Unitary Triangularization of a Nonsymmetric Matrix * ALSTON 8. HOUSEHOLDER Oak Ridge National Laboratory, Oak Ridge, Tennessee A method for the inversion of a nonsymmetric matrix, due to J. W. Givens, has been in use at Oak Ridge National Laboratory and has proved to be highly stable numerically but to require a rather large number of arithmetic operations, n cluding a total of n(n -1)/2 square roots. Strictly, the method achieves the triangularization of the matrix, after which any standard method may be em ployed for inverting the triangle. The triangular form is brought about by means of a sequence of n(n -1)/2 plane rotations, whose product is an orthogonal matrix. Each rotation requires the extraction of a square root. The advantage in using the method lies in the fact that an orthogonal matrix is perfectly con ditioned. Hence the condition of the matrix cannot deteriorate through suc cessive transformations. In fact, if ope deines the condition number of a matrix A to be [START_REF] Householder | A class of methods for inverting matrices[END_REF] 

y(A) = II A 11 11 A-'ll,
where the norm is the spectral norm, then for any orthogonal matrix W, y( W ) = 1 and the condition of any matrix is preserved under multiplication by an orthog onal matrix: y (WA) = y(A).

To look at the matter another way, if TVA R, where R is an upper triangle, then A T A = A TWTW A = R T R, so that R is precisely the triangle one would obtain from the application of the Choleski square-root method to the positive definite matrix A 1'A. It is, in fact, the matri.x to which von K eumanu and Goldstine [START_REF] John | Numerical inverting of matrices of high order[END_REF] are led in their study of Gaussian elimination as apphed to a positive deinite matrix. To obtain the precise triangle that would result from Gaussian elimination with A r A, one has only to remove as a factor the diagonal of R: R = DU, where U has a unit diagonal.

The purpose of the present note is to point out that the same result can be obtained with fewer arithmetic operations, and, in particular, for inverting a square matrix of order n, at most 2(n -1) square roots are required, instead of n(n-1)/2. For n > 4, this is a saving of (n -4)(n-1)/4 square roots.
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It is as easy to discuss the general complex case, and the method is based upon the almost self-evident LEMMA. For any vector a " 0, and any unit vector v , a unit vector u exists such that

(I -2uu*)a = II a II v ,
where II a II represents the Euclidean norm: I! a 1 12 = a*a. The computation requires two square roots and a single reciprocation.

The proof exhibits the computation. Let

" = ! I a :1 > o.
This represents one of the necessary square roots. It is required that a -2(u*a)u = av.

Let " = 2u*a .

Then JU =a-av, / = 2a(a -v*a),
which accounts for the other square root. Clearly

a -u*a � 0, (1) 
(2)

(3) (4)
since a is the Euclidean length of a, and v*a the projection of a upon the unit vector v. Hence a and . are both real and can be taken non-negative. If a = v*a, then the lemma is veriied with u = 0; otherwise take . > 0 deined by (4), and one veriies easily that u deined by [START_REF] Steekrod | The topology of ibre bundles Princeton[END_REF] ( -1)"-

1 det R.
2

An interesting byproduct of the reduction is a simple proof of the theorem of Hadamard, that n I detAI �I ll a ,ll,

1
where a, is the tth column of A. This results from the fact that the Euclidean norm is preserved under multiplication by a unitary matrix, and that each diagonal element of R is the norm of the projection of that column upon a certain subspace.

It is evident that when the reduction is applied to a matrix 11 of n columns and N > n rows, there results again an upper triangle of non-null elements, and a trapewid of zeros, the triangle representing the factori,ation of the normal matrix A* A required for a least squares solution.

Returning to the case of a square matrix, if the vectors u, are stored as gen erated and applied to the successive columns of the matrix, there are required the n -1 reciprocations, 2(n -1) square roots, and

(n -1)(2n2 + 5n + 9)j; 3 = 2n3/3 multiplications for the formation of R. In this count it is assumed that one forms a , . -I, u, and then each n*at and uu,*a� , i > 1.

. f R .

(n + 2) I . 1 • .

1 is scaled at the outset so that ll a, II � 1 for every �, then all elements remain within range throughout the triangularization, since a unitary transformation leaves the Euclidean norm invariant. Hence no scaliug problems arise in the actual triangularization. Moreover, when R-1 is formed, if this is similarly

"f R-1 • I .

  is efective. The single reciprocation . . -1 necessary ts m ' • �ow let a be the first column of . and take v = e1 , the irst column of the identity. Application of the lemma provides a unitary matrix U, = I -2u1u 1 * such that the first column of U1. is null except in the irst element. The result is equivalent to the application of n -1 plane rotations, with one slight dff erence, that det (I -2uu*) = -1, whence this transformation reverses the orientation of the coniguration. One continues fer suppressing the irst row and irst column of the transformed matrix. After n -1 steps, at most, the matrix . is triangularized: U = u._,U•-• ... U,' UA. = R. Evidently det .1

  Instead of R, a scalar multiple of R is formed in this way. This is feasible for loating-point computations, but probably not for fixed point.If the matrix A = (a 1 , a,, • • • , an)

	InversiOn o	rcqmres	3	mu ttp tcatwns; anc 1	1• d b 1s mu t1p te y
	the U, in reverse order, then			
		(n -1)(4n2 + 7n + 12)/i	
	multiplications are required. Altogether. for the formation of A-1, the number
	of multiplications is			
		(:3n3 + 4n2 + in -10)/2 = :3n3/2,	
	as compared with approximtttely 5n3 /2 multiplications required if one were to
	form ( A *	.			
	Ky Fan has pointed out that half the square roots and all the reciprocations
	are evaded in the tri,wgularization proper if one forms	
			p.2l -2(p.u)(p.u)*.	

A -r. Only n forming R-1 itself may intermediate scaling be required.

The unitary matri.: employed here is obviously suggested by a somewhat more general one previouly used [START_REF] Householder | A class of methods for inverting matrices[END_REF]. A similar form is used by Steenrod [START_REF] Steekrod | The topology of ibre bundles Princeton[END_REF] for theor etical purposes.