauc cream onion	/ fruit-	vegetable × ×	meat	fish	dai ×	ry
	has-category tomato-sauc cream onion bacon	/ fruit-	× ×	meat	fish	dai ×	ry
	has-category tomato-sauc cream onion bacon salmon	/ fruit-	× ×	meat	fish	dai ×	
	has-category tomato-sauc cream onion bacon salmon soy-cream	/ fruit-	× × ×	meat X	fish	dai ×	
	has-category tomato-sauc cream onion bacon salmon soy-cream mozza	/ fruit-	× × ×	meat	fish ×	dai ×	
	has-category tomato-sauc cream onion bacon salmon soy-cream mozza goat-cheese	/ fruit-	× ×	meat	fish ×	dai ×	
	has-category tomato-sauc cream onion bacon salmon soly-cream mozza goat-cheese emmental	rruit-	×egetable × ×	meat ×	fish	dai ×	

×

Х

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \exists prefers $\forall \exists$ has-topping $\forall \exists$ has-category $\forall \exists$ is-produced-by

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Step 0

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Step 1

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Step 2

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Step 3

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Step 4

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ▶ People: \exists prefers.Concept_28 \Rightarrow organic farmer
- ► Ingredient: ∀∃has-category.Concept_12 ⇔
 ∀∃is-produced-by.Concept_6 (organic farmers)
- Amedeo/Amine prefer at least one pizza with only vegan topping ingredients and produced only by organic farmers

- Ontology construction (R. Bendaoud, M. Rouane Hacene, Y. Toussaint, B. Delecroix, A. Napoli)
- Ontology restructuring (M. Rouane-Hacene, R. Nkambou and P. Valtchev)
- Discovering hidden user profiles in a semantic actors-activities network (Z. Azmeh, I. Mirbel)
- Information retrieval in legal document collections (queries) (N. Mimouni, A. Nazarenko, S. Salotti)

FRESQUEAU project (ANR11_MONU14)

Joint work with: A. Braud, X. Dolques, C. Grac, F. Le Ber, C. Nica http://engees-fresqueau.unistra.fr

- Develop new methods to study, compare and exploit the whole set of available parameters describing the state of watercourses
- Extraction of implication rules (with premise of size 1)
 Presence of taxons of size from 0 to 2 cm and with a lifetime of 1 month implies presence of SO4
- ▶ 4 OA-contexts (49 sites, 197 macro-invertebrates, 27 Physico-Chemical parameters, 18 life traits (116 modalities)), 5+6+3 00-contexts
- variants on scaling operators
- Lattices: > 10 000 concepts
- ► AOC-posets: from ~600 to ~1500 concepts, ~130 to ~300 rules

Reengineering of existing software, by building new software artefacts

- UML class diagram refactoring (M. Dao, M. Huchard, M. Rouane Hacene, C. Roume, P. Valtchev, G. Arévalo, J.-R. Falleri, C. Nebut)
- UML Use case diagram refactoring (X. Dolques, M. Huchard, C. Nebut, P. Reitz)
- Blob design defect correction (N. Moha, M. Rouane Hacene, P. Valtchev, Y.-G. Guéhéneuc)
- Extracting architectures in object-oriented software (A.-E. El Hamdouni, A. Seriai, M. Huchard)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Applications to Software engineering

Learning from model transformation examples, and inferring transformation rules

Learning model transformation patterns in MDE (H. Saada, X. Dolques, M. Huchard, C. Nebut, H. A. Sahraoui)

Classification of software artefacts

- Classification of components (G. Arévalo, M. Huchard, C. Urtado, S. Vauttier)
- Classification of web services (Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, C. Tibermacine)

Software analysis

 Analysis of the evolution of class diagrams (A. Osman-Guédi, A. Miralles, B. Amar, M. Huchard, T. Libourel and C. Nebut)

Conclusion

- RCA: an opportunity for analyzing more deeply datasets composed of objects and relations
- Can be mixed with other FCA extension (e.g. numerical data)
- Exploratory RCA allows us step-by-step analysis, considering a subset of the dataset and changing structures (lattices, AOC-posets, iceberg)

うして ふゆう ふほう ふほう うらつ

Tools

- Galicia: http://galicia.sourceforge.net/
- eRCA: http://code.google.com/p/erca/
- RCAexplore: http://dolques.free.fr/rcaexplore/

- Ongoing work on temporal data in the context of Fresqueau project
- Guided exploration
 - Local data exploration by incremental algorithms
 - Develop querying approach, or metrics
 - Analyzing the specialization relations between lattices built with different scaling operators

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Visualization

Thank you / Questions?

Marianne Huchard, Mohamed Rouane Hacene, Cyril Roume, Petko Valtchev: Relational concept discovery in structured datasets Ann. Math. Artif. Intell. 49(1-4): 39-76 (2007)

Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, Petko Valtchev: Relational concept analysis: mining concept lattices from multi-relational data Ann. Math. Artif. Intell. 67(1): 81-108 (2013)

うして ふゆう ふほう ふほう うらつ